Principios de álgebra multilineal



Documentos relacionados
Álgebra Multilineal sobre R

Estructuras algebraicas

Matrices equivalentes. El método de Gauss

Clase 15 Espacios vectoriales Álgebra Lineal

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

1. Producto escalar, métrica y norma asociada

Tema 3. Espacios vectoriales

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

Subespacios vectoriales en R n

Aplicaciones Lineales

Tema 3. Aplicaciones lineales Introducción

TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

Anexo 1: Demostraciones

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Espacios vectoriales

Espacios vectoriales

4.1 El espacio dual de un espacio vectorial

Curso de Procesamiento Digital de Imágenes

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

Vectores en el espacio

Clasificación de métricas.

Aplicaciones Lineales

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

1 v 1 v 2. = u 1v 1 + u 2 v u n v n. v n. y v = u u = u u u2 n.

Espacios vectoriales y Aplicaciones lineales

1 El espacio vectorial R n.

una partícula como se verá más adelante. A partir de un objeto matemático como lo como el electromagnético o el de nuestro caso de estudio.

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Espacios Vectoriales

Profr. Efraín Soto Apolinar. Función Inversa

1. ESPACIOS VECTORIALES

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Variedades Diferenciables. Extremos Condicionados

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

4 Aplicaciones Lineales

Funciones lineales, diádicas y tensores en la mecánica newtoniana

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

VECTORES EN EL PLANO

1 Espacios y subespacios vectoriales.

Aplicaciones Lineales y Multilineales Continuas

Tema 2. Espacios Vectoriales Introducción

CAPÍTULO II. 2 El espacio vectorial R n

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Matrices. Definiciones básicas de matrices. José de Jesús Angel Angel.

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

Ignacio Romero 20 de Septiembre de Notación indicial

Apuntes de Matemática Discreta 9. Funciones

Objetivos: Al inalizar la unidad, el alumno:

3.- DETERMINANTES. a 11 a 22 a 12 a 21

Aplicaciones Lineales

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Espacios vectoriales y aplicaciones lineales

Sistemas de Ecuaciones Lineales y Matrices

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

Construcción de bases en el núcleo e imagen de una transformación lineal

Funciones, x, y, gráficos

TRANSFORMACIONES LINEALES

Espacios vectoriales. Bases. Coordenadas

1. Cambios de base en R n.

Tema 4: Aplicaciones lineales

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;

Tema 7: Valores y vectores propios

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Tema 3: Producto escalar

Tema 2 ESPACIOS VECTORIALES

Matrices y sus operaciones

Formas bilineales y cuadráticas.

Juegos Cooperativos. Core

Parte I. Iniciación a los Espacios Normados

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

3.1 DEFINICIÓN. Figura Nº 1. Vector

Matrices invertibles. La inversa de una matriz

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Algebra lineal. Un par de vectores son linealmente dependientes si existe un escalar diferente de cero que asocie ambos vectores, ejemplo: X 2 =k*x 1

y los conos serán todos los diagramas (acá usamos la palabra en el sentido habitual, no en el que acabamos de definir) de la forma

Ortogonalidad y Series de Fourier

Cambio de representaciones para variedades lineales.

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

Espacios vectoriales y aplicaciones lineales.

Lección 2. Puntos, vectores y variedades lineales.

1. El teorema de la función implícita para dos y tres variables.

Problemas de Álgebra Lineal Espacios Vectoriales

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales.

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Definición Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Segundo de Bachillerato Geometría en el espacio

Transcripción:

Principios de álgebra multilineal 2013-03-11 19:27:49 [twocolumn]article AMSbUmsbmn AMSb ÁLGEBRA MULTILINEAL DE ESPACIOS VECTORIALES REALES CON PRODUCTO INTERIOR Juan M. Márquez B. Sea V un espacio vectorial sobre los reales R de dimensión n. Si los objetos b 1, b 2,..., b n es una base entonces usamos la notación V = {b i} = {b 1, b 2,..., b n} para indicar que cada X vector en V se escribe como combinación lineal de los b i. Espacio dual El espacio dual de V se define como el conjunto V de los funcionales lineales V R. Resulta que V también es una espacio vectorial. Cuál es una base y la dimensión de este espacio? Considere las transformaciones (una para cada i) definida por β i : V R X β i (X) = X i, donde X = X s b s (convención de la suma de Einstein). Así β i es una función lineal. En otras palabras, el funcional β i extrae el i-esimo componente de X y cumple linealidad: β i (ax) = aβ i (X) β i (X + Y ) = β i (X) + β i (Y ) PrincipiosDealgebraMultilineal created: 2013-03-11 by: juanman version: 50084 Privacy setting: 1 Definition This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license. 1

