MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES"

Transcripción

1 MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES Actualmente se vive una época donde se tiene una enorme cantidad de datos que se generan diariamente (del orden de Terabytes, Petabytes 1 (Han, Kamber, & Pei, 2012)) ya sea en forma consciente o inconsciente, por ejemplo cuando se registra la entrada al entorno laboral, cuando se consulta el correo electrónico, cuando se paga algún bien o servicio por medio de una tarjeta bancaria, cuando se hace la reservación para algún espectáculo, cuando se conduce por una vía donde se contabilizan los autos que pasan por minuto, cuando se le da seguimiento a la navegación realizada por Internet o bien cuando se obtiene una imagen del rostro sin darse cuenta al momento de transitar por lugares donde se requiere mayor seguridad como puede ser un aeropuerto u oficina gubernamental. Todos estos datos se encuentran dispersos en redes de computadoras corporativas, la web, dispositivos de almacenamiento de datos entre otros, producto de las actividades de las empresas, sociedad, gobierno, medicina, etc. Los negocios a nivel mundial crean gigantescos conjuntos de datos, conteniendo transacciones de ventas, registros de inventarios, descripciones de productos, promociones de ventas, perfiles y rendimiento de la compañía, retroalimentación de los clientes por citar algunos ejemplos. La industria médica mantiene los expedientes de los pacientes, servicios de monitoreo preventivo de signos vitales, imágenes de estudios además de la propia investigación del área. Las comunidades y medios sociales se han convertido en importantes fuentes de 1 Unidades de capacidad de almacenamiento. En términos generales, Un Terabyte son mil Gigabytes y Un Petabyte son mil Terabytes o un millón de Gigabytes.

2 datos tales como fotografías digitales, videos, blogs y toda clase de contenido en las redes sociales. La información se ha convertido en pieza clave para obtener una ventaja competitiva en el mundo de los negocios. Se debe tener acceso a dicha información no solo de manera rápida sino también en un formato claro y entendible por los tomadores de decisiones. Herramientas poderosas y versátiles se han vuelto muy necesarias dado que se ha excedido la capacidad humana para descubrir automáticamente información de valor a partir de la tremenda cantidad de datos y transformarlos en conocimiento organizado. Esta necesidad ha permitido el nacimiento de la Minería de Datos. La abundancia de datos, aunado con la necesidad de poderosas herramientas de análisis de datos ha sido descrita como una situación rica en datos pero pobre en información (Han & Kamber, Data Mining. Concepts and Techniques, 2006). Cuando se toma una decisión importante, normalmente no se realiza basada en información rica que puede encontrarse en los grandes almacenes de datos sino en la intuición del tomador de la decisión debido a la carencia de herramientas para extraer conocimiento de valor de esos almacenes de datos que se han generado con el día a día. Esto ha detonado el desarrollo de herramientas de minería de datos que pueden transformar los enormes contenedores de datos en pepitas de oro de conocimiento. Antes de continuar, se verán algunas definiciones sobre la minería de datos que algunos autores o empresas han propuesto.

3 Conceptos de Minería de Datos La minería de datos (Pérez López & Santín González, 2007) es el proceso del descubrimiento de nuevas y significativas relaciones, patrones y tendencias al examinar grandes cantidades de datos. La minería de datos (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) es la aplicación de algoritmos específicos para extraer patrones de datos. La minería de datos (Microsoft Corporation, 2012) es el proceso de detectar la información procesable de los conjuntos grandes de datos. Utiliza el análisis matemático para deducir los patrones y tendencias que existen en los datos. Normalmente, estos patrones no se pueden detectar mediante la exploración tradicional de los datos porque las relaciones son demasiado complejas o porque hay demasiados de ellos. Algunos términos tienen un significado similar a la minería de datos, motivo por el cual también se les puede encontrar en bibliografía como sinónimos, por ejemplo, Minería de conocimiento de datos, Extracción de conocimiento, Análisis de datos/patrones, Arqueología de datos y dragado de datos (Han & Kamber, Data Mining. Concepts and Techniques, 2006). Esto ha provocado confusión acerca del significado de los términos Minería de datos y Descubrimiento de conocimiento en Bases de Datos (KDD por sus siglas en inglés), KDD fue propuesto en 1995 (Sumathi & Sivanandam, 2006) para describir el proceso completo de extracción de conocimiento de datos. En este contexto, conocimiento significa relaciones y patrones entre los diferentes datos existentes. Minería de datos debe ser usado exclusivamente para la etapa

4 de descubrimiento del proceso KDD, sin embargo, comercialmente suelen emplearse ambos conceptos como sinónimos o de manera indistinta tal como será tratado en el presente escrito, dándole un enfoque amplio. La minería de datos como proceso Sin intentar cubrir todos los enfoques o puntos de vista, el proceso de descubrimiento de conocimiento es una secuencia iterativa que comprende los pasos siguientes (ver Fig. 1): 1. Limpieza de los datos. Se deben remover los datos inconsistentes, es decir, aquellos que aun siendo los mismos pueden hacer referencia a distintas cosas. 2. Integración de datos. Múltiples fuentes de datos pueden ser combinadas. 3. Selección de datos. Se recuperan los datos relevantes para su análisis posterior. 4. Transformación de datos. Los datos son transformados y consolidados en formas apropiadas para las operaciones de resumen y agregación. 5. Minería de datos. Proceso esencial donde métodos inteligentes son aplicados para extraer patrones o modelos entre los datos. 6. Evaluación de los patrones o modelos. Identificar los patrones o modelos realmente interesantes que representan conocimiento, basados en medidas de interés. 7. Presentación del conocimiento. Técnicas de representación de conocimiento y visualización son empleadas para presentar el conocimiento minado a los usuarios.

