Minería de datos (Introducción a la minería de datos)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Minería de datos (Introducción a la minería de datos)"

Transcripción

1 Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 12-O. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 21

2 Qué es la minería de datos? Qué es la minería de datos? Witten y Frank 2000 Es el proceso de extraer conocimiento útil y comprensible, desde grandes cantidades de datos almacenados en distintos formatos. Campo multidisciplinario Es un campo multidisciplinario de las ciencias de la computación puesto que puede ayudarse de los sistemas de bases de datos para el manejo de grandes volúmenes de datos, el apoyo de métodos estadísticos para el diseño de hipótesis y modelos matemáticos que con la ayuda de algunas técnicas de la inteligencia artificial, llevan a cabo la generación y refinemiento de tales modelos. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 2 / 21

3 Motivación de la minería de datos Motivación de la minería de datos Motivación Aunque existen sistemas que permiten generar resúmenes o informes ejecutivos como el procesamiento de transacciones en tiempo real (On-Line Transaction Processing OLTP) o incluso la posibilidad de analizar la información desde distintas perspectivas como el procesamiento analítico en tiempo real (On-Line Analytical Processing OLAP), tales sistemas no generan reglas, patrones o bien conocimiento que pueda ser aplicado a nuevos datos. Así, uno de los retos es manejar grandes volúmenes de datos procedentes de fuentes heterogéneas. Otro reto es aplicar la técnica adecuada sobre tales datos tal que se pueda extraer conocimiento útil. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 3 / 21

4 Diferencia entre algoritmos y heurísticas Diferencia entre algoritmos y heurísticas Algoritmo Un algoritmo es un conjunto finito de pasos bien definidos y ordenados que permiten realizar una actividad, donde dados un estado inicial y una entrada, siempre se llega a un estado final y se obtiene una solución. Una propiedad importante es que para una misma entrada se obtiene siempre la misma salida Heurística Una heurística es un conjunto de pasos para elegir o búscar posibles soluciones en el espacio de estados que son más probables para llegar a una solución aceptable del problema. Una propiedad importante es que para una misma entrada no necesariamente se obtiene la misma salida. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 4 / 21

5 Relación entre la minería de datos y la inteligencia artificial Relación entre la minería de datos y la inteligencia artificial I Inteligencia Artificial John McCarthy acuñó el término en Es la simulación de la inteligencia humana en una máquina, de tal manera que la máquina sea eficiente en el proceso de identificar y utilizar el conocimiento adecuado en un determinado paso relacionado con la solución de un problema. La inteligencia artificial estudia los métodos que permiten resolver problemas en los que no existe el conocimiento sistemático para plantear una solución analítica o dicha solución posee una alta complejidad. Tales métodos utilizan el conocimiento heurístico disponible. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 5 / 21

6 Relación entre la minería de datos y la inteligencia artificial Relación entre la minería de datos y la inteligencia artificial II Técnicas de la inteligencia artificial en minería de datos Redes neuronales. Análogo al funcionamiento físico del cerebro de animales y humanos. Algoritmos genéticos. Análogo al proceso de evolución de las cadenas de ADN. Redes bayesianas. Proponen soluciones mediante inferencia probabilística. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 6 / 21

7 Aplicaciones I Aplicaciones Ejemplo 1 Un banco desea predecir cuáles de sus nuevos clientes que solicitan un crédito tienen mayor probabilidad de devolverlo con la finalidad de reducir sus pérdidas. Para ello se desea construir un modelo a partir de la historia crediticia de sus clientes anteriores. ID Crédito Casa Cuentas Devuelve Salario Cliente solicitado propia morosas crédito si 2 no no 0 si si 1 no si 0 si no 0 no Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 7 / 21

8 Aplicaciones Aplicaciones II Una técnica de minería de datos podría generar algunas reglas, por ejemplo: Si Cuentas-morosas > 0 entonces Devuelve-crédito no Si Cuentas-morosas = 0 y [Salario > 2500 o Casa-propia= si] entonces Devuelve-crédito sí en otro caso Devuelve-crédito no Ejemplo 2 En un supermercado se desea ubicar a los productos tal que los clientes puedan ubicar en zonas cercanas los productos que generalmente compran en conjunto. Se cuenta con una tabla que contiene como campos a los productos principales y registros si el cliente i-ésimo compro o no tal producto. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 8 / 21

