Visión global del KDD

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Visión global del KDD"

Transcripción

1 Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1

2 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento de esa información: Tradicionalmente Técnicas estadísticas Avance de la tecnología Data Mining 2

3 Introducción Tradicionalmente: CONSULTAS DE BDS y TÉCNICAS ESTADÍSTICAS (resúmenes: medias, desviaciones, distribuciones, correlaciones, etc) Respuesta a preguntas como: Cuáles fueron las ventas en el tercer trimestre en la región norte? Qué ventas se prevén en el tercer trimestre del año próximo en la región norte? Insuficiente para la toma de decisiones conocimiento muy limitado del comportamiento de los datos. 3

4 Introducción Minería de datos: Gran cantidad de datos: Extracción AUTOMÁTICA de información verdaderamente útil CONOCIMIENTO Respuesta a preguntas como: Cómo aumentar las ventas en el tercer trimestre en la región norte? Relaciones entre venta de determinados productos y cliente Posición de los artículos en la tienda Envío personificado de publicidad Etc. 4

5 Introducción Minería de datos: Análisis de bases de datos con el fin de descubrir o extraer información inherente a los datos objeto de análisis, de modo que sea de utilidad en la toma de decisiones. Para obtener conclusiones válidas y útiles al aplicar minería de datos, es necesario complementar este proceso con una adecuada preparación de los datos previa al proceso de minería y un análisis posterior de resultados obtenidos. KDD (Knowledge Discovery in Databases) 5

6 Tareas de la Minería de Datos

7 KDD: Knowledge Discovery in Databases El Descubrimiento de Conocimiento en Bases de Datos es el proceso no trivial de identificación de patrones válidos, novedosos, potencialmente útiles y fundamentalmente comprensibles en los datos, Fayyad, Piatetsky-Shapiro y Padhraic Smyth (1996). Proceso no trivial: secuencia de pasos que implican una inferencia compleja sobre los datos en busca de conclusiones Patrones: Descripción a alto nivel de los datos (estructuras/modelos de comportamiento) Válidos: Los patrones o modelos descubiertos deben gozar de cierto grado de certeza. Novedosos: Los patrones deben aportar conocimiento nuevo. Potencialmente útiles: El modelo debe ser aplicable para la toma de decisiones que impliquen beneficio. Comprensibles: Se debe generar un modelo fácilmente interpretable por el usuario, si no directamente, sí tras un procesado posterior. 7

8 KDD: Knowledge Discovery in Databases El KDD no es un campo aislado, sino la convergencia de otros campos: Estadística: Inferir información de datos (principalmente de datos numéricos) Base de Datos / Data Warehouse (OLAP: On line Analytical Processing): SELECT, INSERT, UPDATE, DELETE Machine Learning: Algoritmos implementados que aprenden automáticamente a través de la experiencia (principalmente datos simbólicos) 8

9 KDD: Knowledge Discovery in Databases El KDD no es un campo aislado, sino la convergencia de otros campos Inferir información de datos (principalmente de datos numéricos) Estadística Base de Datos Data Warehouse OLAP, SELECT, INSERT, UPDATE, DELETE KDD Algoritmos implementados que aprenden automáticamente a través de la experiencia Machine Learning 9

10 Proceso KDD $! "#$ #% &$# $ 10

11 Proceso KDD 1.- Determinación de Objetivos: Precisar qué objetivos quieren cumplirse desde el punto de vista del usuario. Datos a usar. Elección de las técnicas. 2.- Preparación de los datos: Ambigüedades, ruido o no estar en el formato adecuado. Acelera el algoritmo de minería Mejora la calidad del modelo de conocimiento. Subfases: Filtros: valores ausentes, ruido, transformación (normalizar, discretizar, etc). Selección y Editado: distinguir los subconjuntos de datos significativos. 11

12 Proceso KDD 3.- Minería de Datos La elección del método de minería es fundamental dentro del proceso KDD. La validez y utilidad del modelo depende en gran parte de esta fase. Algoritmo de aprendizaje + validación del modelo 4.- Análisis: Estudia, interpreta y evalúa el modelo de conocimiento. El uso de técnicas de visualización facilitan al usuario la comprensión. 5.- Aplicación: Integración del conocimiento adquirido al campo real de aplicación mediante la toma de decisiones. Comparación con el conocimiento previo a la aplicación del proceso 12

