Diseño geodésico II. Capítulo 3 Nivelación satelitaria

Documentos relacionados
Diseño geodésico II. II semestre, Ing. José Francisco Valverde Calderón Sitio web:

GEODESIA. I semestre, Ing. José Francisco Valverde Calderón Sitio web:

Guadalajara, Jalisco 18, y 19 y 20 de abril

2 FIGURAS DE LA TIERRA

Técnicas de Análisis Espacial

Geodesia II PLANIFICACIONES Actualización: 2ºC/2013. Planificaciones Geodesia II. Docente responsable: CIMBARO SERGIO RUBEN.

TABLA DE CONTENIDO. Prólogo. introducción. Capítulo I Sistemas de Coordenadas en Geodesia Geométrica 11

1 FORMA Y DIMENSIONES DE LA TIERRA. 1.1 DIMENSIONES DE LA TIERRA. Figura 1 La Tierra

Sistemas de referencia convencionales

Norma Técnica. Sistema Geodésico Nacional y Estándares de Exactitud Posicional

Problemas de Sistemas Verticales de Referencia

Manual de Topografía Práctica

Geodesia Física y Geofísica

CÓMO REPRESENTAR LA REALIDAD EN UN MAPA?

MANUAL DE REFERENCIA Baco 3.0. Módulo de batimetrías y Cartas náuticas de la costa. Universidad de Cantabria UC

GEODESIA. I semestre, Ing. José Francisco Valverde Calderón Sitio web:

SISTEMAS DE REFERENCIA Y PARÁMETROS DE TRANSFORMACION Prof. Ricardo Martínez Morales

Geodesia. Y en otro contexto, la orientación y posición de la tierra en el espacio y sus posibles variaciones con el tiempo.

RED TOPOGRÁFICA DE UN PROYECTO

Tema 2 Sistema y marco de referencia terrestre. Sistemas de coordenadas

Curso INAP: Fundamentos y aplicaciones de los Sistemas de Posicionamiento (GPS)

Curso INAP: Fundamentos y aplicaciones de los Sistemas de Posicionamiento (GPS)

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Tema 2 Sistema y marco de referencia terrestre. Sistemas de coordenadas

SISTEMAS DE REFERENCIA SISTEMAS DE COORDENADAS PROYECCIONES

Proyección Equivalente: El área es preservada en proporción correcta con la realidad.

Estimación de la Subsidencia en Bogotá a partir de mediciones GNSS y nivelación geométrica

SISTEMAS DE REFERENCIA SISTEMAS DE COORDENADAS PROYECCIONES

Sistemas de Coordenadas. Más problemas La tierra NO es exactamente una esfera, es una esfera suavemente aplanada ( esfera oblonga )

TEMA 10 CONTROL GEODÉSICO GRUPO Geometría: Punto 3D DEFINICIÓN

EL SISTEMA DE POSICIONAMIENTO GLOBAL GPS

Ca C r a to t gr g a r f a ía í a y Geodesia

Sistemas y Marcos de Referencia

ANEJO nº 2: CARTOGRAFÍA y TOPOGRAFÍA.

Instituto Geográfico Nacional

Topogra1a y Geodesia G337

INFRAESTRUCTURA DE DATOS ESPACIALES DEL URUGUAY. ESPECIFICACIONES TÉCNICAS Sistemas de Referencias Sistemas de Proyecciones

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura

GEODESIA REPRESENTACION DEL TERRITORIO

RED ESTACIONES BASE DE GRAVEDAD

Aplicación de las Normas Técnicas Geodésicas

1.6.- Errores en la nivelación (Tolerancia.) Ajustes de la nivelación Ajuste por desniveles Ajuste por Cotas 1.8.

Diseño geodésico 1. José Francisco Valverde Calderón Sitio web:

La cartografía es, al mismo tiempo, arte y ciencia, pero también podemos considerarla como "comunicación" y "análisis".