9 Aplicaciones III Aplicaciones Cliente Huevo Aceite Pañales Vino Leche Mante. Sodas 1 si no no si no si si 2 no si no no si no no 3 no no si no si no no 4 no si si no si no no 5 si si no no no si no 6 no no si no no no si 7 si si no no si si si Un modelo de minería de datos podría encontrar que siempre que se compran pañales igual se compra leche, lo mismo con el vino y sodas, por lo que esos productos podrían ubicarse cerca, pero pueden estar lejos del aceite, el huevo y la mantequilla, otros productos que se acostumbran comprar juntos. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 9 / 21

10 Aplicaciones IV Aplicaciones Ejemplo 3 En una tienda de electrodomésticos se desea tener el inventario suficiente y necesario para satisfacer a los clientes, pero sin generar costos extras por el almacenaje innecesario de productos, es decir se desea tener los productos sólo en el momento adecuado. Para ello se cuenta con el registro de ventas mensuales de cada producto de los últimos doce meses. Producto E12 F12 M12 A12... N12 D12 TV HD DVD Multiregion ipod Touch Estereo Sony Xplod Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 10 / 21

11 Aplicaciones V Aplicaciones Un modelo de minería de datos podría determinar que en noviembre y diciembre de cada año las ventas se incrementan. También podría encontrar que cuando comienza el año las ventas bajan, con excepción del ipod Touch, que posiblemente es causa de que es un regalo común para los jóvenes el de reyes. Del mismo modo se incrementan conforme el mes de mayo se acerca por motivo del día de las madres. Un modelo de regresión permitiría realizar un estimado adecuado de la cantidad de productos a almacenar por mes. Objetivo final de la minería de datos En general se desea que la minería de datos sea un soporte sólido para la toma de decisiones ante situaciones futuras. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 11 / 21

12 Tipos de datos I Tipos de datos Que tipos de datos sirven para realizar minería de datos? Casi cualquier tipo de información es buena dependiendo del tipo de problema a abordar. En general podemos encontrar tres clasificaciones dependiendo de cómo se encuentre almacenada la información: estructurada, semi-estructurada y no estructurada. Las bases de datos relacionales pertenecen a la categoría de datos estructurados, pues consisten de tablas que poseen relaciones bajo la existencia de un esquema asociado a ellas. Los siguientes casos entran en la categoria de bases de datos pero cuyo contenido requiere un tratamiento especial. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 12 / 21

13 Tipos de datos II Tipos de datos Con contenido espacial mantienen información relacionada a espacios físicos cuyos datos pueden ser geográficos, redes de transporte, información de tráfico, etc., donde la minería de datos podría encontrar patrones que permitan la construcción de nuevos caminos o líneas del metro. Con contenido temporal mantienen información relacionada al tiempo ya sea instantes específicos o intervalos temporales. Aquí la minería de datos podría encontrar tendencias climatológicas. De contenido documental que pueden poseer datos de los tres tipos y donde la minería de datos podría utilizarse para encontrar asociaciones entre contenidos o clasificación de objetos. Con contenido multimedia donde además de las técnicas de minería de datos se requieren algoritmos de búsqueda eficiente sobre este tipo de formatos. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 13 / 21

14 Tipos de datos III Tipos de datos La Internet es el repositorio de información mas grande donde la información prevaleciente es semi-estructurada y en la mayoría de los casos no estructurada. La minería web generalmente se utiliza para realizar: Minería del contenido la cual pretende encontrar patrones en el contenido de las páginas web. Minería de la estructura que pueden consistir en analizar páginas web cuyo contenido es semi-estructurado. Minería del uso para encontrar patrones de preferencias entre los usuarios de un sitio web y poder adecuar el sitio a sus necesidades. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 14 / 21

15 Tipos de modelos Tipos de modelos Modelos predictivos Un modelo predictivo pretende estimar valores futuros o desconocidos -variables objetivo o dependientes- en función de valores o campos conocidos -variables predictivas o independientes-. Modelos descriptivos Un modelo descriptivo sirve para identificar patrones o resúmenes que permiten explorar las propiedades de los datos examinados con la finalidad de poder describir datos futuros. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 15 / 21