13 Minería de Datos $ #'# Aprendizaje: El Aprendizaje Automático (Machine Learning) es la rama de la Inteligencia Artificial que estudia el desarrollo de técnicas para extraer de forma automática conocimiento subyacente en la vasta información. '#( $ Aprendizaje inductivo, que engloba todas aquellas técnicas que aplican inferencias inductivas sobre un conjunto de datos para adquirir el conocimiento inherente a ellos. Dos tipos de aprendizaje inductivo: Aprendizaje Supervisado, los casos tienen a priori asignada una clase o categoría, siendo el objetivo encontrar patrones o tendencias de los casos pertenecientes a una misma clase. Aprendizaje no supervisado: no goza de una agrupación previa, por los que se limita a buscar la regularidades entre éstos. (Clustering) 13

14 Minería de Datos $ #'# '#( Representación del Conocimiento: Sin representación (Lazy Learning): KNN, Redes Neuronales Reglas, árboles Validación Precisión (Tasa de error) Complejidad Comprensibilidad Legibilidad $ 14

15 Minería de Datos Tareas Principales Clasificación Clustering Regresión? Modelado de dependencias 15

16 Nuestro Contexto Expertos Representación de Reglas, patrones, $! "#$ #% &$# $ Bases de datos temporales Selección de atributos Regresión Clasificación Clustering 16

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI)

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) OFERTAS TECNOLÓGICAS 1) GESTIÓN ORGANIZACIONAL Y LOGÍSTICA INTEGRADA: TÉCNICAS Y SISTEMAS DE INFORMACIÓN 2) GESTIÓN

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

OPTATIVA I: MINERIA DE DATOS

OPTATIVA I: MINERIA DE DATOS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA I: MINERIA DE DATOS DES: Programa(s) Educativo(s): Tipo de materia: Clave de la

Más detalles

Introducción a la Minería de Datos (Data Mining)

Introducción a la Minería de Datos (Data Mining) a la Minería de Datos (Data Mining) IT-Nova Facultad de Ingeniería Informática y Telecomunicaciones Iván Amón Uribe, MSc Minería de Datos Diapositivas basadas parcialmente en material de Inteligencia Analítica

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

EPB 603 Sistemas del Conocimiento!"#$ %& $ %'

EPB 603 Sistemas del Conocimiento!#$ %& $ %' Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM EPB 603 Sistemas del Conocimiento!"#$ %& $ %' Modelos de proceso para proyectos de Data Mining (DM) Son diversos los modelos de

Más detalles

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre:

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: : : lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. 12 6 lemas propios de la. 12 6 lemas propios de la.

Más detalles

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata v.1.0 Clase 5 Docente: Gustavo Valencia Zapata Temas Clase 5: Conceptos de Minería de Datos Herramientas de DM Referencias Minería de datos Proceso de DM www.gustavovalencia.com Minería de datos La minería

Más detalles

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos Published on Dataprix (http://www.dataprix.com) Principal > Artículos de Minería de Datos de Dataprix By Dataprix Created 26/12/2009-17:13 Artículos de Minería de Datos de Dataprix Introducción a la minería

Más detalles

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY)

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) Autor: Lic. Manuel Ernesto Acosta Aguilera Entidad: Facultad de Economía, Universidad de La Habana Dirección: Edificio

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

Inteligencia de Negocio

Inteligencia de Negocio UNIVERSIDAD DE GRANADA E.T.S. de Ingenierías Informática y de Telecomunicación Departamento de Ciencias de la Computación e Inteligencia Artificial Inteligencia de Negocio Guión de Prácticas Práctica 1:

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Es un conjunto de conceptos y metodologías para mejorar la toma de decisiones.

Más detalles

Los futuros desafíos de la Inteligencia de Negocios. Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile.

Los futuros desafíos de la Inteligencia de Negocios. Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile. Los futuros desafíos de la Inteligencia de Negocios Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile.cl El Vértigo de la Inteligencia de Negocios CRM: Customer

Más detalles

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 FLUJO DE CAPACITACIÓN Prerrequisitos Fundamentos de Programación Sentencias SQL Server 2012 Duración: 12 horas 1. DESCRIPCIÓN

Más detalles

PLAN DE TRABAJO DOCENTE 2013

PLAN DE TRABAJO DOCENTE 2013 PLAN DE TRABAJO DOCENTE 2013 1. DATOS DE LA ASIGNATURA Nombre: Procesamiento Analítico de Datos Código: Nivel: Grado Carácter: Optativo Área curricular a la que pertenece: Administración Carrera: Contador

