TEMA N 2 RECTAS EN EL PLANO

Documentos relacionados
3. 2. Pendiente de una recta. Definición 3. 3.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .

EJERCICIOS PROPUESTOS

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio.

Geometría Analítica Enero 2016

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRÍA ANALÍTICA EN EL PLANO

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

Clase 9 Sistemas de ecuaciones no lineales

GEOMETRÍA ANALÍTICA DEL PLANO

O X de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.

8.- GEOMETRÍA ANÁLITICA

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.

GEOMETRÍA: ESPACIO AFÍN

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS

2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1)

LA RECTA Y SUS ECUACIONES

Clase 8 Sistemas de ecuaciones no lineales

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 10º

1. Línea Recta Rectas constantes Rectas horizontales Rectas verticales... 4

LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

EJERCICIOS BLOQUE III: GEOMETRÍA

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

Ecuación de la Recta

EJERCICIOS PROPUESTOS

TEMA 5. GEOMETRÍA ANALÍTICA

EJERCICIOS BLOQUE III: GEOMETRÍA

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

LECCIÓN Nº 02 LA LINEA RECTA

PROGRAMACIÓN LINEAL. 1. Introducción

ECUACIONES DE PRIMER GRADO CON DOS VARIABLES

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,

Proyecciones. Producto escalar de vectores. Aplicaciones

Cálculo diferencial DERIVACIÓN

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

PROBLEMAS METRICOS. r 3

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LA RECTA

P. A. U. LAS PALMAS 2005

4º ESO VECTORES y RECTAS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa. VECTORES y RECTAS

GENERALIDADES DE LA LINEA RECTA

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

PROBLEMAS RESUELTOS GEOMETRÍA

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0)

Ejercicios Resueltos

ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

Boletín de Geometría Analítica

Actividad 12: Lectura Capítulo 7

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

SISTEMAS DE ECUACIONES LINEALES

TEMA 8 GEOMETRÍA ANALÍTICA

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

FUNCIONES CUADRÁTICAS. PARÁBOLAS

Curso de Álgebra Lineal

Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta llamada directriz.

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de

Nota: Como norma general se usan tantos decimales como los que lleven los datos


TEMA 5 FUNCIONES ELEMENTALES II

Rectas y Parábolas. Sistemas de coordenadas rectangulares (Plano Cartesiano)

Los números complejos

Capítulo 10. Ecuaciones y desigualdades

Tema II: Programación Lineal

Clase 9 Sistemas de ecuaciones no lineales

INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO

Definición de Funciones MATE 3171

Inecuaciones en dos variables

La raíz es el valor donde la función vale cero, y donde la recta corta al eje x. f(x) = 0

Universidad Icesi Departamento de Matemáticas y Estadística

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

Líneas y Planos en el Espacio

ECUACIÓN GENERAL DE SEGUNDO GRADO

Definición de vectores

JUNIO Opción A Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

Unidad Nº2 :ECUACION DE LA RECTA. Función lineal. 3 x + 3

Curvas en paramétricas y polares

ECUACIÓN DE LA RECTA

Lección 2.4. El Sistema de Coordenadas y La Ecuación de la Recta. 21/02/2017 Prof. José G. Rodríguez Ahumada. 1 de 24

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano).

1. Polígonos. 1.1 Definición

Matemáticas II - Geometría

Cálculo vectorial en el plano.

Lección 51. Funciones III. Funciones lineales

Matemáticas Febrero 2013 Modelo A

Módulo 2 - Diapositiva (Quiz 2) Ecuación de la recta. Universidad de Antioquia

Funciones y gráficas. 3º de ESO

Transcripción:

2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración En la figura 2.1. hemos localizado los puntos P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) asi como también el segmento de recta fig 2.1. Al trazar por el punto P 1 una paralela al eje x y por P 2 una paralela al eje y, éstas se interceptan en el punto R, determinado el triángulo rectángulo P 1 RP 2 y en el cual podemos aplicar la relación pitagórica: Pero: ; y Luego, Observaciones: Prof: Ing. Héctor González C. 1

i. En la fórmula (1) se observa que la distancia entre dos puntos es siempre un valor no negativo ii. iii. Nótese además que el orden en el cual se restan las coordenadas de los puntos P 1 y P 2 no afecta el valor de la distancia. Si el segmento rectilíneo determinado por los puntos P 1 y P 2 es paralelo al eje x (fig.2.2.) entonces puesto que y 1 = y 2 fig. 2.2. Igualmente, si dicho segmento es paralelo al eje y (fig. 2.2. (b)), entonces puesto que x 2 = x 1 2.2 Coordenadas del punto Medio de un segmento 22... Al Considerar el segmento la (fig. 2.3.) cuyos extremos son los puntos P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ), mostrados en Prof: Ing. Héctor González C. 2