5 Fig. 1. Minería de Datos en el proceso de Descubrimiento de Conocimiento (Han, Kamber, & Pei, 2012) Este proceso puede ser aplicado sobre diferentes orígenes de datos (bases de datos, datawarehouses, la web, otros repositorios de información o datos que son enviados al sistema en forma dinámica en tiempo real) y sobre diversos tipos de datos (flujos continuos, datos ordenados o en secuencia, datos gráficos, datos espaciales, texto, multimedia entre otros). Los elementos (como soporte o protagonistas) que hacen posible la minería de datos han estado bajo desarrollo por muchos años en áreas de investigación como Estadística, Sistemas de Información/Bases de Datos, Computación Paralela/Distribuida, Interfaces de Lenguaje Natural a Bases de Datos, Inteligencia Artificial y Aprendizaje de Máquinas. Con el apoyo de estas áreas, se puede

6 producir cinco tipos de información: Asociaciones, Secuencias, Clasificaciones, Agrupamientos y Pronósticos. Esta información se obtiene más específicamente de un conjunto de técnicas, las cuales se puede agrupar según se muestra en la fig. 2 (Pérez López & Santín González, 2007). Regresión Predictivas Análisis de la varianza Series temporales Métodos bayesianos Algoritmos genéticos Clasificación ad hoc Discriminante Árboles de decisión Redes neuronales Técnicas Descriptivas Clasificación post hoc Asociación Dependenci a Reducción de la dimensión Análisis exploratorio Escalamiento multidimensional Clustering Segmentación Técnicas auxiliares (Verificación ) Proceso Análitico de Transacciones (OLTP) SQL y herramientas de consulta Reporting Fig. 2. Clasificación de las técnicas de Data Mining. Las técnicas predictivas, como su nombre lo indica predicen el valor de un atributo de un conjunto de datos a partir de otros valores ya conocidos, induciendo una relación entre ellos. Esta modalidad se conoce como aprendizaje supervisado y se

7 genera en dos fases: Entrenamiento y Prueba. Cuando una aplicación no es lo suficientemente madura no tiene el potencial necesario para una solución predictiva, entonces se debe recurrir a los métodos no supervisados o del descubrimiento del conocimiento (técnicas descriptivas) que descubren patrones y tendencias en los datos actuales (no utilizan datos históricos). Las técnicas auxiliares son herramientas de apoyo más superficiales y limitadas, empleadas normalmente para propósitos de verificación de los resultados obtenidos con las otras técnicas (predictivas o descriptivas). En un tratado posterior se dará mayor énfasis a cada tipo de técnica. Aplicaciones de la Minería de Datos Es crítico para los negocios tener un claro entendimiento del contexto comercial (clientes, mercado, proveedores, recursos, competencia, etc.) de cada organización. Las tecnologías de Inteligencia de Negocios (BI por sus siglas en inglés) proporcionan información histórica, actual y posibles proyecciones de las operaciones del negocio, en formato de reportes, procesamiento analítico en línea (OLAP por sus siglas en inglés), administración del comportamiento del negocio, inteligencia competitiva, benchmarking y análisis predictivo. Sin la minería de datos muchas empresas no pudieran ser capaces de hacer un análisis efectivo del mercado, analizar la retroalimentación de los clientes sobre los productos o servicios, descubrir las fortalezas y debilidades de los competidores, retener a los clientes más rentables y tomar decisiones de negocio más inteligentes. Las técnicas de clasificación y predicción se emplean frecuentemente en BI, mientras que las técnicas de clustering juegan un rol central en los sistemas de

8 Administración de la Relación con el Cliente (CRM por sus siglas en inglés) para agruparlos y desarrollar programas de recompensa de acuerdo a las características de cada grupo. A continuación se presentan algunas de las situaciones donde la minería de datos ha tenido presencia en forma satisfactoria (Hernández Orallo, Ramirez Quintana, & Ferri Ramírez, 2004) Tabla 1. Aplicaciones de la Minería de Datos Área de Aplicación Problemas Tipo Comercio/Marketing Identificar patrones de compra de los clientes. Buscar asociaciones entre clientes y características demográficas. Predecir respuesta a campañas de mailing. Análisis de la canasta de compra. Banca Detectar patrones de uso fraudulento de tarjetas de crédito. Identificar clientes leales. Predecir clientes con probabilidad de cambiar su afiliación. Determinar gasto en tarjeta de crédito por grupos. Encontrar correlaciones entre indicadores financieros. Identificar reglas de mercado de valores a partir de históricos. Seguros y Salud Privada Análisis de procedimientos médicos solicitados conjuntamente. Predecir qué clientes compran nuevas pólizas. Identificar patrones de comportamiento para

9 clientes con riesgo. Identificar comportamiento fraudulento. Transportes Determinar la planificación de la distribución entre tiendas. Analizar patrones de carga. Medicina Identificación de terapias médicas satisfactorias para diferentes enfermedades. Asociación de síntomas y clasificación diferencial de patologías. Estudio de factores (genéticos, precedentes, hábitos, alimenticios, etc.) de riesgo/salud en distintas patologías. Segmentación de pacientes para una atención más inteligente según su grupo. Predicciones temporales de los centros asistenciales para el mejor uso de recursos, consultas, salas y habitaciones. Estudios epidemiológicos, análisis de rendimientos de campañas de información, prevención, sustitución de fármacos, etc. Procesos industriales Extracción de modelos sobre comportamiento de compuestos. Detección de piezas con trabas. Predicción de fallos Modelos de calidad. Estimación de composiciones óptimas en mezclas. Extracción de modelos de coste. Extracción de modelos de producción.