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

Grupo de investigación en Minería de Datos http://mida.usal.es

Grupo de investigación en Minería de Datos http://mida.usal.es Departamento de Informática y Automática Postgrado en Informática y Automática MÁSTER EN SISTEMAS INTELIGENTES ASIGNATURAS Introducción a la Minería de Datos Minería Web María N. Moreno García http://avellano.usal.es/~mmoreno

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

Datamining Introducción

Datamining Introducción Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Datamining Introducción Yerko Halat 2 de Octubre del 2001 1 Cuál es la diferencia entre

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles

forma de entrenar a la nuerona en su aprendizaje.

forma de entrenar a la nuerona en su aprendizaje. Sistemas expertos e Inteligencia Artificial,Guía5 1 Facultad : Ingeniería Escuela : Computación Asignatura: Sistemas expertos e Inteligencia Artificial Tema: SISTEMAS BASADOS EN CONOCIMIENTO. Objetivo

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

Minería de Datos. Abstract. Existencia de herramientas automáticas que no hacen necesario el ser un experto en estadística Potencia de computo

Minería de Datos. Abstract. Existencia de herramientas automáticas que no hacen necesario el ser un experto en estadística Potencia de computo Minería de Datos Óscar Palomo Miñambres Universidad Carlos III de Madrid Avda. De la Universidad, 30 28911, Leganés (Madrid-España) 100049074@alumnos.uc3m.es Abstract En este artículo analizaremos las

Más detalles

Informática II Ing. Industrial. Data Warehouse. Data Mining

Informática II Ing. Industrial. Data Warehouse. Data Mining Data Warehouse Data Mining Definición de un Data Warehouses (DW) Fueron creados para dar apoyo a los niveles medios y altos de una empresa en la toma de decisiones a nivel estratégico en un corto o mediano

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 12-O. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 21

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Encuesta Permanente de Hogares

Encuesta Permanente de Hogares Minería de Datos Aplicada a la Encuesta Permanente de Hogares Disertante: Luis Alfonso Cutro Adscripto a la asignatura Diseño y Administración de Datos. Prof. Coordinador: Mgter. David Luís la Red Martínez

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Minería de Datos Complementos de Computación Módulo Titulación Grado en Ingeniería Informática Plan 463 45220 Periodo de impartición 1 er Cuatrimestre Tipo/Carácter

Más detalles

Proceso del KDD (minería de datos o DataMining)

Proceso del KDD (minería de datos o DataMining) Qué es el KDD? Es un proceso no trivial que identifica patrones validos, previamente desconocidos, potencialmente utiles y fundamentalmente entendibles en los datos. es como se reconoce de manera teoria

Más detalles

Una metaheurística para la extracción de reglas de asociación. Aplicación a terremotos.

Una metaheurística para la extracción de reglas de asociación. Aplicación a terremotos. Escuela Técnica Superior de Ingeniería Informática Máster Oficial en Ingeniería y Tecnología del Software TRABAJO FIN DE MÁSTER Una metaheurística para la extracción de reglas de asociación. Aplicación

Más detalles

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI INTRODUCCIÓN Se habla en multitud de ocasiones de Business Intelligence, pero qué es realmente? Estoy implementando en mi organización procesos de Business

Más detalles

UN PASEO POR BUSISNESS INTELLIGENCE

UN PASEO POR BUSISNESS INTELLIGENCE UN PASEO POR BUSISNESS INTELLIGENCE Ponentes: Agreda, Rafael Chinea, Linabel Agenda Sistemas de Información Transaccionales Qué es Business Intelligence? Usos y funcionalidades Business Intelligence Ejemplos

Más detalles

ETL: Extractor de datos georreferenciados

ETL: Extractor de datos georreferenciados ETL: Extractor de datos georreferenciados Dr. Juan Pablo Díaz Ezcurdia Doctor Honoris Causa Suma Cum Laude Master en Telecomunicaciones Master en Gestión Educativa Coordinador de la comisión de CSIRT de

Más detalles

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES Actualmente se vive una época donde se tiene una enorme cantidad de datos que se generan diariamente (del orden de Terabytes, Petabytes 1 (Han, Kamber, & Pei, 2012))

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

Implantación de un proyecto de Knowledge Center con una herramienta comercial (Synera)

Implantación de un proyecto de Knowledge Center con una herramienta comercial (Synera) Página 1 de Páginas 80,,, Implantación de un proyecto de Knowledge Center con una herramienta comercial (Synera) Alumno : ETIG Consultor : Ramón Carihuelas Barcelona, 18 de Junio del 2004 Página 2 de Páginas

Más detalles

Introducción Qué es Minería de Datos?