16 El proceso de descubrimiento de conocimiento en bases de datos El proceso de descubrimiento de conocimiento en bases de datos I Berthold & Hand 2003 Es un proceso que realiza un análisis inteligente de los datos utilizando técnicas de análisis estadístico. Fayyad y otros 1996 Lo definen como un proceso no trivial de identificar patrones válidos, novedosos, útiles y comprensibles a partir de los datos. El proceso de descubrimiento de conocimiento en bases de datos puede seguir los siguientes pasos: Seleccionar el conjunto de datos, determinando las variables objetivo y las variables predictivas. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 16 / 21

17 El proceso de descubrimiento de conocimiento en bases de datos El proceso de descubrimiento de conocimiento en bases de datos II Análizar las propiedades de los datos, tratando de encontrar valores atípicos o determinar la ausencia de datos. Transformar el conjunto de datos de entrada, con la finalidad de prepararlos para aplicar la técnica de minería de datos adecuada. Seleccionar y aplicar la técnica de minería de datos, donde se construyen uno o más modelos. Extraer el conocimiento, donde se conciben los modelos representados a través de patrones o relaciones de asociación. Interpretar y evaluar los datos, donde se validan los modelos mediante el uso de distintas técnicas y se concibe el modelo final o se vuelve a iterar sobre estos pasos. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 17 / 21

18 Relación con otras disciplinas Relación con otras disciplinas I Las bases de datos. Uso de almacenes de datos y/o OLAP (On-Line Analytical Processing). OLAP Este tipo de procesamiento en tiempo real maneja operaciones únicamente de consulta sobre grandes cantidades de información con la finalidad de realizar informes y resúmenes toma de decisiones. Resúmenes de ventas mensuales. Consumos eléctricos por día. La espera media de los pacientes en un hospital. Productos: MS SQL Server 7.0 OLAP Services Microsoft Oracle OLAP 11g Oracle Seagate Worksheet Seagate Software. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 18 / 21

19 Relación con otras disciplinas Relación con otras disciplinas II OLTP (On-Line Transactional Processing). Consiste en realizar transacciones, actualizaciones y consultas a la base de datos con un objetivo operacional. Funcionalidad de las aplicaciones de la organización. Información del estado del sistema. Ejemplos: Agregar nuevos clientes. Cambio del sueldo de un empleado. Trámite de un pedido. La recuperación de información. Obtener información desde datos textuales. Bibliotecas digitales. Búsqueda por internet. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 19 / 21

20 Relación con otras disciplinas Relación con otras disciplinas III La estadística. Son necesarios cálculos para obtener: la media, la varianza, las distribuciones, el análisis univariante y multivariante, la regresión lineal y no lineal, la teoría del muestreo, la validación cruzada, la modelación paramétrica y no paramétrica, técnicas bayesianas. El aprendizaje automático. La máquina usa algunos ejemplos para aprender un modelo y los utiliza para resolver el problema. Los sistemas para la toma de decisión. El análisis ROC (Receiver Operating Characteristic) y los árboles de decisión. La visualización de datos. Uso de diagramas de barras, gráficas de dispersión, histogramas, coloreado de imagenes. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 20 / 21

21 Relación con otras disciplinas Relación con otras disciplinas IV La computación paralela y distribuida. Distribuir las tareas más complejas entre diferentes procesadores o nodos. Procesamiento del lenguaje natural. Es una disciplina encargada de producir sistemas informáticos que ayuden en la comunicación, por medio de la voz o del texto. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 21 / 21

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

OLAP y Minería de Datos: Introducción

OLAP y Minería de Datos: Introducción OLAP y Minería de Datos: Introducción Carlos Hurtado L. churtado@dcc.uchile.cl Departamento de Ciencias de la Computación Universidad de Chile OLAP y Minería de Datos: Introducción, DCC, U. de Chile, 2do

Más detalles

BASE DE DATOS RELACIONALES

BASE DE DATOS RELACIONALES BASE DE DATOS RELACIONALES Una base de datos relacional es una base de datos que cumple con el modelo relacional, el cual es el modelo más utilizado en la actualidad para implementar bases de datos ya

Más detalles

FACULTAD DE INGENIERÍA. Bases de Datos Avanzadas

FACULTAD DE INGENIERÍA. Bases de Datos Avanzadas FACULTAD DE INGENIERÍA Ingeniería en Computación Bases de Datos Avanzadas Datawarehouse Elaborado por: MARÍA DE LOURDES RIVAS ARZALUZ Septiembre 2015 Propósito Actualmente las empresas necesitan contar