10 Simulación costes/beneficios según niveles de calidad. Gracias a las innovaciones tecnológicas que se van presentando actualmente, no se descartan escenarios donde la minería de datos sea tan común y fácil de usar como el correo electrónico, sistemas que puedan revelar nuevos tratamientos para enfermedades o nuevas perspectivas sobre la concepción del universo solo por mencionar algunos ejemplos. Sin embargo, aun existen situaciones en las cuales la investigación en minería de datos se encuentra trabajando arduamente, las cuales se pueden clasificar en los cinco grupos siguentes(han, Kamber, & Pei, Data Mining. Concepts and Techniques, 2012): Metodología de la minería. Los investigadores han estado desarrollando nuevas metodologías de minería de datos que involucra la investigación de nuevos tipos de conocimientos, minería en espacios multidimensionales, integración de métodos de otras disciplinas. Además se debe considerar la incertidumbre, el ruido y la incompletud de los datos. Interacción con el usuario. En este sentido se investiga cómo interactuar con un sistema de minería de datos, cómo incorporar el conocimiento previo del usuario en la minería y cómo visualizar y comprender los resultados de la minería de datos. Eficiencia y escalabilidad. Estos aspectos debe ser considerados cuando se realizan las comparaciones entre las diferentes propuestas para nuevos algoritmos o técnicas de minería de datos.

11 Diversidad de tipos de datos. La amplia variedad de tipos de bases de datos trae consigo retos a la minería de datos dado que se tienen datos estructurados, semi estructurados y no estructurados tales como flujos de datos dinámicos, secuencias biológicas, datos de sensores, datos espaciales, hipertexto, multimedia, etc. Minería de datos y sociedad. La divulgación o uso inapropiado de la información y la potencial violación a la privacidad así como a los derechos de protección de datos son áreas de interés que deben ser consideradas. Conclusión La minería de datos es todo un proceso que involucra varias tecnologías que dan un tratamiento a todos los datos históricos que se van generando día con día. Como resultado, proporciona conocimiento que a simple vista no puede identificarse con las herramientas normales de trabajo y que puede ser utilizado para tomar decisiones más inteligentes enfocadas a objetivos bien definidos que pueden generar una ventaja competitiva para las empresas y nuevas oportunidades para desarrollo tecnológico. Bibliografía Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, Han, J., & Kamber, M. (2006). Data Mining. Concepts and Techniques. Morgan Kaufmann Publishers. Han, J., Kamber, M., & Pei, J. (2012). Data Mining. Concepts and Techniques. Morgan Kaufmann.

12 Hernández Orallo, J., Ramirez Quintana, M. J., & Ferri Ramírez, C. (2004). Introducción a la Minería de Datos. Madrid: Pearson. Microsoft Corporation. (2012). Conceptos de Mineria de Datos. SQL Server Retrieved Abril 5, 2012, from MSDN: Pérez López, C., & Santín González, D. (2007). Minería de Datos. Técnicas y Herramientas. Madrid: Thomson. Sumathi, S., & Sivanandam, S. (2006). Introduction to Data Mining and its Applications. Berlin: Springer.

Introducción a la Minería de Datos (Data Mining)

Introducción a la Minería de Datos (Data Mining) a la Minería de Datos (Data Mining) IT-Nova Facultad de Ingeniería Informática y Telecomunicaciones Iván Amón Uribe, MSc Minería de Datos Diapositivas basadas parcialmente en material de Inteligencia Analítica

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

activuspaper Text Mining and BI Abstract

activuspaper Text Mining and BI Abstract Text Mining and BI Abstract Los recientes avances en lingüística computacional, así como la tecnología de la información en general, permiten que la inserción de datos no estructurados en una infraestructura

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios

Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios "Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios Miguel Alfonso Flores Sánchez 1, Fernando Sandoya Sanchez 2 Resumen En el presente artículo se

Más detalles

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

Minería de Datos. Universidad Politécnica de Victoria

Minería de Datos. Universidad Politécnica de Victoria Minería de Datos Universidad Politécnica de Victoria 1 Motivación Nuevas Necesidades del Análisis de Grandes Volúmenes de Datos El aumento del volumen y variedad de información que se encuentra informatizada

Más detalles

Portafolio de Servicios y Productos

Portafolio de Servicios y Productos Portafolio de Servicios y Productos Introducción Somos una empresa que se dedica a generar ventajas competitivas para nuestros clientes a través de desarrollos y consultoría en inteligencia de negocios

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI)

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) OFERTAS TECNOLÓGICAS 1) GESTIÓN ORGANIZACIONAL Y LOGÍSTICA INTEGRADA: TÉCNICAS Y SISTEMAS DE INFORMACIÓN 2) GESTIÓN

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Capitulo 3: Metodología de Investigación.