para cualesquiera escalar a y vectores X, Y. Los elementos de V también se llaman covectores. Todo elemento f V se escribe así ; f = f sβ s donde los componentes satisfacen f s = f(b s) Producto tensorial Sean V, W dos espacios vectoriales sobre los reales R. Indicamos con V = {b 1,..., b n} que el espacio V está generado por los vectores básicos b i. En otras palabras; si X V entonces X = X s b s es la combinación lineal X = X 1 b 1 + X 2 b 2 + + X n b n. Si W = {d 1,..., d m} es otro espacio vectorial, entonces definimos esto implica que si B V W entonces V W = {b 1 d 1, b 1 d 2,..., b n d m, }, B = B st b s d t lo cual es la combinación lineal bi-indexada: B = B 11 b 1 d 1 + B 12 b 1 d 2 + + B nm b n d m Los objetos en V V se llaman tensor contravariante de rango 2 en V o bien un 2-contratensor. Los objetos en V V se llaman tensor covariante de rango 2 en V o bien un 2-cotensor. Los objetos en V V se llaman tensor mixto de rango 2 en V. Multilinealidad Los elementos básicos de V V pueden ser visualizados como transformaciones bilineales β i β j : V V R mediante la asignación dada por (X, Y ) β i β j (X, Y ) = β i (X)β j (Y ) = X i Y j Similarmente los elementos básicos de V V pueden ser considerados como mapas bilineales b i b j : V V R mediante la asignación (f, g) b i b j(f, g) = f(b i)g(b j) = f ig j Un elemento básico de V V se puede ver como un mapa bilineal V V R 2

mediante la fórmula (X, f) β i b j(x, f) = β i (X)f(b j) = X i f j Efectivamente estas reglas son bilineales, pues por ejemplo, para cualesquiera escalares a, c R y vectores X, Y, Z V tenemos que son respectivamente β i β j (ax + cy, Z) = aβ i β j (X, Z) + cβ i β j (Y, Z) β i β j (X, ay + cz) = aβ i β j (X, Y ) + cβ i β j (X, Z) (ax i + cy i )z j = ax i Z j + cy i Z j X i (ay j + cz j ) = ax i Y j + cx i Z j Toda transformación bilineal V V R está generada por los β i β j pues si B : V V R es un mapeo bilineal arbitario, este se expresará como B = B stβ s β t y denotaremos con T (2,0) V el espacio vectorial generado por los β i β j, en otras palabras T (2,0) V = {β i β j } Similarmente el conjunto de los mapas tri-lineales T (3,0) V = {β i β j β k } donde β i β j β k (X, Y, Z) = X i Y j Z k es una construcción tri-lineal básica. Así cualquier otro mapa trilineal T : V V V R se escribe conforme a T = T stuβ s β t β u No es difícil visualizar lo qué hay en el espacio vectorial T (k,0) V y cuál es una base para él. puede ud. decir cuál es las dimensión de cada uno de estos espacios vectoriales? Álgebra de Grassmann Importantes son las transformaciones multilineales que son antisimétricas, es decir transformaciones multilieales que cambian de signo cuando intercambiamos (transponemos) dos de sus argumentos. Por ejemplo un mapa bilineal B : V V R es antisimétrico (o alternante) si satisface B(X, Y ) = B(Y, X) un trilineal alternante cumple T (X, Y, Z) = T (Y, X, Z) = T (Y, Z, X) = T (Z, Y, X) La construcción β i β j = β β j β j β i define un operador bilineal antisimétrico básico y satisface β i β j (X, Y ) = X i Y j X j Y i Otra notación es β i β j = β [i β j] 3

Estos objetos generan un subespacio de mapas bilineales también llamados bivectores o 2-formas y los simbolizamos con Λ 2 V = {β i β j } esto implica que si B Λ 2 V entonces B = B stβ s β t Observe que β i β i = 0 para cada i. Ahora, si dim V = n entonces β 1 β 2, β 1 β 3,..., β 1 β n, β 2 β 3,..., β n 1 β n son los únicos bivectores básicos por lo tanto dim Λ 2 V = ( ) n 2 El espacio vectorial Λ k V generado por los productos exteriores de k covectores básicos β i 1 β i 2 β i k donde los indices cumplen i 1 < i 2 < < i k, tiene dimensión ( n k) i.e. ( ) dim(λ k dim V V ) = k El espacio Λ n V está generado por la única n-forma β 1 β 2 β n por lo que dim(λ n V ) = 1. El espacio vectorial ΛV = Λ 0 V Λ 1 V Λ n 1 V Λ n V junto con el producto exterior constituyen un álgebra que recibe el nombre de álgebra de Grassmann (o álgebra exterior) de V Espacios vectoriales con producto interior. Sea V un espacio vectorial sobre los reales R generado por los objetos {b 1, b 2,..., b n}. Suponga que existe un producto interior en V i.e. hay un mapa, : V V R el cual es bilineal, simétrico y positivo definido no degenerado: repectivamente 1. ax + cy, Z = a X, Z + c Y, Z 2. X, ay + cz = a X, Y + c X, Z 3. X, Y = Y, Z 4. X, X 0 5. X, X = 0 si y sólo si X = 0 donde a, c son escalares reales y X, Y, Z vectores arbitarios en V. El tensor métrico es la matriz g 11 g 12 g 1n g 21 g 22 g 2n G =....... donde g ij = b i, b j. g n1 g nn 4