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Minería de Datos. Universidad Politécnica de Victoria

Minería de Datos. Universidad Politécnica de Victoria Minería de Datos Universidad Politécnica de Victoria 1 Motivación Nuevas Necesidades del Análisis de Grandes Volúmenes de Datos El aumento del volumen y variedad de información que se encuentra informatizada

Más detalles

GUÍAS. Módulo de Diseño de software SABER PRO 2013-2

GUÍAS. Módulo de Diseño de software SABER PRO 2013-2 GUÍAS Módulo de Diseño de software SABER PRO 2013-2 GUÍAS Módulo de diseño en ingeniería El diseño de productos tecnológicos (artefactos, procesos, sistemas e infraestructura) está en el centro de la naturaleza

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

GUÍA DE ORIENTACIÓN. Módulo de Diseño de sistemas productivos y logísticos Saber Pro 2015-2

GUÍA DE ORIENTACIÓN. Módulo de Diseño de sistemas productivos y logísticos Saber Pro 2015-2 GUÍA DE ORIENTACIÓN Módulo de Diseño de sistemas Saber Pro 2015-2 TÉRMINOS Y CONDICIONES DE USO PARA PUBLICACIONES Y OBRAS DE PROPIEDAD DEL ICFES El Instituto Colombiano para la Evaluación de la Educación

Más detalles

A. Subcampos basados en el contenido.

A. Subcampos basados en el contenido. ARTIFICIAL INTELLIGENCE. AN ILLUSTRATIVE OVERVIEW Aaron Sloman School of Computer Science The University of Birmingham http://www.cs.bham.ac.uk/~axs/courses.ai.html Las áreas de aplicación de la Inteligencia

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios para la Gestión UNIDAD 3: APLICACIONES DE SISTEMAS Unidad 3 Aplicaciones de Sistemas Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración de la cadena de suministros. Sistemas

Más detalles

TEMA 1. Introducción

TEMA 1. Introducción TEMA 1. Introducción Francisco José Ribadas Pena, Santiago Fernández Lanza Modelos de Razonamiento y Aprendizaje 5 o Informática ribadas@uvigo.es, sflanza@uvigo.es 28 de enero de 2013 1.1 Aprendizaje automático

Más detalles

Capítulo 4 Implementación

Capítulo 4 Implementación Capítulo 4 Implementación Este capítulo describe los detalles de implementación del sistema. La sección 4.1 habla sobre las herramientas utilizadas y detalla la arquitectura para la implementación de ATEXEM.

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

- Access es un gestor de bases de datos relacionales gráfico e interactivo.

- Access es un gestor de bases de datos relacionales gráfico e interactivo. ACCESS 2007 Que es Access? - Access es un gestor de bases de datos relacionales gráfico e interactivo. - Una base de datos Access, a diferencia de otros gestores de B.D., se guarda en un único fichero

Más detalles

Tema 1: Los sistemas de información

Tema 1: Los sistemas de información Tema 1: Los sistemas de información Aritz Pérez Sistemas de Información Departamento de Lenguajes y Sistemas Informáticos UPV-EHU Bilbao, 2/Noviembre/2011 1 / 40 Introducción Definición de sistema Qué

Más detalles

DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B. Bloque 1. Contenidos comunes.

DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B. Bloque 1. Contenidos comunes. DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B Contenidos mínimos según real decreto 1631/2006 Bloque 1. Contenidos comunes. o Planificación y utilización de procesos de razonamiento y estrategias

Más detalles

Líneas de espera. Introducción.

Líneas de espera. Introducción. Líneas de espera. Introducción. En este capítulo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas

Más detalles

01 Servicios de Soporte y Mantención Sistema KnowledgePro US $ 1.500

01 Servicios de Soporte y Mantención Sistema KnowledgePro US $ 1.500 Santiago, 17 de Diciembre de 2012 KF-48/2012 Sra. Ma. Soledad Rique Biblioteca Fiscalía Nacional Económica P R E S E N T E Por intermedio de la presente, me es muy grato informar a Usted que a partir de

Más detalles

6.FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS: ADMINISTRACION DE BASES DE DATOS E INFORMACION

6.FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS: ADMINISTRACION DE BASES DE DATOS E INFORMACION 6.FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS: ADMINISTRACION DE BASES DE DATOS E INFORMACION CAJERO AUTOMATICO RESTAURANTE SUPERMERCADO YOUTUBE CINE UNIVERSIDAD BIBLIOTECA Administrador de Base de Datos