Introducción Qué es Minería de Datos? Conceptos Básicos Introducción Qué es Minería de Datos? Extracción de información o de patrones (no trivial, implícita, previamente desconocida y potencialmente útil) de grandes bases de datos. Introducción

Más detalles

Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil

Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil Aplicación de técnicas de minería de datos para la evaluación del rendimiento académico y la deserción estudiantil Osvaldo M. Spositto spositto@unlam.edu.ar Martín E. Etcheverry metcheverry@unlam.edu.ar

Más detalles

Tema 7. Introducción al reconocimiento de objetos

Tema 7. Introducción al reconocimiento de objetos Tema 7. Introducción al reconocimiento de objetos En resumen, un sistema de reconocimiento de patrones completo consiste en: Un sensor que recoge las observaciones a clasificar. Un sistema de extracción

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2.

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. 1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. GENERALIDADES SOBRE LAS TÉCNICAS DE INVESTIGACIÓN SOCIAL Y DE MERCADOS

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 2 - Juan Alfonso Lara Torralbo 1 Índice de contenidos (I) Introducción a Data Mining Actividad. Tipos

Más detalles

Aprendizaje Computacional. Eduardo Morales y Jesús González

Aprendizaje Computacional. Eduardo Morales y Jesús González Aprendizaje Computacional Eduardo Morales y Jesús González Objetivo General La capacidad de aprender se considera como una de los atributos distintivos del ser humano y ha sido una de las principales áreas

Más detalles

O jeto de apre r ndizaje

O jeto de apre r ndizaje Herramientas de Gestión para Objetos de Aprendizaje. Plataforma AGORA Victor Hugo Menéndez Domínguez Universidad Autónoma de Yucatán, México :: mdoming@uady.mx Manuel Emilio Prieto Méndez Universidad de

Más detalles

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA M.ª del Pilar Cantero Blanco Jefa de Servicio de Sistemas Informáticos. Subdirección General de Planificación

Más detalles

Contenido del Curso. Descubrimiento de Conocimiento a partir de datos. Introducción. Motivación

Contenido del Curso. Descubrimiento de Conocimiento a partir de datos. Introducción. Motivación Contenido del Curso Descubrimiento de Conocimiento a partir de Datos ISISTAN UNCPBA sschia@exa.unicen.edu.ar http://www.exa.unicen.edu.ar/catedras/dbdiscov/ Introducción al KDD Etapas Pre-procesamiento

Más detalles

HERRAMIENTAS DE LA CALIDAD

HERRAMIENTAS DE LA CALIDAD HERRAMIENTAS DE LA CALIDAD Ayudan en la medición, análisis e implementación de mejoramientos. Para mejorar Las principales herramientas de la calidad se agrupan en dos categorías: las siete herramientas

Más detalles

ARIS Process Performance Manager

ARIS Process Performance Manager ARIS Process Performance Manager Supervisión de procesos continua en toda la empresa Muchas empresas se están dando cuenta de que la recopilación de indicadores clave de rendimiento sin vincularlos con

Más detalles

Código del programa: PEMDE. Programa Experto en MANEJO DE DATOS CON EXCEL. Modalidad: Virtual. Descripción del programa

Código del programa: PEMDE. Programa Experto en MANEJO DE DATOS CON EXCEL. Modalidad: Virtual. Descripción del programa Código del programa: PEMDE Programa Experto en MANEJO DE DATOS CON EXCEL Modalidad: Virtual Descripción del programa 1 Presentación del programa Justificación Microsoft Excel es la herramienta de manejo

Más detalles

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Francisco J. Martín Mateos Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Qué es la (KE)? Definición de Wikipedia: La es una disciplina cuyo objetivo es integrar conocimiento

Más detalles

Objeto del informe. ALUMNO 1 Página: 1

Objeto del informe. ALUMNO 1 Página: 1 Nombre: ALUMNO 1 Centro: NOMBRE DEL COLEGIO Curso: 5º E. PRIMARIA Responsable: RESPONSABLE Localidad: LOCALIDAD Fecha: 21 / julio / 2015 Objeto del informe El presente informe recoge la evaluación psicológica