L Luego aplicando las siguientes fórmulas que permiten calcular el punto medio de un segmento, son las siguientes: Xm X1 + X2 2 Ym Y1 + Y2 2 E Ejemplo: Dado los siguientes puntos en el plano P1(2, 3) y P2( -4, 5 ), encontrar: a) Distancia entre los dos puntos b) Coordenadas del punto Medio Solución parte a Luego aplicando la fórmula anterior se tiene que: X1 := 2 Y1 := 3 X2 := 4 Y2 := 5 d := ( X2 X1) 2 + ( Y2 Y1) 2 d = 6.325.bbbbbbbbbbbbbbbbbbbbbbbbbbbb Parte b) X1 X2 Xm:= + Xm = 1 2 Y1 Y2 Ym := + Ym = 4 2 Luego las coordenadas del punto medio son: M(-1, 4) b Prof: Ing. Héctor González C. 3

2.3 Pendiente e Inclinación de una Recta D El ángulo θ que forma una recta L con el eje x medido en el sentido positivo del eje a la derecha L, se llama: ANGULO DE INCLINACIÓN de la recta L (fig. 2.4.). Si L es una recta no vertical, la PENDIENTE de la recta L, denotada por m, se define como el valor de la tangente de su ángulo de inclinación. Es decir, m tan( θ) (1) El número m se conoce como PENDIENTE de la recta L Observaciones: Si la recta L es vertical, su ángulo de inclinación es 90º y por lo tanto su pendiente m = tan (90º) no está definida. FIG 2.4 Si P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) son dos puntos distintos sobre una recta no vertical L (fig.2.5(b)), entonces de acuerdo a la definición de pendiente se tiene: Las expresiones (1) y (2) son equivalentes y en lo sucesivo haremos uso indistinto de ellas. Nótese que el coeficiente angular m es igual al incremento de ordenadas dividido por el incremento de abscisas. El nombre de pendiente de una recta esta justificado. Cuando se dice que un camino tiene la pendiente 5%, significa que por cada 100 unidades horizontales asciende 5 unidades, es decir, el cociente de las ordenadas por las abscisas correspondientes es 5/100. (2) Prof: Ing. Héctor González C. 4

La pendiente de una recta puede ser positiva, negativa o cero, según el ángulo de inclinación de la recta, por lo tanto se tiene que: Si = 0 o entonces m= 0 (fig. 2.5. (a)) Si 0 o < < 90 o entonces m > 0 (fig. 2.5. (b)) Si 90 º < < 180 o entonces m < 0 (fig. 2.5. (c)) Fig. 2.5. f 2.4 Ecuaciones de la Línea Recta 2.4.1 Ecuación de la recta que pasa por el origen Considere la recta L que pasa por el origen 0 y forma un ángulo de inclinación con el eje x, como se muestra en la (fig. 2.6.)....... Fig 2.6 Tómese sobre la recta los puntos P 1 (x 1, y 1 ),P 2 (x 2, y 2 ) y P 3 (x 3, y 3 ). Al proyectar los puntos P 1, P 2 y P 3 sobre el eje x, se obtienen los puntos P 1, P 2, P 3. Prof: Ing. Héctor González C. 5

Como los triángulos OP 1 P 1, OP 2 P 2 y OP 3 P 3 son semejantes; se tiene que: Por lo tanto la ecuación de dicha recta que pasa por el origen queda de la siguiente manera Y = mx Por lo tanto, es la ecuación de la recta que pasa por el origen y tiene pendiente conocida m. 2.4.2 Ecuación de la recta conocida su pendiente y su intercepto con el eje y Considere una recta l de la que se conocen m (m = tan ) y b (ver fig. 2.7.) Fig 2.7 Cuando se tiene una recta que no pasa por el origen y tiene corte con el eje Y, como se aprecia en la figura, este punto de corte se denomina ( b ), que es el intercepto con el eje Y, por lo tanto la ecuación queda: y = mx + b ecuación de la recta en términos de su pendiente m y su intercepto b con el eje y... 2.4.3 Ecuación de la recta que pasa por un punto y de pendiente conocida Considere la recta l que pasa por un punto dado P 1 (x 1, y 1 ) y cuya pendiente m también es conocida. Prof: Ing. Héctor González C. 6