Más detalles

El Rol Estratégico de los Sistemas de Información. Aplicaciones de sistemas clave en la organización (1)

El Rol Estratégico de los Sistemas de Información. Aplicaciones de sistemas clave en la organización (1) El Rol Estratégico de los Sistemas de Información Aplicaciones de sistemas clave en la organización (1) Puesto que en una organización hay diferentes intereses, especialidades y niveles, hay diferentes

Más detalles

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Aplicación: INFERENCIA ESTADÍSTICA EJERCICIOS RESUMEN Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Página1 DESCRIP Ejercicio 1 Los siguientes son los números de cambios

Más detalles

Ambas componentes del sistema tienen costos asociados que deben de considerarse.

Ambas componentes del sistema tienen costos asociados que deben de considerarse. 1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares

Más detalles

Instituto Tecnológico de Costa Rica

Instituto Tecnológico de Costa Rica Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computación Proyecto Programado: Revisión de Utilización Médica: Aplicación Web para el control de pacientes en hospitales de Puerto Rico Práctica

Más detalles

Academia: Ingeniería Aplicada. Asignatura: Programación Web. Planificacion De Aplicaciónes Web. Profesora: Xochitl Raquel Wong Cohen Grupo: 5201

Academia: Ingeniería Aplicada. Asignatura: Programación Web. Planificacion De Aplicaciónes Web. Profesora: Xochitl Raquel Wong Cohen Grupo: 5201 Tecnológico De Estudios Superiores De Ecatepec División De Ingeniería En Sistemas Computacionales Academia: Ingeniería Aplicada Asignatura: Programación Web Integrantes: Planificacion De Aplicaciónes Web

Más detalles

Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño

Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño El proceso de diseño para una base de datos consta básicamente de 7 pasos, los cuáles se describen en la siguiente imagen.

Más detalles

ESCUELA POLITÉCNICA SUPERIOR

ESCUELA POLITÉCNICA SUPERIOR SOLICITUD DE ESTUDIANTES DE GRADO DE LA ESCUELA POLITÉCNICA SUPERIOR PARA LA REALIZACIÓN DE PRÁCTICAS EXTERNAS EXTRACURRICULARES DATOS DE LA EMPRESA: Empresa: Everis CIF: B-82387770 Domicilio Social: Av/

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos

Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos Antecedentes y Fundamentación Un Sistema de Información es un conjunto de componentes que interactúan entre sí, orientado

Más detalles

Servicio Business Intellingence integrado con Data Management & Big Data Del dato al conocimiento

Servicio Business Intellingence integrado con Data Management & Big Data Del dato al conocimiento Servicio Business Intellingence integrado con & Big Del dato al conocimiento Servicio BI integral: Business Intelligence es la habilidad para transformar los datos en información, y la información en conocimiento,

Más detalles

Sistema de digitalización, georreferenciación y gestión de expedientes de expropiación de. Universidad de Jaén

Sistema de digitalización, georreferenciación y gestión de expedientes de expropiación de. Universidad de Jaén Sistema de digitalización, georreferenciación y gestión de expedientes de expropiación de carreteras (SiDiGG-EC) Universidad de Jaén 1 2 Sistema de digitalización, georreferenciación y gestión de expedientes

Más detalles

ORDEN de 19 de julio de 2010, por la que se desarrolla el currículo correspondiente al título de Técnico en Sistemas Microinformaticos y Red.

ORDEN de 19 de julio de 2010, por la que se desarrolla el currículo correspondiente al título de Técnico en Sistemas Microinformaticos y Red. Módulo Profesional: Sistemas Operativos Monousuario. 1ºSMR. 1. INTRODUCCIÓN 1.1. Relevancia de la materia en la etapa Este módulo profesional contiene la formación necesaria para desempeñar la función

Más detalles

Propuestas de Trabajos fin de Máster

Propuestas de Trabajos fin de Máster Propuestas de Trabajos fin de Máster Máster en Ingeniería y Tecnología del Software Curso 2010/2011 Depto. de Lenguajes y Sistemas Informáticos Universidad de Sevilla Título Descripción Tutor La I+D+I