2das. Jornadas de Capacitación en SIG e IDE

TÓPICOS DE GEODESIA GEOMÉTRICA

UNIVERSIDAD DEL AZUAY

ÍNDICE TEMA 1. GENERALIDADES... 1

UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL FACULTAD DE ARQUITECTURA

Manuel Berrocoso Domínguez Departamento de Matemáticas Facultad de Ciencias. Universidad de Cádiz

Geodesia Física y Geofísica

Problemas básicos y complementarios de la geodesia

Introducción a la cartografía convencional y digital

SISTEMAS DE COORDENADAS

LOS SISTEMAS GNSS: LA ÚLTIMA REVOLUCIÓN GEODÉSICA

Sistemas de Proyecciones. Norbertino Suárez. Setiembre, 2014

Grados. Grados de. Grados. Latitud. Minutos. Grados de. Longitud. Minutos Minutos Segundos

Geodesia Satelital. II semestre, Ing. José Francisco Valverde Calderón Sitio web:

Asignatura: TOPOGRAFÍA.

Implementación n de SIRGAS en el ámbito nacional: caso colombiano MAGNA - SIRGAS

SISTEMA DE POSICIONAMIENTO SATELITAL

Altitud y Tipos de Altitudes

Curso de capacitación del sistema de información Biótica v 5.0

Escuela de Agrimensura

VI. IDENTIFICACIÓN TOPOGRÁFICA EN LOS MAPAS

Consulte nuestra página web: En ella encontrará el catálogo completo y comentado

2 / INTRODUCCIÓN A LA TOPOGRAFÍA. NOCIONES BÁSICAS. Geodesia. Estudio global de la forma y dimensiones de la Tierra.

CURSO DE FORMACION EN TOPOGRAFIA PROFESOR LUIS JAUREGUI SISTEMAS DE COORDENADAS

Dibujo 1. I ciclo, José Francisco Valverde Calderón Sitio web:

CARTOGRAFÍA Unidad 4: Sistemas de referencia Magna - Sirgas

INTRODUCCION A LA TOPOGRAFÍA Y GEOINFORMACIÓN

23/02/2017 CLASE 2. SIG Gestion-AMBIENTAL. Latitud y Longitud Sistemas de Coordenadas Geográficas y planas. Prof. Roy Cruz Morales.

Sistema de Coordenadas

Instituto Geológico Minero y Metalúrgico

TEMA El rumbo está comprendido siempre entre: a) 0 y 360 b) 1 y 180. e) 0 y 270. d) Ninguna es correcta.

Código: Tipo (T/Ob/Op): T

S DESCRIPCIÓN DE LOS OBSTÁCULOS ID OBSTÁCULO AZIMUT DISTANCIA

GEODESIA POR SATELITE

Diseño geodésico II Capítulo 5 Redes geodésicas locales

BLOQUE Bloque Nociones de Topografía, Cartografía y Geodesia

Figura A.2: gráficas de Contenido Total de Electrones para un período de 16 días comenzando el 15 de marzo de 2007 (a) hasta el 30 de marzo de 2007

Planificaciones Topografía III. Docente responsable: CIMBARO SERGIO RUBEN. 1 de 7

PROCEDIMIENTO PARA LA MIGRACIÓN A MAGNA-SIRGAS DE LA CARTOGRAFÍA EXISTENTE REFERIDA AL DATUM BOGOTÁ, UTILIZANDO EL SOFTWARE ARCGIS DE ESRI

UNIVERSIDAD NACIONAL DE CÓRDOBA

INFORME TÉCNICO NOMBRE DEL PROYECTO

LEVANTAMIENTO TOPOGRÁFICO

DESCRIPCION DEL SISTEMA:

III: OBTENCIÓN DE ALTURAS SOBRE EL NIVEL MEDIO DEL MAR A PARTIR DE INFORMACIÓN GPS

Curso de capacitación del sistema de información Biótica v 5.0

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra

COMO REPRESENTAR NUESTRO MUNDO: INTRODUCCIÓN A LA CARTOGRAFIA

Geodesia. Revisión de conceptos.

Topografia para control de pavimentos en Aeródromos

INFORMACION GEOGRÁFICA INFORMACION GEOGRÁFICA. Poder del mapa PROCESO DE ABSTRACCIÓN CONCEPTUALIZACIÓN DEL ESPACIO

NORMAS PARA LA UTILIZACION DE GPS EN MENSURAS MINERAS AUTORES: MIGUEL RODRIGUEZ TRONCOSO HERNAN ARAYA RODRIGUEZ VICTOR OLIVARES CASANGA

2. ELEMENTOS GEOGRÁFICOS

El Sistema de Referencia Geocéntrico para las Américas SIRGAS: Ejemplo de cooperación basado en GNSS

Transcripción:

Diseño geodésico II Capítulo 3 Nivelación satelitaria

Secciones cónicas Una sección cónica es una curva generada al interceptar un plano con un cono. Dependiendo del ángulo en el que el plano corte el cono, se generan cuatro figuras geométricas:

Definición de elipse La ecuación de la elipse es igual a: x a y Cuando la elipse tiene centro en el punto 0,0 b 2 2 2 2 1 x x y y a 2 2 1 1 1 2 2 b Cuando la elipse tiene centro en el punto x 1,y 1 El elipsoide es una superficie abstracta, matemática, cerrada, definida analíticamente en un espacio tridimensional OXYZ, donde O es el origen del elipsoide. En Geodesia tiene coordenadas 0 m, 0 m, 0m (geocentro). La ecuación es: 2 2 2 x y z 1 2 2 2 a a b

Elipsoide WGS-84 Parámetros geométricos que definen el WGS-84 Semieje mayor (a) : 6378137 m Semieje menor (b) : 6356752.314 m Achatamiento geométrico: 1/298.25722356 Eje X Eje Y Eje X Eje Z Eje Z Eje Y

Coordenadas geocéntricas y geodésicas Eje X: intersección entre el meridiano de referencia o meridiano origen (por convención Greenwich) con el plano del Ecuador Eje Z: coincide con el eje medio de rotación terrestre Eje Y: complementa el sistema triaxial, es ortogonal a los dos ejes anteriores : latitud geodésica : longitud geodésica h: altura elipsoídica f X, Y, Z g X, Y h h X, Y, Z

3.1 Datum del sistema de alturas elipsoídicas Geodesia clásica: Datum vertical no coincide con el datum horizontal Datum vertical: nivel medio del mar: nivelación geométrica + gravedad Fuente de la figura: Sánchez, L. Curso introductorio al programa Bernese, ETCG, 2012 Geodesia moderna: Posicionamiento satelital (GNSS y otras técnicas): permite la determinación de posiciones 3D Referido a un sistema geocéntrico, cartesiano, tridimensional Se asocia un elipsoide de referencia

3.1 Datum del sistema de alturas elipsoídicas Qué coordenadas obtenía la geodesia clásica? Qué coordenadas obtiene la geodesia actual? Altura elipsoidal: distancia entre la superficie terrestre y el elipsoide de referencia, medida sobre la al elipsoide. El elipsoide es una figura geométrica, definida por convención, Las alturas elipsoidales no se pueden medir directamente Cómo se estiman en la actualidad las alturas elipsoidales? Las coordenadas geodésicas (,, h) son producto de convertir X, Y, Z, en base a los parámetros de un elipsoide dado Si se modifican los parámetros del elipsoide, cambian las coordenadas elipsoídicas pero la estación no se ha movido!!!!

3.1 Datum del sistema de alturas elipsoídicas X = 644 009,03939 m Y = -6 251 064,25852 m Z = 1 093 780,92830 m WGS-84 Clark 1866 1123,9398 m 1061,6045 m Para evitar este problema, es necesario usar el mismo elipsoide. Actualmente, el elipsoide usado (recomendado) es el GRS80 Las coordenadas derivadas de los sistemas GNSS están dadas en un sistema 3D, global, dinámico. Las coordenadas tienen que estar en el mismo marco usado para el calculo de las órbitas satelitales En el posicionamiento GNSS, la coordenada vertical (h) es entre 2 y 3 veces menos precisa que las coordenadas horizontales.

3.1 Datum del sistema de alturas elipsoídicas Las causas son: Características inherentes a los sistemas GNSS Errores sistemáticos asociados al posicionamiento GNSS Efectos físicos (cargas atmosférica, oceánica e hidrológica, procesos geodinámicos, etc). Los errores sistemáticos se eliminan (mayormente) si hay simetría de observación; en la componente vertical no es posible. El plano horizontal del punto de observación está cubierto de señales satelitales en un azimut de 0 a 360 El plano vertical, está cubierto de señales solamente entre 0 y 180 satelitales No puede separarse errores radiales (relojes de los receptores, efectos atmosféricos) de los errores en la altura

3.1 Datum del sistema de alturas elipsoídicas Mientras menor sea la máscara de elevación, más precisa la determinación de la altura PERO en ángulos de elevación bajos se incrementan los errores residuales y los causados por la troposfera, el efecto multipath y las variaciones de los centros de fase de las antenas receptoras. El tiempo de ocupación debe extenderse para tener una mayor cantidad de mediciones y mejorar la estimación de las alturas