Fig 2.8 Fig 2.8 Al llamar b al intercepto de la recta l con el eje y, entonces la ecuación de l, viene dada por: y = mx + b (1) Como P 1 (x 1, y 1 ) l, entonces satisface (1) y en consecuencia se tiene: y 1 = mx 1 + b (2) Al restar de la ecuación (2) la ecuación (1) se elimina el parámetro b que se desconoce y se obtiene: y y 1 = m(x x 1 ) (3) La ecuación (3) se denomina la ecuación de la recta 2.4.3 Ecuación de la recta que pasa por dos puntos P1(X1, Y1) P2(X2, Y2) Prof: Ing. Héctor González C. 7

Sea l la recta que pasa por los puntos P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) y llámese m 1 su pendiente. (Fig 2.9) Fig 2.9 Como l pasa por el punto P 1 (x 1, y 1 ) y tiene pendiente m 1, se tiene que la ecuación anterior es y y 1 = m 1 (x x1) (1) representa la ecuación de dicha recta. Ahora, como el punto P 2 (x 2, y 2 ) l, entonces satisface su ecuación y su pendiente es m Y2 Y1 X2 X1(2) Sustituyendo (2) en (1) se obtiene La ecuación (3) se conoce como la forma: DOS-PUNTOS de la ecuación de la recta. 2.4.4 Ecuación General de la Recta La ecuación Ax + By +C = 0 donde A, B, C son números reales y A, B no son simultáneamente nulos, se conoce como la ECUACIÓN GENERAL de primer grado en las variables x e y. La ecuación explícita de la recta cuando se conocen dos puntos excluye las rectas paralelas al eje y, cuyas ecuaciones son de la forma x = constante, pero todas las rectas del plano, sin excepción, quedan incluidas en la ecuación Ax + By + C = 0 que se conoce como: la ecuación general de la linea recta. (3) Prof: Ing. Héctor González C. 8

2.5 Ángulos entre dos rectas Sean l 1 y l 2 dos rectas no verticales, cuyos ángulos de inclinación son θ 1 y θ 2 respectivamente. Al cortarse las rectas l 1 y l 2 forman cuatro ángulos iguales de dos en dos (fig. 2.10.), esto es: β 1 = β 2 = θ 1 θ 2 y α 1 = α 2 = 180 0 - β 1. Fig 2.10 Se define el ANGULO entrel 1 y l 2 como el ángulo positivo obtenido al rotar la recta l 2 hacia l 1. En este caso, el ángulo entre l 1 y l 2 viene dado por: β 1 = θ 1 - θ 2 (1) El propósito ahora es establecer una relación entre las pendientes de dos rectas y el ángulo entre ellas. De la igualdad (1) se tiene: tan β 1 = tan (θ 1 - θ 2) y por último en términos de las pendientes se tiene: tan β 1 Esta ecuación permite obtener el ángulo entre 2 rectas, conocidas las pendientes de cada una de las rectas. 2.6 Rectas Paralelas y Perpendiculares Prof: Ing. Héctor González C. 9

Sean l 1 y l 2 dos rectas no verticales con pendientes m 1 y m 2 respectivamente. Entonces: i) l 1 es paralela a l 2 (l 1 l 2 ) m 1 = m 2 ii) l 1 es perpendicular a l 2 (l 1 l 2 ) m 1. m 2 = -1 Fig 2.11 Rectas Paralelas y Perpendiculares 2.7 Intersección entre dos Rectas La intersección entre dos rectas, simplemente son las coordenadas x e y del punto de intersección que resulta resolviendo dichas ecuaciones mediante un sistema de dos ecuaciones con dos incógnitas. Dicho sistema puede resolverse por cualquiera de los métodos vistos en los cursos de álgebra. 2.8 Distancia entre dos rectas Paralelas Considere nuevamente dos rectas l y r paralelas y de ecuaciones: l: y = mx + b 1 ó l: mx y + b 1 = 0 r: y = mx + b 2 ó r: mx y + b 2 = 0 Supóngase además que 0 < b 1 < b 2. Sean B 1 y B 2 los puntos donde las rectas l y r cortan respectivamente el eje y (fig. 2.12.). Prof: Ing. Héctor González C. 10