Más detalles

Materia: Inteligencia de negocios

Materia: Inteligencia de negocios Instituto Tecnológico de Durango Departamento de Sistemas y Computación Ingeniería Informática Unidad I. INTRODUCCIÓN A LA INTELIGENCIA DE NEGOCIOS 1 Información Activo más importante de los negocios actuales

Más detalles

INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL

INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL MÓDULO 3: REPRESENTACIÓN DEL CONOCIMIENTO 3.1. INTRODUCCIÓN La IA involucra la construcción de programas que resuelvan problemas que, de ser resueltos por seres

Más detalles

BASES DE DATOS TEMA 3 MODELO ENTIDAD - RELACIÓN

BASES DE DATOS TEMA 3 MODELO ENTIDAD - RELACIÓN BASES DE DATOS TEMA 3 MODELO ENTIDAD - RELACIÓN 3.3 Aplicaciones Definición de Aplicación (Application). Programa informático que permite a un usuario utilizar una computadora con un fin específico. Las

Más detalles

MICROSOFT EXCEL 2003

MICROSOFT EXCEL 2003 MICROSOFT EXCEL 2003 1. AVANZADO Nº Horas:18 Objetivos: Curso para aprender a utilizar la hoja de cálculo Microsoft Excel 2003, explicando las funciones que la aplicación posee y viendo el uso de este

Más detalles

DiplomadosOnline.com

DiplomadosOnline.com Diplomado en Míneria de Datos DiplomadosOnline.com Formando profesionales capaces de identificar y aplicar las metodologías adecuadas, para el descubrimiento de patrones ocultos en la información en apoyo

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos).

Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos). Título: Árboles de Decisión automáticos para el Pronóstico del Rendimiento Docente (aplicable al Control de Procesos). Autores: - MsC. Ing. Mario L. Basulto Núñez (ETECSA) mario.basulto@etecsa.cu - Lic.

Más detalles

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Redundancia e inconsistencia de datos: Puesto que los archivos que mantienen almacenada la información son creados por

Más detalles

Título: Sistema automatizado para la gestión de la información existente en las bases de datos en el sector de la salud.

Título: Sistema automatizado para la gestión de la información existente en las bases de datos en el sector de la salud. Título: Sistema automatizado para la gestión de la información existente en las bases de datos en el sector de la salud. Autor Principal: Ing. Héctor Curbelo Barrios (gmedia@cucalambe.ltu.sld.cu) Centro

Más detalles

Microsoft Excel 2010 (Completo)

Microsoft Excel 2010 (Completo) Microsoft Excel 2010 (Completo) Descripción: Curso para aprender a utilizar la hoja de cálculo Microsoft Excel 2010, explicando todas las funciones que la aplicación posee y viendo el uso de este programa

Más detalles

Capítulo 11. Conclusiones y trabajo futuro

Capítulo 11. Conclusiones y trabajo futuro Capítulo 11. Conclusiones y trabajo futuro En esta tesis ha realizado un entorno de desarrollo Web que proporciona herramientas para la mejora de la calidad del código de los desarrolladores. Para conseguir

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR Facultad de Ingeniería Escuela de Sistemas

PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR Facultad de Ingeniería Escuela de Sistemas 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: INTELIGENCIA ARTIFICIAL I CÓDIGO: 12652 CARRERA: NIVEL: No. CRÉDITOS: CRÉDITOS TEORÍA: CRÉDITOS PRÁCTICA: Ingeniería de Sistemas 5to. 4 créditos 2 créditos 2 créditos

Más detalles

Datos e información. Código de barra. Los datos son la mínima unidad semántica, y se corresponden con elementos primarios de información.

Datos e información. Código de barra. Los datos son la mínima unidad semántica, y se corresponden con elementos primarios de información. Datos e información Los datos son la mínima unidad semántica, y se corresponden con elementos primarios de información. Código de barra La información es el resultado de un proceso de transformación de

Más detalles

Capítulo II. Marco teórico.

