U na aplicación del teorema de Bayes

Documentos relacionados
Métodos Estadísticos Capítulo II

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Unidad Temática 2 Probabilidad

REGLA DE LA MULTIPLICACIÓN

UNIVERSIDAD DE COSTA RICA XS0111 Estadística Introductoria I Prof. Olman Ramírez Moreira

Tema 4. Probabilidad Condicionada

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Distribuciones muestrales. Distribución muestral de Medias

PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD

SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES

Unidad II: Fundamentos de la teoría de probabilidad

Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto

Probabilidad Condicional

PROBABILIDAD CONDICONAL Y TEOREMA DE BAYES

Probabilidad y Estadística

CAPÍTULO IV CONCEPTOS BÁSICOS DE PROBABILIDAD

Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad

y esto para qué sirve?

Unidad Temática 3: Probabilidad y Variables Aleatorias

Socioestadística I Análisis estadístico en Sociología

Dr. Francisco Javier Tapia Moreno. Octubre 14 de 2015.

Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia

2.3 PROPIEDADES DE LA PROBABILIDAD

Estadística Aplicada

ESTADÍSTICA INFERENCIAL

Maestría en Bioinformática Probabilidad y Estadística: Clase 1

Teorema Central del Límite (1)

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero

Tiempo completo Tiempo parcial Total Mujeres Hombres Total

INDICE. Prólogo a la Segunda Edición

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro

Probabilidad del suceso imposible

EXPERIMENTO ALEATORIO

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Introducción a la Probabilidad

3.Si A y B son incompatibles, es decir A B = entonces:

4.12 Ciertos teoremas fundamentales del cálculo de probabilidades

PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.

3.Si A y B son incompatibles, es decir A B = entonces:

Definición de probabilidad

C. EXPERIMENTOS ALEATORIOS- SUCESOS- PROBABILDADES:

Fundamentos de Estadística y Simulación Básica

UNIDAD IV PROBABILIDAD

Espacio muestral. Operaciones con sucesos

SESION 12 LA DISTRIBUCIÓN BINOMIAL

LECTURA 11: NOCIONES DE PROBABILIDAD (PARTE II) REGLAS DE PROBABILIDAD Y TABLAS DE PROBABILIDAD TEMA 22: REGLAS DE PROBABILIDAD

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

Tutorial MT-a3. Matemática Tutorial Nivel Avanzado. Probabilidad y estadística

ESPACIOS MUESTRALES Y EVENTOS

Probabilidad y Estadística

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades.

PRACTICA CON PROBLEMAS DE PROBABILIDAD

Probabilidad Condicional

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:

Tema 9: Contraste de hipótesis.

P R O B A B I L I D A D E S

Probabilidad. 1. Conceptos previos. Teoría de conjuntos. Conceptos básicos

Mirando el diagrama Venn, vemos que A =(A y B) (A y B)

DISTRIBUCIÓN N BINOMIAL

Probabilidad y Estadística

Análisis de. Análisis de. Decisiones:

Asignaturas antecedentes y subsecuentes

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA

HOJA DE TRABAJO UNIDAD 3

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades

MOOC UJI: La Probabilidad en las PAU

CM0244. Suficientable

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos II - PROBABILIDAD. 2.1 Introducción

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Introducción. 1. Algebra de sucesos. PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Primeras deniciones. M. Iniesta Universidad de Murcia

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD

CUÁL SERIA LA PREDICCION OPTIMA DEL ESTADO DEL TIEMPO AL DIA SIGUIENTE?

Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s

Axiomática de la Teoría de Probabilidades

Alba Lucia Londoño Javier a. murillo m.

Conceptos básicos estadísticos

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Tema 3: Probabilidad. Bioestadística

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

02 - Introducción a la teoría de probabilidad. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

Operaciones con conjuntos Repaso de la teoría de conjuntos

AREA ASIGNATURA: Estadística FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez

Números naturales y recursividad

Conceptos de Probabilidad (II)

Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras:

Probabilidad y Estadística Descripción de Datos

Aprendizaje y extensiones mixtas

II. PROBABILIDAD MTRO. FRANCISCO JAVIER CRUZ ARIZA

Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia

Licenciatura en Contaduría. Tema: Teoría de las probabilidades

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

3. Este es un problema de combinaciones. El total de maneras como se pueden elegir los 12 dos grupos es 6

Estadís3ca y Métodos Numéricos Tema 2. Probabilidad

Estadísticas Pueden ser

Pensamiento probabilístico

Unidad 1: Probabilidad

GUÍA DE EJERCICIOS N 14 PROBABILIDADES

Transcripción:

U na aplicación del teorema de Bayes Hugo Alvarez Resumen Se estudia un problema en el que un sujeto debe adivinar en cuál de tres recipientes iguales se oculta un objeto, contando para ello con la ayuda de otro que descarta uno de los recipientes. Cómo varía la probabilidad de éxito en la búsqueda de acuerdo con la modalidad de la ayuda. Nos ocuparemos aquí de un problema bastante conocido, y que ha sabido engendrar no pocas polémicas. Su enunciado conoce muchas versiones más o menos pintorescas. La nuestra, algo modificada de la bibliografía citada al final, será la siguiente: Juan debe adivinar cuál de tres cajitas, para él iguales, es La que contiene una moneda que fue guardada en ellas. Escoge una y está meditando sobre si La elegirá definitivamente cuando recibe la ayuda de Pedro, quien conocedor de cuál es la caja correcta, toma una de las otras dos y la abre para mostrar que está vacía. La cuestión es saber si alguna de las dos cajitas ahora posibles, la que Juan tiene en la mano o la que Pedro no abrió de las otras dos, tiene más probabilidades de contener la moneda. El resultado sorprendente, y por ende el que generalmente se menciona en los artículos que se ocupan del tema sostiene que cambiarse a la caja dejada libre por Pedro otorga a Juan una probabilidad de éxito de ~ en su objetivo de encontrar la moneda. Inclusive se menciona una experiencia de simulación con una computadora que apoya este resultado. Sin embargo, existen sólidas argumentaciones a favor de la tesis de que las dos elecciones posibles tienen igual probabilidad de éxito. Nosotros afirmamos que las discrepancias provienen de distintas interpretaciones del enunciado del problema y mostramos 19

que pequeñas modificaciones del mismo hacen más razonable una u otra solución. Por último, proponemos una tercera solución, no menos adecuada que las conocidas, para la forma ambigua con que hemos presentado el problema. Existen dos maneras básicas de interpretar el problema. Una de ellas no adjudica a la acción de Pedro un carácter estructural, no la ve como el resultado de una intención que debe manifestarse de esta o alguna otra manera parecida, sino como un hecho imprevisible que ocurrió esa vez pero que podría no repetirse en circunstancias idénticas. La otra, por el contrario, supone que Pedro está actuando dentro de un patrón de comportamiento previsible en algún grado. Ese grado de previsibilidad da origen a diversas subinterpretaciones del problema, todas ellas dentro de la segunda manera básica. En la primer manera de interpretar, la acción de Pedro no puede ser supuesta independiente de la elección previa hecha por Juan. De modo que la información anterior que se tenía. queda cancelada por esta nueva situación en la que, concretamente. estamos frente a dos cajas con idéntica probabilidad de contener la moneda. En la segunda interpretación básica se supone que la acción de Pedro forma parte de un experimento más complejo, con varios pasos: primero Juan elige una caja, segundo Pedro descarta una caja, tercero Juan hace la elección definitiva. Pero estos pasos se pueden realizar bajo diferentes reglas, incluyendo o no aleatoriedad cada uno de ellos. Y estas son las subinterpretaciones. La suposición de un patrón de comportamiento en Pedro, permite considerar su acción como un paso más dentro de la secuencia de acciones que determinan el experimento. En particular, permite considerar el suceso aleatorio N: la caja que Pedro elige para mostrar vacía no es la que Jttan ha escogido en su primera elección que jugará un papel primordial en el análisis del problema. Como se ha dicho todavía caben diversas interpretaciones del problema al aceptar hipótesis más finas acerca del patrón de comportamiento de Pedro. Supongamos por ejemplo que aceptamos la hipótesis 20

H 1 : Pedro elige para mostrar una caja vacía entre aquellas que Juan no ha tomado (nótese que esto es siempre posible), y llamemos P1 a la probabilidad bajo esta hipótesis. Lo primero que notamos es que entonces N es un suceso cierto y por lo tanto independiente con cualquier otro. Esto es, Esta igualdad es de mucha importancia, porque con los datos a nuestra disposición, que informan que el suceso N se ha verificado, el espacio muestra! del problema (el conjunto de todos los resultados posibles del experimento) no podrá exceder a N. Y la probabilidad asignada a cualquier suceso deberá ser la probabilidad condicional P1 (-/N) que viene a coincidir con P1 ( ). Vamos a considerar el suceso B: la primera elección de Juan recae en la caja llena y también el suceso cuya probabilidad interesa calcular, E: Juan encuentra la moneda al abandonar su elección original y tomar la caja no abierta por Pedro. ótese que E está admitiendo en su enunciado que ha ocurrido N. Debemos pues aceptar que en el lenguaje conjuntista habitual en Probabilidades E e N. Bajo la hipótesis H 1 E es equivalente a,... B y por lo tanto su probabilidad es 2/3. Si se prefiere, puede usarse para probarlo la fórmula de la "probabilidad completa"' (1) H 1 es la hipótesis que ha asumido Ian Stewart [2], aunque no es claro que ella esté implicada por el enunciado del problema. También podría haberse interpretado que 21