Capitulo 3: Metodología de Investigación. Capitulo 3: Metodología de Investigación. 3.1 Introducción. Con el propósito de describir el sector económico en el cual se pretende incursionar y ayude para una correcta realización del plan de negocios

Más detalles

opinoweb el poder de sus datos Descubra LA NECESIDAD DE PREDECIR

opinoweb el poder de sus datos Descubra LA NECESIDAD DE PREDECIR opinoweb SOFTWARE FOR MARKET RESEARCH LA NECESIDAD DE PREDECIR Actualmente las empresas no sólo necesitan saber con exactitud qué aconteció en el pasado para comprender mejor el presente, sino también

Más detalles

MINING SOLUTIONS LIMITADA

MINING SOLUTIONS LIMITADA MINING SOLUTIONS LIMITADA Contenido... 1 Resumen Ejecutivo... 3... 4 Nuestros Servicios... 5 Administración de proyectos... 6 Operación y mantenimiento sobre los Sistema de Manejo de la Información Geológica

Más detalles

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos Published on Dataprix (http://www.dataprix.com) Principal > Artículos de Minería de Datos de Dataprix By Dataprix Created 26/12/2009-17:13 Artículos de Minería de Datos de Dataprix Introducción a la minería

Más detalles

INTELIGENCIA DE NEGOCIOS

INTELIGENCIA DE NEGOCIOS INTELIGENCIA DE NEGOCIOS A P R O X I M A C I Ó N A U N A E X P E R I E N C I A D E A P L I C A C I Ó N E N I N S T I T U C I O N E S D E L A R E G I Ó N Ing. Patricia Uceda Martos Agenda Introducción Definición

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

Ingeniería de Software. Pruebas

Ingeniería de Software. Pruebas Ingeniería de Software Pruebas Niveles de prueba Pruebas unitarias Niveles Pruebas de integración Pruebas de sistema Pruebas de aceptación Alpha Beta Niveles de pruebas Pruebas unitarias Se enfocan en

Más detalles

e-commerce vs. e-business

e-commerce vs. e-business Formas de interactuar en los negocios e-commerce vs. e-business Día a día debemos sumar nuevas palabras a nuestro extenso vocabulario, y e-commerce y e-business no son la excepción. En esta nota explicamos

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

El ABC de Big Data: Analytics, Bandwidth and Content

El ABC de Big Data: Analytics, Bandwidth and Content Documento técnico El ABC de Big Data: Analytics, Bandwidth and Content Richard Treadway e Ingo Fuchs, NetApp, Noviembre de 2011 WP-7147 RESUMEN EJECUTIVO Las empresas entran en una nueva era en la que

Más detalles

SÍNTESIS Y PERSPECTIVAS

SÍNTESIS Y PERSPECTIVAS SÍNTESIS Y PERSPECTIVAS Los invitamos a observar, a identificar problemas, pero al mismo tiempo a buscar oportunidades de mejoras en sus empresas. REVISIÓN DE CONCEPTOS. Esta es la última clase del curso.

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

SAP BusinessObjects Edge BI Standard Package La solución de BI preferida para. Empresas en Crecimiento

SAP BusinessObjects Edge BI Standard Package La solución de BI preferida para. Empresas en Crecimiento SAP BusinessObjects Edge BI Standard Package La solución de BI preferida para Empresas en Crecimiento Portfolio SAP BusinessObjects Soluciones SAP para Empresas en Crecimiento Resumen Ejecutivo Inteligencia

Más detalles

Gestión de Oportunidades

Gestión de Oportunidades Gestión de Oportunidades Bizagi Suite Gestión de Oportunidades 1 Tabla de Contenido CRM Gestión de Oportunidades de Negocio... 4 Elementos del Proceso... 5 Registrar Oportunidad... 5 Habilitar Alarma y

Más detalles

La inteligencia de marketing que desarrolla el conocimiento

La inteligencia de marketing que desarrolla el conocimiento La inteligencia de marketing que desarrolla el conocimiento SmartFocus facilita a los equipos de marketing y ventas la captación de consumidores con un enfoque muy relevante y centrado en el cliente. Ofrece

Más detalles

CAPÍTULO IV METODOLOGÍA PARA EL CONTROL DE INVENTARIOS. En este capítulo se presenta los pasos que se siguieron para la elaboración de un sistema de

CAPÍTULO IV METODOLOGÍA PARA EL CONTROL DE INVENTARIOS. En este capítulo se presenta los pasos que se siguieron para la elaboración de un sistema de CAPÍTULO IV METODOLOGÍA PARA EL CONTROL DE INVENTARIOS En este capítulo se presenta los pasos que se siguieron para la elaboración de un sistema de inventarios para lograr un control de los productos.

Más detalles

NORMA INTERNACIONAL DE AUDITORÍA 520

NORMA INTERNACIONAL DE AUDITORÍA 520 NORMA INTERNACIONAL DE AUDITORÍA 520 PROCEDIMIENTOS ANALíTICOS (En vigor para auditorías de estados financieros por periodos que comiencen en, o después del, 15 de diciembre de 2004)* CONTENIDO Párrafo

Más detalles

3.3.3 Tecnologías Mercados Datos

3.3.3 Tecnologías Mercados Datos 3.3.3 Tecnologías Mercados Datos TECNOLOGIAS DATAMART: Aspect Data Mart es una solución completa de reportes para la empresa, que le proporciona un mayor entendimiento de las operaciones de sus negocios

Más detalles

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial Universidad del Cauca Facultad de Ingeniería Electrónica y Telecomunicaciones Programas de Maestría y Doctorado en Ingeniería Telemática Seminario de Investigación Evaluación, limpieza y construcción de

Más detalles

E-PROCUREMENT PARA FACILITAR LA INTEGRACIÓN EN LA SUPPLY CHAIN

E-PROCUREMENT PARA FACILITAR LA INTEGRACIÓN EN LA SUPPLY CHAIN E-PROCUREMENT PARA FACILITAR LA INTEGRACIÓN EN LA SUPPLY CHAIN Con cada vez mayores presiones de la competencia, cada vez más las empresas utilizan las adquisiciones electrónicas (eprocurement) en un intento

Más detalles

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre:

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: : : lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. 12 6 lemas propios de la. 12 6 lemas propios de la.