Más detalles

Autor: Ing. Mario Lázaro Basulto Núñez

Autor: Ing. Mario Lázaro Basulto Núñez INSTITUTO DE CIBERNÉTICA, MATEMÁTICA Y FÍSICA Título: DESCUBRIMIENTO DE CONOCIMIENTO SOBRE ACCIDENTES DE TRÁNSITO EN UNA BASE DE DATOS CONCERNIENTE A LAS AFECTACIONES A LA INFRAESTRUCTURA DE LAS TELECOMUNICACIONES

Más detalles

Portafolio de Servicios y Productos

Portafolio de Servicios y Productos Portafolio de Servicios y Productos Introducción Somos una empresa que se dedica a generar ventajas competitivas para nuestros clientes a través de desarrollos y consultoría en inteligencia de negocios

Más detalles

Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos

Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos Productivity in Construction Companies: Knowledge acquired from the databases Hernando Camargo Mila, Rogelio Flórez

Más detalles

VISION ARTIFICIAL APOYADA EN SISTEMAS HÍBRIDOS NEURO-SIMBÓLICOS

VISION ARTIFICIAL APOYADA EN SISTEMAS HÍBRIDOS NEURO-SIMBÓLICOS VISION ARTIFICIAL APOYADA EN SISTEMAS HÍBRIDOS NEURO-SIMBÓLICOS Dr. Gerardo Reyes Salgado Profesor-Investigador / Instituto Tecnológico de Cuautla gerardo.reyes@itcuautla.edu.mx www.itcuautla.edu.mx 1

Más detalles

Unidad 1. Fundamentos en Gestión de Riesgos

Unidad 1. Fundamentos en Gestión de Riesgos 1.1 Gestión de Proyectos Unidad 1. Fundamentos en Gestión de Riesgos La gestión de proyectos es una disciplina con la cual se integran los procesos propios de la gerencia o administración de proyectos.

Más detalles

GedicoPDA: software de preventa

GedicoPDA: software de preventa GedicoPDA: software de preventa GedicoPDA es un sistema integrado para la toma de pedidos de preventa y gestión de cobros diseñado para trabajar con ruteros de clientes. La aplicación PDA está perfectamente

Más detalles

PROGRAMA DE CURSO. Personal 6 10 3.0 0 7. Electivo para ICC FI2002 Electromagnetismo. Competencia a la que Tributa el Curso. Propósito del Curso

PROGRAMA DE CURSO. Personal 6 10 3.0 0 7. Electivo para ICC FI2002 Electromagnetismo. Competencia a la que Tributa el Curso. Propósito del Curso PROGRAMA DE CURSO Código Nombre CC5206 Introducción a la Minería de Datos Nombre en Inglés Introduction to Data Mining SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal

Más detalles

Minería de Datos. Universidad Politécnica de Victoria

Minería de Datos. Universidad Politécnica de Victoria Minería de Datos Universidad Politécnica de Victoria 1 Motivación Nuevas Necesidades del Análisis de Grandes Volúmenes de Datos El aumento del volumen y variedad de información que se encuentra informatizada

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza (raqueltl@unizar.es) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial Universidad del Cauca Facultad de Ingeniería Electrónica y Telecomunicaciones Programas de Maestría y Doctorado en Ingeniería Telemática Seminario de Investigación Evaluación, limpieza y construcción de

Más detalles

Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas

Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas Un modelo predictivo para reducir la tasa de ausentismo en atenciones médicas programadas Ing. Juan Miguel Moine Ing. Cristian Germán Bigatti Ing. Guillermo Leale Est. Graciela Carnevali Est. Esther Francheli

Más detalles

Botón menú Objetivo de la Minería de datos.

Botón menú Objetivo de la Minería de datos. Titulo de Tutorial: Minería de Datos N2 Botón menú: Introducción. Las instituciones y empresas privadas coleccionan bastante información (ventas, clientes, cobros, pacientes, tratamientos, estudiantes,

Más detalles

Finanzas e Investigación de Mercados"

Finanzas e Investigación de Mercados DIPLOMATURA: "Análisis de Datos para Negocios, Finanzas e Investigación de Mercados" Seminario: Introducción a Data Mining y Estadística Dictado: Sábado 13, 20,27 de Abril, 04 de Mayo en el horario de