Fig 2.12 Distancia entre Rectas Paralelas De acuerdo a la fórmula de la distancia de un punto a una recta, se tiene que: Igualmente,. Pero que representa la distancia entre las rectas paralelas es tal que: es la distancia entre las rectas paralelas l y r EJERCICIOS RESUELTOS Prof: Ing. Héctor González C. 11

EJEMPLO 1 Hallar la distancia entre los puntos P1 (2, -8) y P2 (3, 5) Solución: x 2 x 1 = 3 2 = 1 ; y 2 y 1 = 5 (-3) = 13 Luego, EJEMPLO 2 Sean P 1 (-1, 1) y P 2 (3, 0) dos puntos en el plano. Determine: Coordenadas del punto medio M del segmento Solución: Si el punto medio M tiene coordenadas. M (x m, y m ) entonces: Por lo tanto las coordenadas del punto medio es M(1, ½) EJEMPLO 3 Graficar la siguiente ecuación: y = 2x 5 Para graficar cualquier función lineal, se debe tomar como mínimo dos o más puntos Definiendo f(x) = 2x 5, tomando algunos puntos, se obtiene: f( 0) = 5 f 1 ( ) = 3 f( 3) = 11 Se obtiene la siguiente gráfica Prof: Ing. Héctor González C. 12

Nótese que la ecuación es de la forma Y = mx + b, donde se deduce que b = -5 y pendiente m = 2 (Positiva) 20 10 10 5 0 5 10 10 20 30 EJERCICIOS PROPUESTOS Prof: Ing. Héctor González C. 13

1) Encontrar la longitud y la pendiente de los segmentos de recta que une cada par de puntos: a. (3, -2) y (9, 6) b. (4, -3) y (-1, 9) c. (8, -4) y (-7, 4) d. (5, -8) y (-7, 8) 2) Demostrar que los puntos A(6, 1), B(1, 7) y C(-4, 1) son los vértices de un triángulo isósceles 3) Dado el cuadrilátero cuyos vértices son P 1(-7, 7), P 2(2, 0), P 3(10, 3) y P 4(1, 10). Encontrar la longitud de sus cuatro lados y demostrar que es un paralelogramo. 4) Demostrar que los puntos P 1(0, 5), P 2(6, -3) y P 3(3, 6), son vértices de un triángulo rectángulo 5) Demostrar que el triángulo cuyos vértices son los puntos: a. 0(0, 0), A(9, 2) y B(1, 4) es rectángulo. b. A(8, -1), B(-6, 1) y C(2, -7) es rectángulo 6) Encontrar la ecuación de la recta que pasa por el punto (1, 3) y cuya pendiente es 2. 7) Encuentre la distancia del punto P(6, 1) a la recta 5x + 12y 31 = 0. Ilustre la situación. 8) Trazar las rectas 3x + 4y 10 = 0, y, 3x + 4y = 0. Además dibújelas en el papel milimetrado 9) Hallar la ecuación de la recta que pasa por A(-5,-7) y B(3,-4) 10) Hallar la ecuación de la recta que pasa por A(7,-3), y es perpendicular a la recta 2x 5y = 8 Prof: Ing. Héctor González C. 14

11) Hallar la ecuación de la recta que pasa por A(-3/4,-1/2), y es paralela a la recta x+3y = 1 12) Encontrar el ángulo entre las siguientes rectas a) y-3x+1=0 3y+2x-2=0 b) 3y+x-1=0 y+2x+1=0 c) x=-y x-y-1=0 d) y=-3x+1 y= 2x+2 13) Hallar la ecuación de la recta que pasa por el punto: a) O(4; 5) y es // a la recta 3.x + 4.y = 2 b) P(-1; 1) y es // a la recta y + 2.x = 0 c) Q(2; 1) y es // a la recta 3.y + 3 = 0 d) R(4; 3) y es a la recta 5.x + y = 4 e) S(-2; -1) y es a la recta y = 2.x f) T(1; -3) y es a la recta x + y + 1 = 0 14 ) Representar gráficamente las siguientes ecuaciones indicando la pendiente y el punto de intercepto con el eje y: a - y - 3.x + = 0 d - 2.x - y = 0 g - y - 2.x/3 + 2 = 0 b - 3.x/5 +y - 1 = 0 e - -2.x - y + 6 = 0 h - 2.y = -6.x c - 2.x + 6.y - 12 = 0 f - x - 2.y + 8 = 0 Prof: Ing. Héctor González C. 15