Más detalles

Cadena de Valor y Estrategias Genéricas 1. Prof. Marcelo Barrios

Cadena de Valor y Estrategias Genéricas 1. Prof. Marcelo Barrios Cadena de Valor y Estrategias Genéricas 1 1 Nota Técnica Preparada por el del Área de Política de Empresa de EDDE.. Primera versión: Noviembre 2001. Noviembre de 2003. 1 Cadena de Valor y Estrategias Genéricas

Más detalles

Curso del Data Mining al Big Data

Curso del Data Mining al Big Data Curso del Data Mining al Big Data Instructor: Dr. Luis Carlos Molina Félix Presentación. Las bases de datos y los sistemas de administración de datos han jugado un papel primordial en el crecimiento y

Más detalles

Presentación del Data Monitor de Sedex Nuestra interesante nueva gama de herramientas de creación de informes

Presentación del Data Monitor de Sedex Nuestra interesante nueva gama de herramientas de creación de informes Presentación del Data Monitor de Sedex Nuestra interesante nueva gama de herramientas de creación de informes Una nueva manera de crear informes sobre cadenas de suministros 2 El Data Monitor de Sedex

Más detalles

Soluciones Integrales en Inteligencia de Negocios

Soluciones Integrales en Inteligencia de Negocios Soluciones Integrales en Inteligencia de Negocios QUIENES SOMOS NUESTRA MISIÓN DATAWAREHOUSE MINERÍA DE DATOS MODELOS PREDICTIVOS REPORTERÍA Y DASHBOARD DESARROLLO DE APLICACIONES MODELOS DE SIMULACIÓN

Más detalles

e-commerce, es hacer comercio utilizando la red. Es el acto de comprar y vender en y por medio de la red.

e-commerce, es hacer comercio utilizando la red. Es el acto de comprar y vender en y por medio de la red. Comercio electrónico. (e-commerce) Las empresas que ya están utilizando la red para hacer comercio ven como están cambiando las relaciones de la empresa con sus clientes, sus empleados, sus colaboradores

Más detalles

CONSIDERACIONES GENERALES DEL WEB MINING

CONSIDERACIONES GENERALES DEL WEB MINING CONSIDERACIONES GENERALES DEL WEB MINING Sandra Milena Leal Elizabeth Castiblanco Calderón* RESUMEN: el presente artículo describe los conceptos básicos para la utilización del Webmining, dentro de los

Más detalles

LA LOGÍSTICA COMO FUENTE DE VENTAJAS COMPETITIVAS

LA LOGÍSTICA COMO FUENTE DE VENTAJAS COMPETITIVAS LA LOGÍSTICA COMO FUENTE DE VENTAJAS COMPETITIVAS Los clientes compran un servicio basandose en el valor que reciben en comparacion con el coste en el que incurren. Por, lo tanto, el objetivo a largo plazo

Más detalles

(Business Intelligence)

(Business Intelligence) (Business Intelligence) Algo peor que no tener información disponible es tener mucha información y no saber qué hacer con ella. La Inteligencia de Negocios o Business Intelligence (BI) es la solución a

Más detalles

Capítulo IV. Manejo de Problemas

Capítulo IV. Manejo de Problemas Manejo de Problemas Manejo de problemas Tabla de contenido 1.- En qué consiste el manejo de problemas?...57 1.1.- Ventajas...58 1.2.- Barreras...59 2.- Actividades...59 2.1.- Control de problemas...60

Más detalles

CRM Gestión de Oportunidades Documento de Construcción Bizagi Process Modeler

CRM Gestión de Oportunidades Documento de Construcción Bizagi Process Modeler Bizagi Process Modeler Copyright 2011 - Bizagi Tabla de Contenido CRM- Gestión de Oportunidades de Venta... 4 Descripción... 4 Principales Factores en la Construcción del Proceso... 5 Modelo de Datos...

Más detalles

GLOSARIO. Arquitectura: Funcionamiento, estructura y diseño de una plataforma de desarrollo.

GLOSARIO. Arquitectura: Funcionamiento, estructura y diseño de una plataforma de desarrollo. GLOSARIO Actor: Un actor es un usuario del sistema. Esto incluye usuarios humanos y otros sistemas computacionales. Un actor usa un Caso de Uso para ejecutar una porción de trabajo de valor para el negocio.

Más detalles

OPTATIVA I: MINERIA DE DATOS

OPTATIVA I: MINERIA DE DATOS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA I: MINERIA DE DATOS DES: Programa(s) Educativo(s): Tipo de materia: Clave de la

Más detalles

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata v.1.0 Clase 5 Docente: Gustavo Valencia Zapata Temas Clase 5: Conceptos de Minería de Datos Herramientas de DM Referencias Minería de datos Proceso de DM www.gustavovalencia.com Minería de datos La minería

Más detalles

PROGRAMA DEL DIPLOMADO DE PROCESO BENCHMARKING. TEMA 7. MANEJO DE LA INFORMACIÓN.

PROGRAMA DEL DIPLOMADO DE PROCESO BENCHMARKING. TEMA 7. MANEJO DE LA INFORMACIÓN. PROGRAMA DEL DIPLOMADO DE PROCESO BENCHMARKING. TEMA 7. MANEJO DE LA INFORMACIÓN. Objetivo: Al final de la unidad el alumno comprenderá la presencia de estas herramientas informáticas (programas Datamining))

Más detalles

Selenne Business Intelligence QUÉ ES BUSINESS INTELLIGENCE?

Selenne Business Intelligence QUÉ ES BUSINESS INTELLIGENCE? QUÉ ES BUSINESS INTELLIGENCE? Según Wikipedia Definición de BI El término inteligencia de negocios se refiere al uso de datos en una empresa para facilitar la toma de decisiones. Abarca la comprensión

Más detalles

FUENTES SECUNDARIAS INTERNAS

FUENTES SECUNDARIAS INTERNAS FUENTES SECUNDARIAS INTERNAS Las fuentes secundarias son informaciones que se encuentran ya recogidas en la empresa, aunque no necesariamente con la forma y finalidad que necesita un departamento de marketing.