Más detalles

ANALIZANDO GRAFICADORES

ANALIZANDO GRAFICADORES ANALIZANDO GRAFICADORES María del Carmen Pérez E.N.S.P.A, Avellaneda. Prov. de Buenos Aires Instituto Superior del Profesorado "Dr. Joaquín V. González" Buenos Aires (Argentina) INTRODUCCIÓN En muchos

Más detalles

SISTEMAS DE SEGURIDAD DE RECONOCIMIENTO FACIAL

SISTEMAS DE SEGURIDAD DE RECONOCIMIENTO FACIAL SISTEMAS DE SEGURIDAD DE RECONOCIMIENTO FACIAL INTRODUCCIÓN Los sistemas de reconocimiento facial son sistemas de seguridad basados en aplicaciones que detectan e identifican automáticamente rostros humanos.

Más detalles

Curso Data Mining y Aplicaciones en Riesgo de Crédito

Curso Data Mining y Aplicaciones en Riesgo de Crédito RW.02 RW.01 Transferencia Internacional de Curso Data Mining y Aplicaciones en Riesgo de Crédito RICHARD WEBER PhD. En Investigación de Operaciones del Instituto de Tecnología de Aachen, Alemania La actividad

Más detalles

Soluciones Integrales en Inteligencia de Negocios

Soluciones Integrales en Inteligencia de Negocios Soluciones Integrales en Inteligencia de Negocios QUIENES SOMOS NUESTRA MISIÓN DATAWAREHOUSE MINERÍA DE DATOS MODELOS PREDICTIVOS REPORTERÍA Y DASHBOARD DESARROLLO DE APLICACIONES MODELOS DE SIMULACIÓN

Más detalles

SISTEMAS DATAMINING: Implantación e impacto en la estrategia empresarial

SISTEMAS DATAMINING: Implantación e impacto en la estrategia empresarial SISTEMAS DATAMINING: Implantación e impacto en la estrategia empresarial En colaboración: Organiza: Índice I. Objetivos del curso 3 II. Qué es Datamining? 4 III. Modalidad del curso 5 IV. Programa Formativo

Más detalles

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA PF-3808 Minería de Datos II Semestre del 2009 Profesor: Dr. Francisco J. Mata (correo: fmatach@racsa.co.cr;

Más detalles

Materia: Inteligencia de negocios

Materia: Inteligencia de negocios Instituto Tecnológico de Durango Departamento de Sistemas y Computación Ingeniería Informática Unidad I. INTRODUCCIÓN A LA INTELIGENCIA DE NEGOCIOS 1 Información Activo más importante de los negocios actuales

Más detalles

MINING SOLUTIONS LIMITADA

MINING SOLUTIONS LIMITADA MINING SOLUTIONS LIMITADA Contenido... 1 Resumen Ejecutivo... 3... 4 Nuestros Servicios... 5 Administración de proyectos... 6 Operación y mantenimiento sobre los Sistema de Manejo de la Información Geológica

Más detalles

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Introducción La visión artificial, también conocida como visión por computador

Más detalles

KDD y MD. Dr. Juan Pedro Febles Rodríguez BIOINFO CITMA 2005. Juan Pedro Febles KDD y MD

KDD y MD. Dr. Juan Pedro Febles Rodríguez BIOINFO CITMA 2005. Juan Pedro Febles KDD y MD KDD y MD Dr. Juan Pedro Febles Rodríguez BIOINFO febles@bioinfo.cu http://www.bioinfo.cu CITMA 2005 Temas a tratar Algunos antecedentes académicos. El proceso de descubrimiento de conocimientos en Datos

Más detalles

Palabras clave: Minería de datos, extracción de patrones, aplicaciones, sistemas de abastecimiento de agua.

Palabras clave: Minería de datos, extracción de patrones, aplicaciones, sistemas de abastecimiento de agua. ESTADO DEL ARTE EN LA UTILIZACIÓN DE TECNICAS AVANZADAS PARA LA BUSQUEDA DE INFORMACIÓN NO TRIVIAL A PARTIR DE DATOS EN LOS SISTEMAS DE ABASTECIMIENTO DE AGUA POTABLE José Luis Díaz Arévalo 1 ; Rafael

Más detalles

PROPÓSITO... 2 DETERMINANTES PARA UNA BUENA EXPERIENCIA DE USO...