3.2 Nivelación absoluta R1 R2 R3 R4 h Terreno Elipsoide

3.3 Nivelación relativa h1 h2 Terreno h = h2 h1 Elipsoide

3.3 Nivelación relativa En forma diferencial, de las observaciones GPS se tiene los incrementos en coordenadas cartesianas (ΔX, ΔY, ΔZ) Estos valores se pueden transformar a observaciones en el sistema de coordenadas elipsoídicas. Para relacionar las superficies de referencia del geoide y del elipsoide, es imprescindible conocer la ondulación del geoide Debe conocerse con la suficiente precisión para ser usado en aplicaciones prácticas Esto no es siempre es posible, sobre todo en países en donde no se han desarrollado modelos específicos. Δh= ΔH+ ΔN

3.4 Vínculo con la nivelación convencional Datum convencional establecido por técnicas convencionales, NO son globales Datum satelital: establecido con técnicas satelitales, son de cobertura global y dinámicos Definición clásica: punto donde el geoide y el elipsoide coinciden. Los puntos datum se establecían cerca del nivel medio del mar y se efectuaban mediciones astronómicas para determinar,. Como datum convencional o clásico, se entiende el definido por vínculo entre elementos astronómicos, matemáticos y terrestres, sin uso de satélites artificiales

3.4 Vínculo con la nivelación convencional Elementos que conforman el datum convencional

3.4 Vínculo con la nivelación convencional Desviación de la vertical = - ; = ( - ) cos latitud astronómica geodésica; longitud astronómica - geodésica Ondulación del geoide N = h H Orientación acimutal A a = tan + ( sen a cos a) cot z Acimut astronómico geodésico = función de las componentes de la desviación de la vertical, la latitud geodésica y el ángulo cenital geodésico Información del datum y la protección asociada en la cartografía escala 1:50000

3.4 Vínculo con la nivelación convencional Para la definición univoca de un punto, se requiere definir tres coordenadas para el mismo: (,, h) en un sistema de coordenadas elipsoidal. (E,N)+(H) referido a una proyección cartográfica y a un geoide (o nivel de referencia). (X, Y, Z) en un sistema de coordenadas geocéntrico tridimensional. (e, n, u) en un sistema local. Para la geodesia clásica, determinar h no era posible por observación. Con el uso de los métodos GNSS y su naturaleza tridimensional, se hizo posible determinar h. En la geodesia clásica (N,E) se trataba por separado a H. Comúnmente la redes 2D eran independientes de las redes 1D.

3.4 Vínculo con la nivelación convencional Hoy en día, con mediciones GNSS, de puede determinar (X, Y, Z) o (,, h), con lo cual se podría pensar que la problemática del posicionamiento 3D esta resuelto. Esto NO es cierto, por cuanto h (derivada de X, Y, Z), es una altura geométrica y no tiene relación con el campo de gravedad de Tierra. La geodesia debe definir un sistema de alturas que tenga un significado físico, es decir, tenga relación con el campo de gravedad. Definir el datum vertical sigue siendo una tarea de la geodesia. DATUM VERTICAL: nivel de referencia para los sistemas de alturas, accesible al conocer la altura de al menos un punto En la geodesia clásica, el datum vertical estaba definido por el nivel medio del mar, definido como el promedio de mareas

3.4 Vínculo con la nivelación convencional Nota: el gráfico muestra un esquema conceptual ideal, no quiere decir que siempre las superficies mostradas son paralelas o que ese es el comportamiento de las normales!! h H N H O N Terreno Geoide Cuasi- Geoide Elipsoide Para aprovechar las ventajas del posicionamiento GNSS en las aplicaciones prácticas, se requiere determinar el geoide (cuasigeoide), de forma que: H O = h-n H N = h -

3.4 Vínculo con la nivelación convencional Es necesario realizar mediciones GNSS sobre bancos de nivel. Del procesamiento de las observaciones se obtiene la altura elipsoídica. De esta forma, se tiene para el BN la altura ortométrica y la altura elipsoídica. Sin embargo, esto no quiere decir que la nivelación con GPS reemplace a la nivelación convencional. En áreas pequeñas se podría hacer coincidir ambas alturas. La medición satelitaria con GPS brinda por un lado alturas elipsoídicas referidas a WGS84.