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 2 - Juan Alfonso Lara Torralbo 1 Índice de contenidos (I) Introducción a Data Mining Actividad. Tipos

Más detalles

Unidad 1. Fundamentos en Gestión de Riesgos

Unidad 1. Fundamentos en Gestión de Riesgos 1.1 Gestión de Proyectos Unidad 1. Fundamentos en Gestión de Riesgos La gestión de proyectos es una disciplina con la cual se integran los procesos propios de la gerencia o administración de proyectos.

Más detalles

Clasificación de los Sistemas de Información

Clasificación de los Sistemas de Información Universidad Nacional Autónoma de México Facultad de Contaduría y Administración Clasificación de los Sistemas de Información Autor: L.I. Alejandro Muñoz Estrada Clasificación de los Sistemas de Información

Más detalles

Infraestructura Tecnológica. Sesión 12: Niveles de confiabilidad

Infraestructura Tecnológica. Sesión 12: Niveles de confiabilidad Infraestructura Tecnológica Sesión 12: Niveles de confiabilidad Contextualización La confianza es un factor determinante y muy importante, con ésta se pueden dar o rechazar peticiones de negocio, amistad

Más detalles

Unidad 1: Componentes del sistema

Unidad 1: Componentes del sistema Unidad 1: Componentes del sistema Identificar los elementos del sistema de información de mercados de la organización. M.I.A. Gabriel Ruiz Contreras gabriel2306@prodigy.net.mx Contenido 1. Elementos del

Más detalles

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II BASE DE DATOS Comenzar presentación Base de datos Una base de datos (BD) o banco de datos es un conjunto

Más detalles

Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida

Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida Resumen de la conferencia Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida Ponente: Luis Muñiz Socio Director de Sisconges & Estrategia y experto en Sistemas

Más detalles

Modificación y parametrización del modulo de Solicitudes (Request) en el ERP/CRM Compiere.

Modificación y parametrización del modulo de Solicitudes (Request) en el ERP/CRM Compiere. UNIVERSIDAD DE CARABOBO FACULTAD DE CIENCIA Y TECNOLOGÍA DIRECCION DE EXTENSION COORDINACION DE PASANTIAS Modificación y parametrización del modulo de Solicitudes (Request) en el ERP/CRM Compiere. Pasante:

Más detalles

Debido a que Internet ha llegado a ser aceptado rápidamente en toda esta revolución tecnológica, por encima de los demás medios de comunicación como

Debido a que Internet ha llegado a ser aceptado rápidamente en toda esta revolución tecnológica, por encima de los demás medios de comunicación como e-commerce Debido a que Internet ha llegado a ser aceptado rápidamente en toda esta revolución tecnológica, por encima de los demás medios de comunicación como son el teléfono, la radio, la televisión,

Más detalles

Alumna: Adriana Elizabeth Mendoza Martínez. Grupo: 303. P.S.P. Miriam De La Rosa Díaz. Carrera: PTB. en Informática 3er Semestre.

Alumna: Adriana Elizabeth Mendoza Martínez. Grupo: 303. P.S.P. Miriam De La Rosa Díaz. Carrera: PTB. en Informática 3er Semestre. Alumna: Adriana Elizabeth Mendoza Martínez. Grupo: 303. P.S.P. Miriam De La Rosa Díaz. Carrera: PTB. en Informática 3er Semestre. Tema: Sistemas Subtema: Base de Datos. Materia: Manejo de aplicaciones

Más detalles

Sistemas de Información Geográficos (SIG o GIS)

Sistemas de Información Geográficos (SIG o GIS) Sistemas de Información Geográficos (SIG o GIS) 1) Qué es un SIG GIS? 2) Para qué sirven? 3) Tipos de datos 4) Cómo trabaja? 5) Modelos de datos, Diseño Conceptual 6) GeoDataase (GD) 7) Cómo evaluamos

Más detalles

INTRODUCCIÓN CAPITULO I 1.1 PLANTEAMIENTO DEL PROBLEMA.

INTRODUCCIÓN CAPITULO I 1.1 PLANTEAMIENTO DEL PROBLEMA. CAPITULO I 1.1 PLANTEAMIENTO DEL PROBLEMA. Hoy en día las empresas en México quieren ocupar un lugar privilegiado en un mercado cambiante y lleno de retos. Por esa razón necesitan crear nuevas estrategias

Más detalles

HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN

HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN HERRAMIENTAS Y TECNICAS DE LA PLANEACIÓN Análisis del Entorno. Es el análisis de grandes cantidades de información del medio ambiente para detectar tendencias emergentes y crear escenarios. Análisis del

Más detalles

Convertimos lo complicado en sencillo, lo fácil en operativo y eliminamos lo ineficaz

Convertimos lo complicado en sencillo, lo fácil en operativo y eliminamos lo ineficaz Convertimos lo complicado en sencillo, lo fácil en operativo y eliminamos lo ineficaz Quiénes somos SDManalytics es una compañía especializada en el análisis de datos y en el desarrollo de soluciones para

Más detalles

GUIA SOBRE LOS REQUISITOS DE LA DOCUMENTACION DE ISO 9000:2000

GUIA SOBRE LOS REQUISITOS DE LA DOCUMENTACION DE ISO 9000:2000 1 INTRODUCCIÓN Dos de los objetivos más importantes en la revisión de la serie de normas ISO 9000 han sido: desarrollar un grupo simple de normas que sean igualmente aplicables a las pequeñas, a las medianas

Más detalles

Microsoft SQL Server Conceptos.