PROPÓSITO... 2 DETERMINANTES PARA UNA BUENA EXPERIENCIA DE USO... Tabla de Contenido PROPÓSITO... 2 DETERMINANTES PARA UNA BUENA EXPERIENCIA DE USO... 2 1. LA PRESENCIA DE INFORMACIÓN Y AYUDA ÚTIL PARA COMPLETAR LOS TRÁMITES EN LÍNEA.... 2 2. LA DISPONIBILIDAD DE DIVERSOS

Más detalles

TECNÓLOGO EN INFORMÁTICA PLAN DE ESTUDIOS

TECNÓLOGO EN INFORMÁTICA PLAN DE ESTUDIOS Administración Nacional de Universidad de la República Educación Pública Facultad de Ingenieria CF Res..0.07 Consejo Directivo Central Consejo Directivo Central Res..05.07 Res. 17.0.07 TECNÓLOGO EN INFORMÁTICA

Más detalles

CARACTERÍSTICAS GENERALES. a) Nombre del Proyecto Curricular Licenciatura de Ingeniería en Sistemas Inteligentes 2007

CARACTERÍSTICAS GENERALES. a) Nombre del Proyecto Curricular Licenciatura de Ingeniería en Sistemas Inteligentes 2007 CARACTERÍSTICAS GENERALES a) Nombre del Proyecto Curricular Licenciatura de Ingeniería en Sistemas Inteligentes 2007 b) Título que se otorga Ingeniero/a en Sistemas Inteligentes c) Espacio donde se imparte

Más detalles

Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos).

Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos). Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos). Autores: - MsC. Ing. Mario L. Basulto Núñez (ETECSA) mario.basulto@etecsa.cu - Lic.

Más detalles

Clasificación Bayesiana de textos y páginas web

Clasificación Bayesiana de textos y páginas web Clasificación Bayesiana de textos y páginas web Curso de doctorado: Ingeniería Lingüística aplicada al Procesamiento de Documentos Víctor Fresno Fernández Introducción Enorme cantidad de información en

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

Acerca de esté Catálogo

Acerca de esté Catálogo Catálogo de Cursos 2015 Acerca de esté Catálogo En el presente documento podrá obtenerse la información necesaria sobre la oferta de cursos que Manar Technologies S.A.S. y su línea de educación Campus

Más detalles

Libere el conocimiento que vive en cualquier dato. Mario Ochoa 10/09/2014

Libere el conocimiento que vive en cualquier dato. Mario Ochoa 10/09/2014 Libere el conocimiento que vive en cualquier dato Mario Ochoa 10/09/2014 En qué se diferencian las empresas exitosas de la actualidad? Datos. Valor La innovación de tecnología acelera el valor Machine

Más detalles

Trabajo Practico N 12

Trabajo Practico N 12 Trabajo Practico N 12 Minería de Datos CATEDRA: Actualidad Informática Ingeniería del Software III Titular: Mgter. Horacio Kuna JTP: Lic. Sergio Caballero Auxiliar: Yachesen Facundo CARRERAS: Analista

Más detalles

Capítulo 2 Tecnología data warehouse

Capítulo 2 Tecnología data warehouse Capítulo 2 Tecnología data warehouse El objetivo de éste capítulo es mostrar la tecnología data warehouse (DW) como una herramienta para analizar la información. Este capítulo se encuentra organizado de

Más detalles

Sistema de Gestión de Proyectos Estratégicos.

Sistema de Gestión de Proyectos Estratégicos. [Documento versión 2.0 del 24/06/2015] Sistema de Gestión de Proyectos Estratégicos. El sistema de Gestión de Proyectos Estratégicos (GPE), es una poderosa herramienta para administrar y gestionar los

Más detalles

Minería de datos educativa: Una herramienta para la investigación de patrones de aprendizaje sobre un contexto educativo

Minería de datos educativa: Una herramienta para la investigación de patrones de aprendizaje sobre un contexto educativo Minería de datos educativa: Una herramienta para la investigación de patrones de aprendizaje sobre un contexto educativo Alejandro Ballesteros Román, Daniel Sánchez-Guzmán and Ricardo García Salcedo Centro

Más detalles

RW.02 RW.01. Curso Data Mining y Aplicaciones en Riesgo de Crédito

RW.02 RW.01. Curso Data Mining y Aplicaciones en Riesgo de Crédito RW.02 RW.01 Curso Data Mining y Aplicaciones en Riesgo de Crédito RICHARD WEBER PhD. En Investigación de Operaciones del Instituto de Tecnología de Aachen, Alemania La actividad comercial de las empresas

Más detalles