3.4 Vínculo con la nivelación convencional La nivelación convencional (geométrica en sus variantes y trigonométrica) proporciona cotas o alturas ortométricas referidas en principio al geoide. El vínculo entre ellas se da a través de la ondulación del geoide (N). Este parámetro se puede obtener a través de modelos o de forma más directa tras comparar las alturas elipsoídicas con las ortométricas. En esta segunda variante, se excluye generalmente las mediciones de gravedad, es una determinación geométrica.

3.5 Ondulación del geoide por comparación La nivelación con GPS o el cálculo de diferencias de altura requiere el uso de un geoide para calcular N B A H Superficie terrestre Geoide C N B N A h Elipsoide H A = h A N A H B = h B N B N BA = N B N A 0 H BA = h BA N BA H BA h BA

Del GPS se aprovecha la componente h para la ejecutar nivelaciones GPS. hab = hb ha La determinación dh puede alcanzar exactitudes de ± 2 cm en líneas de 100 km con receptores de dos frecuencias. En ese rango de distancias y exactitud el GPS compite con la nivelación convencional. PROBLEMA: referencia elipsoídica no coincide con la del sistema de alturas ortométricas desviación de la vertical. Si se tienen bancos de nivel se determinan las diferencias de N comparando h con H. Una adecuada distribución de los bancos de nivel puede dar lugar a la conformación de una cuadrícula con valores de ondulación del geoide interpolados. 3.5 Ondulación del geoide por comparación

3.5 Ondulación del geoide por comparación Con modelos globales en zonas llanas los errores pueden estar en el orden decimétrico y crecen conforme la topografía es irregular. Los modelos de la ondulación del geoide dan valores de los cruces de una cuadrícula de 2 x2, 15 x15 o 30 x30 La ondulación del geoide de un punto se calcula en función de sus coordenadas elipsoídicas, por medio de una interpolación En consecuencia, se requiere un modelo de geoide para poder usar las medidas de altura GPS (h) Los modelos de geoide disponibles no poseen precisión suficiente como para ser usados en la mayor parte de los problemas de ingeniería

3.5 Ondulación del geoide por comparación Fuente: http://icgem.gfz-potsdam.de/tom_gpslev

3.5 Ondulación del geoide por comparación

3.5 Ondulación del geoide por comparación

3.5 Ondulación del geoide por comparación

3.5 Ondulación del geoide por interpolación Los denominados modelos geoidales permiten determinar el valor de la ondulación del geoide a partir del uso del programa de interpolación asociado al modelo. Con base a la introducción de las coordenadas geodésicas, el programa aplicará una interpolación y devolverá el valor de la ondulación correspondiente a esas coordenadas. Modelo Global: son modelos de baja resolución, con datos muy esparcidos y de distintas fuentes, comprenden las longitudes de onda larga del campo de gravedad terrestre. Modelo local: son modelos de alta resolución, utilizados en áreas pequeñas por lo que hay gran densidad de datos, comprenden las longitudes de onda corta del campo de gravedad terrestre.

3.7 Exactitudes y aplicaciones Exactitudes: Tomar en cuenta las consideraciones para el procesamiento de observaciones GPS La disponibilidad de un modelo geoidal y exactitud del mismo. La densidad de bancos de nivel con el fin de enlazar las observaciones a la red de referencia vertical de la zona de trabajo. Aplicaciones Aplicaciones topográficas donde sea suficiente tener alturas determinadas con varios centímetros / decímetros de error. Levantamientos para generar modelos de elevación (curvas de nivel), aunque en estos casos el uso del modelo geoidal no sea obligatorio. PERO dependerá de las condiciones solicitadas para el trabajo.

3.7 Exactitudes y aplicaciones Fuente: http://icgem.gfz-potsdam.de/icgem/

3.7 Exactitudes y aplicaciones Modelos estáticos Fuente: http://icgem.gfz-potsdam.de/tom_longtime

3.7 Exactitudes y aplicaciones Modelos estáticos Fuente: http://icgem.gfz-potsdam.de/tom_longtime

3.7 Exactitudes y aplicaciones Modelos temporales Fuente: http://icgem.gfz-potsdam.de/modelseries

3.7 Exactitudes y aplicaciones Fuente: http://icgem.gfz-potsdam.de/calc

3.7 Exactitudes y aplicaciones

3.7 Exactitudes y aplicaciones

3.7 Exactitudes y aplicaciones

3.7 Exactitudes y aplicaciones