Microsoft SQL Server Conceptos. Microsoft Conceptos. Microsoft 2005 es una plataforma de base de datos a gran escala de procesamiento de transacciones en línea (OLTP) y de procesamiento analítico en línea (OLAP). La siguiente tabla muestra

Más detalles

SISTEMA DE ADMINISTRACIÓN DE RELACIÓN CON EL CLIENTE (CRM) Autor: M.P. Cesar Alberto Castañón Vite

SISTEMA DE ADMINISTRACIÓN DE RELACIÓN CON EL CLIENTE (CRM) Autor: M.P. Cesar Alberto Castañón Vite SISTEMA DE ADMINISTRACIÓN DE RELACIÓN CON EL CLIENTE (CRM) Autor: M.P. Cesar Alberto Castañón Vite CRM CRM es un concepto y no es solo una herramienta. Si la gente no esta comprometida a llevar adelante

Más detalles

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Económicas Departamento de Sistemas Asignatura: INTELIGENCIA DE NEGOCIOS Código: 715 Plan 1997 Cátedra: DEPARTAMENTO DE SISTEMAS Carrera: Licenciado en

Más detalles

Tema 7. Introducción al reconocimiento de objetos

Tema 7. Introducción al reconocimiento de objetos Tema 7. Introducción al reconocimiento de objetos En resumen, un sistema de reconocimiento de patrones completo consiste en: Un sensor que recoge las observaciones a clasificar. Un sistema de extracción

Más detalles

CRM Funciona en la práctica?

CRM Funciona en la práctica? e n t r e v i s t a CRM Funciona en la práctica? Sara Gallardo M. Quienes han iniciado el viaje con una estrategia enfocada en el cliente y no en sus servicios, han demostrado alcanzar una mejor rentabilidad,

Más detalles

Segmentación del Mercado

Segmentación del Mercado Segmentación del Mercado Para completar esta unidad satisfactoriamente le recomiendo que lea el capítulo 6 de su libro Fundamentos de Marketing y complete la lectura de las secciones provistas en este

Más detalles

EL PROCESO DE BENCHMARKING

EL PROCESO DE BENCHMARKING EL PROCESO DE BENCHMARKING Michael J. Spendolini El benchmarking es un proceso sistemático y continuo para evaluar los productos, servicios y procesos de trabajo de las organizaciones que son reconocidas

Más detalles

ARIS Process Performance Manager

ARIS Process Performance Manager ARIS Process Performance Manager Supervisión de procesos continua en toda la empresa Muchas empresas se están dando cuenta de que la recopilación de indicadores clave de rendimiento sin vincularlos con

Más detalles

Capítulo 2 Tratamiento Contable de los Impuestos. 2.1 Normas Internacionales de Contabilidad

Capítulo 2 Tratamiento Contable de los Impuestos. 2.1 Normas Internacionales de Contabilidad Capítulo 2 Tratamiento Contable de los Impuestos 2.1 Normas Internacionales de Contabilidad Las Normas Internacionales de Contabilidad (NIC) o International Financial Reporting Standard (IFRS) son los

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

TransUnion República Dominicana. Preguntas frecuentes sobre los modelos de score de TransUnion

TransUnion República Dominicana. Preguntas frecuentes sobre los modelos de score de TransUnion TransUnion República Dominicana Preguntas frecuentes sobre los modelos de score de TransUnion Los modelos de score de TransUnion El siguiente es un resumen para ayudarle a entender mejor cómo se puede

Más detalles

Inteligencia de Negocios

Inteligencia de Negocios Inteligencia de Negocios con Microsoft Dynamics GP Microsoft Dynamics GP: La solución comprobada para maximizar la eficiencia y obtener una visión productiva del negocio. Más de 40.000 clientes utilizan

Más detalles

La introducción de la red informática a nivel mundial ha producido un. constante cambio a nivel empresarial y personal, permitiendo acortar las

La introducción de la red informática a nivel mundial ha producido un. constante cambio a nivel empresarial y personal, permitiendo acortar las CAPÍTULO III PROPUESTA DE UN MANUAL DE PROCEDIMIENTOS GENERALES PARA LA IMPLEMENTACIÓN Y ADMINISTRACIÓN DE UN SITIO WEB COMO ESTRATEGIA DE COMUNICACIÓN INSTITUCIONAL PARA LAS EMPRESAS DEL SECTOR PRIVADO

Más detalles

MATEMÁTICA Y CONTABILIDAD: DISCIPLINAS IGUALES O DIFERENTES? Durante mi trayectoria docente de doce años como profesor de matemáticas y

MATEMÁTICA Y CONTABILIDAD: DISCIPLINAS IGUALES O DIFERENTES? Durante mi trayectoria docente de doce años como profesor de matemáticas y MATEMÁTICA Y CONTABILIDAD: DISCIPLINAS IGUALES O DIFERENTES? Prof. José E. Moura Rodríguez, CPA Durante mi trayectoria docente de doce años como profesor de matemáticas y de veinticinco años como profesor

Más detalles

TÓPICOS AVANZADOS DE BASES DE DATOS

TÓPICOS AVANZADOS DE BASES DE DATOS TÓPICOS AVANZADOS DE BASES DE DATOS 1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: TÓPICOS AVANZADOS DE BASES DE DATOS Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: Modulo

Más detalles

Perceived Strategic Value and Adoption of Electronic Commerce: An Empirical Study of Small and Medium Sized Businesses