La matriz inversa G 1 se llama cotensor métrico y sus entradas se indexan G 1 = [g ij ], por lo que al multiplicar G y G 1 se obtienen las relaciones δ i j = g isg sj = g i1g 1j + g i2g 2j + g ing nj Lema de Representación de Riesz Sea f: V R un covector en V con producto interior,. Entonces existe un único vector a V el cual determina a f, esto es: f( ) = a, Para los covectores básicos β i resulta que el vector b i = g is b s (suma sobre s) satisface pues si β i se aplica a el básico b t tenemos β i ( ) = b i, β i (b t) = b i, b t = g is b s, b t = g is b s, b t = g is g st = δ i t por lo que aplicado a un vector X = X µ b µ arbitario tenemos β i (X) = b i, X µ b µ = X µ b i, b µ = X µ δ i µ = X i Los vectores b 1, b 2,..., b n son linealmente independientes, forman también una base para V y se llaman básicos reciprocos. Siendo T (2,0) V el conjunto de los mapeos bilineales V V R y si B T (2,0) V entonces B = B µνβ µ β ν. En el conjunto T (0,2) V está el mapeo bilineal B = B µν b µ b ν. Y en T (1,1) V está B = Bµ ν β µ b ν. Ahora si construimos los básicos reciprocos duales vamos a poder calcular que β i = g isβ s B(b s, b t) = B(β s, β t) = B(bs, β t) = B st donde los componentes se relacionan mediante el cotensor métrico así: con suma sobre s, y B i j = B sjg si B ij = B i sg sj = B stg si g tj con suma sobre t y s, t respectivamente. O bien B i j = B sj g si y B ij = B i s g sj. Todas estas relaciones entre los componentes con respecto al tensor y cotensor métricos reciben el nombre de leyes de subir y bajar índices. Las formas tiene un producto interior también 5

Es posible inducir un producto interior en los espacios Λ k V. Si A = A i1...i k β i 1... β i k y C = C j1...j k β j 1... β j k entonces Por ejemplo para 1-formas tenemos A, C = g i 1j1 g i kj k A i1...i k C j1...j k A, C = g i 1j 1 A i1 C j1 = A i1 C i 1 que satisface los 5 axiomas de producto interior. Pullback Teniendo una transformación lineal L: V W podemos construir por cada forma en W otra forma en V. Pues si φ W = Λ 1 V es decir φ: W R es covector en W entonces podemos construir otra transformación lineal φ L: V R, es decir φ L V = Λ 1 V. Así hemos definido una transformación lineal vía L : W V φ L φ = φ L la regla de asignación L es el pullback de L. Supongamos que V = {b 1,..., b n} y W = {c 1,..., c m}, así tendremos que Lb k = L s kc s, (A) es la forma en que las bases se relacionan. Cómo se relacionan las base de covectores? Sean V = {β 1,..., β n } y W = {γ 1,..., γ m }. Sean g ij = b i, b j y h kl = c k, c l los componentes de los tensores métricos de V y W respectivamente. Por lo que Pero también L γ i (b k ) = γ i L(b k ) = γ i (Lb k ) = γ i (L s kc s) = L s kγ i (c s) = L s kγ i (c s) = L s kδ i s = L i k L i tβ t (b k ) = L i tδ t k = L i k Es decir L γ i (b k ) = L i tβ t (b k ) para todo básico b k, por lo que las transformaciones son iguales, i.e. L γ i = L i tβ t, (B) lo que nos indica como se relacionan las bases duales de W, V respectivamente (cf. (A) arriba). 6

Finalmente, si ϕ W este se expresa como ϕ = ϕ µγ µ y entonces L ϕ = ϕ µl γ µ = ϕ µl µ tβ t lo cual muestra que los componentes de L ϕ son ϕ µl µ t Ejercicios 1. Demuestre que si V L W M U es una composición de transformaciones lineales, entonces el correspondiente diagrama de pullbacks es U M W L V 2. Escriba todo el ejercicio 1 en términos de componentes. 3. Si el covector ϕ W tiene una representación ϕ( ) = ξ, y covector L ϕ V tiene L ϕ( ) = ζ,, con ξ W y ζ V, Cuál es la relación entre los componentes de L, ξ y ζ? 7