H 2 : Pedro elige para abrir cualquiera de las cajas vacías, sin importar cuál ha seleccionado Juan. Es decir: que hayamos visto ocurrir N no tiene por qué inducirnos a suponer que la intención de Pedro era restringirse siempre a las cajas no elegidas por Juan. Si llamamos P2 a la probabilidad bajo esta hipótesis, ahora N no es un suceso cierto y P2 ( /N) ::/= P2 ( ). En efecto. P2(NjB)=1, P2 (N/"' B) = 1/2 (3) de donde Jo que permite calcular, con la fórmula de Bayes, p. ( /N)= P2 (NjB)P2 (B) = 1/3 = ~ 2 B P2 (N) 2/3 2 (5) Pensando ahora dentro de N, que es el suceso cierto o espacio muestra!, E es equivalente a"' By tiene probabilidad (condicional) 1/2 : 1 P2 (E/N) = 2 (6) Nosotros Pensamos que la hipótesis H2, que da lugar al mismo resultado que la posición ortodoxa de no suponer ni siquiera algun patrón de comportamiento en Pedro, es más "juiciosa" que la suposición H 1. Sin embargo, si cambiamos los números del problema, digamos 100 cajas en vez de 3 y, puestos en el lugar de Juan, con una caja en la mano vemos que Pedro descarta otras 98, sentiremos una fuerte tentación por ir a buscar la "otra caja". Es como si hubiésemos visto 98 veces que ocurre N y, siguiendo el principio de inducción de las ciencias naturales, nos inclínasemos a aceptar la hipótesis H 1. Pero Bayes [1] nos enseñó cómo se debe interpretar ese principio: las dos hipótesis en conflicto son aleatorizadas con probabilidad 1/2 cada una y se revalorizan luego de acuerdo con la experiencia. Ahora el espacio muestra! se llama H y 22

admite como sucesos mutuamente excluyentes de probabilidad 1/2 a los eventos H 1 y H 2. Las probabilidades Pt y P2 que utilizamos antes son las probabilidades condicionales de la nueva probabilidad P relativas a los sucesos Ht y H2 respectivamente PI( )= P () Hl), (7) uestro objetivo es calcular P (E/N) = PN (E). Pero (8) Un sencillo cálculo muestra que, en general, Pe (A/ B) = Pa (A/C)= P (A/ BC) (9) Y con esta observación, se ve que la mayoría de los ingredientes de (8) ya están calculados. Como H 1 e N, usando (2), (9) Por su parte, usando ( 4), Finalmente, P (N/ Ht) P (Ht) P (N/ Hl) P (Ht) + P (N/ H2) P (H2) 1/2P1 (N) 1/2 = ~ 1/2P 1 (N) + 1/2P2(N) - 1/2 + 1/2 2/3 5 por (6), mientras que Entonces, 2 3 1 2 3 PN (E) = - - + - - = - 3 5 2 5 5 23

Apéndice Usamos, como es habitual, la notación PA(B) = P(B/A) para la probabilidad condicional del suceso B habiendo ocurrido A, que se define por P(B/A) = P(AB). P(A) donde naturalmente, AB representa la ocurrencia simultánea de ambos sucesos (la intersección). Un grupo de sucesos mutuamente excluyentes pero que es segura la ocurrencia de uno de ellos se llama un grupo completo. Esto es, H 1,..., Hn forman un grupo completo si HiHj = 0 para i -::1 j y U Hi = n, el suceso seguro, el espacio muestral. Se usan en este articulo los siguientes conocidos resultados (Ver por ejemplo [4]): Teorema (fórmula de la probabilidad completa). Si H,..., Hn forman un grupo completo, para todo suceso A, n P(A) = P(A/ Hi)P(Hi) i=l De la definición de probabilidad condicional, es claro que P(A/ B)P(B) P(AB) = P(B/A)P(A), de donde surge el Teorema de Bayes P(B/A)= P(A/B)P(B) P(A) A veces se llama fórmula de Bayes a la combinación de los dos resultados anteriores: que se interpreta de la manera siguiente: Si Ht,..., Hn son las (mutuamente excluyentes) hipótesis posibles bajo las que se puede dar un suceso A, y es 24

conocida la probabilidad de que A ocurra bajo cada una de esas hipótesis, una vez realizado el experimento y observado que A ocurrió la fórmula de Bayes da la probabilidad de que la hipótesis Hj fuera la que estaba en vigencia. BIBLIOGRAFIA: [1] T. Bayes An Essay Towards Solving a Problem in the Doctrine of Chances, reimpreso en Biometrika, 45, pp. 296-315 (1968) [2] J. Stewart, Juegos Matemáticos, [nvestigación y Ciencia, enero de 1992 [3] E. Felizia, El Dilema de Perseo, Ciencia Hoy,Vol. 5 n 26 (1994) [4]R. Maronna, Probabilidad y Estadística Elemental~s para Estudiantes de Ciencias, Ed. Exacta,(1995), ejercicio 1.6 Rugo Alvarez Departamento de Matemáticas Universidad Nacional de San Luis Ejército de los Andes 950 5700 SAN LUIS e-mail: halvarez@unsl.edu.ar 25