Perceived Strategic Value and Adoption of Electronic Commerce: An Empirical Study of Small and Medium Sized Businesses Perceived Strategic Value and Adoption of Electronic Commerce: An Empirical Study of Small and Medium Sized Businesses Mediante la combinación de dos corrientes de investigación independientes, se pretende

Más detalles

Análisis y síntesis El proceso documental Lenguajes documentales El proceso de indización El resumen documental

Análisis y síntesis El proceso documental Lenguajes documentales El proceso de indización El resumen documental Análisis y síntesis El proceso documental Lenguajes documentales El proceso de indización El resumen documental El proceso documental El proceso o cadena documental es la razón fundamental de un centro

Más detalles

TOMA DE DECISIONES II

TOMA DE DECISIONES II TOMA DE DECISIONES II Tema Nº 04 1. LAS HERRAMIENTAS TECNOLÓGICAS PARA LAS TOMA DE DECISIONES GERENCIALES 1.1 Importancia de los ERP. 1.2 Aadministración del desempeño corporativo CPM 1. HERRAMIENTAS TECNOLÓGICAS

Más detalles

Panel: Minería de datos para la administración tributaria

Panel: Minería de datos para la administración tributaria Panel: Minería de datos para la administración tributaria Leopoldo Gutiérrez Socio líder de Tax Data Analytics en EY Especialista en diseño, desarrollo e implementación de modelos analíticos orientados

Más detalles

Academia de la carrera de Licenciatura Informática del Instituto Tecnológico Aguascalientes

Academia de la carrera de Licenciatura Informática del Instituto Tecnológico Aguascalientes 1. DATOS DE LA ASIGNATURA Nombre de la Asignatura: Sistemas de Soporte a la Decisión Carrera: Licenciatura en Informática Clave de la asignatura: IFS-0406 Horas teoría - horas práctica - créditos: 4-2-10

Más detalles

Desarrollo de la estrategia a seguir para. un Sistema de Gestión de la Energía. Instalaciones Industriales

Desarrollo de la estrategia a seguir para. un Sistema de Gestión de la Energía. Instalaciones Industriales Desarrollo de la estrategia a seguir para un Sistema de Gestión de la Energía Instalaciones Industriales Noviembre 2014 Contenido 1. Introducción 2. Antecedentes 3. Potencial de mejora energética de los

Más detalles

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA PF-3808 Minería de Datos II Semestre del 2009 Profesor: Dr. Francisco J. Mata (correo: fmatach@racsa.co.cr;

Más detalles

http://www.nicasoft.com.ni

http://www.nicasoft.com.ni BSC-RH es un sistema automatizado de planificación estratégica y gestión, utilizado en empresas para direccionar las actividades del negocio a la visión y estrategia de la organización. Mejora la comunicación

Más detalles

Botón menú Objetivo de la Minería de datos.

Botón menú Objetivo de la Minería de datos. Titulo de Tutorial: Minería de Datos N2 Botón menú: Introducción. Las instituciones y empresas privadas coleccionan bastante información (ventas, clientes, cobros, pacientes, tratamientos, estudiantes,

Más detalles

Enfoque del Marco Lógico (EML)

Enfoque del Marco Lógico (EML) Enfoque del Marco Lógico (EML) Qué es el EML? Es una herramienta analítica que se utiliza para la mejorar la planificación y la gestión de proyectos tanto de cooperación al desarrollo como de proyectos

Más detalles

CREACIÓN DE UN DEPARTAMENTO DE RELACIONES PÚBLICAS PARA LOS ALMACENES EL CHOCHO Y EL CAMPEÓN

CREACIÓN DE UN DEPARTAMENTO DE RELACIONES PÚBLICAS PARA LOS ALMACENES EL CHOCHO Y EL CAMPEÓN PROPUESTA: CREACIÓN DE UN DEPARTAMENTO DE RELACIONES PÚBLICAS PARA LOS ALMACENES EL CHOCHO Y EL CAMPEÓN Cómo sabemos cada día las empresas se enfrentan a un mundo globalizado, con retos empresariales,

Más detalles

WE ARE EXPERTS IN DATA PROCESSING & ANALYTICS IDATHA. DARK DATA White Paper - IDATHA. Octubre 2015. IDATHA.COM

WE ARE EXPERTS IN DATA PROCESSING & ANALYTICS IDATHA. DARK DATA White Paper - IDATHA. Octubre 2015. IDATHA.COM DARK DATA White Paper -. Octubre 2015..COM Resumen Ejecutivo Hoy en día las empresas recogen y almacenan enormes cantidades de datos. Estos datos se conservan en la mayoría de los casos para tareas de

Más detalles

NEGOCIOS A NEGOCIOS (B2B)

NEGOCIOS A NEGOCIOS (B2B) NEGOCIOS A NEGOCIOS (B2B) B2B. 2014 Explicar cada uno de los componentes del mercado de negocio a negocio (B2B). Identificar las principales características del mercado de negocios y su demanda. Pá giná

Más detalles

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Introducción La visión artificial, también conocida como visión por computador

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

El outsourcing o tercerización u operador logístico

El outsourcing o tercerización u operador logístico El outsourcing o tercerización u operador logístico Es una de la mega tendencia en los tiempos de la globalización que cada día toma mayor auge en el mundo empresarial y consiste básicamente en la contratación

Más detalles

1.2 Elaboración de Ejercicio de Planeación Estratégica, que defina:

1.2 Elaboración de Ejercicio de Planeación Estratégica, que defina: PLAN DE NEGOCIOS I. Definición Documento de análisis con información ordenada para toma de decisiones sobre llevar a la práctica una idea, iniciativa o proyecto de negocio.tiene entre sus características

Más detalles