Capítulo II. Marco teórico. Capítulo II. Marco teórico. El objetivo de este capítulo es dar a conocer las aplicaciones web que funcionan como administradores de información personal, así como sus ventajas y desventajas, y el uso

Más detalles

TECNOLOGÍAS DE LA INFORMACIÓN Y DE LA COMUNICACIÓN

TECNOLOGÍAS DE LA INFORMACIÓN Y DE LA COMUNICACIÓN TECNOLOGÍAS DE LA INFORMACIÓN Y DE LA COMUNICACIÓN INTRODUCCIÓN Durante las últimas décadas se ha producido en la sociedad un profundo proceso de transformación caracterizado por la presencia de las Tecnologías

Más detalles

ANEXO 2-A. Contenido del plan de estudios página 01 Anexo 2-A. 1. MATERIAS TRONCALES Asignaturas en las que la,

ANEXO 2-A. Contenido del plan de estudios página 01 Anexo 2-A. 1. MATERIAS TRONCALES Asignaturas en las que la, ANEXO 2-A. Contenido del plan de estudios página 0 Anexo 2-A Ciclo Curso () Cuatrimestre Denominación (2). MATERIAS TRONCALES Asignaturas en las que la, Universidad, en su caso, Créditos anuales (4) organiza/diversifica

Más detalles

4 Teoría de diseño de Experimentos

4 Teoría de diseño de Experimentos 4 Teoría de diseño de Experimentos 4.1 Introducción En los capítulos anteriores se habló de PLC y de ruido, debido a la inquietud por saber si en una instalación eléctrica casera que cuente con el servicio

Más detalles

PROGRAMA DESCRIPTIVO DE LAS ASIGNATURAS DE LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Nivel Básico

PROGRAMA DESCRIPTIVO DE LAS ASIGNATURAS DE LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Nivel Básico PROGRAMA DESCRIPTIVO DE LAS ASIGNATURAS DE LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN Nivel Básico FORMACIÓN HUMANA Y SOCIAL (FGUM-001) En este curso, se fortalece la formación integral y pertinente

Más detalles

Población, Unidad de Análisis, Criterios de Inclusión y Exclusión.

Población, Unidad de Análisis, Criterios de Inclusión y Exclusión. Población Población, Unidad de Análisis, Criterios de Inclusión y Exclusión. Muestra: Identificación y Reclutamiento. Nomenclatura En esta aproximación conceptual consideraremos a Población como sinónimo

Más detalles

Predicción de los ciclos de El Niño

Predicción de los ciclos de El Niño Predicción de los ciclos de El Niño Israel Cendrero Sánchez I.T.T.Telemática Universidad Carlos III de Madrid Leganes,Madrid,España 100055713@alumnos.uc3m.es Beatriz López Moreno I.T.T.Telemática Universidad

Más detalles

LICENCIATURA EN INFORMÁTICA

LICENCIATURA EN INFORMÁTICA LICENCIATURA EN INFORMÁTICA Asignatura Taller de Investigación I Objetivo El estudiante desarrollará un protocolo de investigación, definiendo un tema específico, en el área de su formación profesional

Más detalles

Partes, módulos y aplicaciones de un Controlador de Procesos

Partes, módulos y aplicaciones de un Controlador de Procesos Partes, módulos y aplicaciones de un Controlador de Procesos Conceptos PLC Un controlador lógico programable es un sistema que originalmente fue desarrollado para la industria de manufactura, en particular

Más detalles

Capítulo 4. Diseño de un sistema para reconocimiento y consulta de las tarjetas Hu

Capítulo 4. Diseño de un sistema para reconocimiento y consulta de las tarjetas Hu Capítulo 4. Diseño de un sistema para reconocimiento y consulta de las tarjetas Hu En este capítulo se describe el diseño de un sistema, denominado HuSystem, planteado para cumplir dos objetivos: Búsqueda

Más detalles

MICROSOFT EXCEL 2007

MICROSOFT EXCEL 2007 MICROSOFT EXCEL 2007 1. AVANZADO Nº Horas:24 Objetivos: Descripción de funciones avanzadas de la hoja de cálculo Microsoft Excel 2007, viendo el uso de fórmulas, funciones y gráficos en los libros de Excel.

Más detalles

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica.

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica. Las variables de un estudio. La variable es determinada característica o propiedad del objeto de estudio, a la cual se observa y/o cuantifica en la investigación y que puede variar de un elemento a otro

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Bachillerato a Distancia Programa de Informática

Bachillerato a Distancia Programa de Informática Programa de Informática Material elaborado por la UNAM para la Secretaría de Educación del Gobierno del Distrito Federal Asignatura: Informática Plan: Créditos: 10 Bachillerato: Módulo 4 Tiempo de dedicación

Más detalles

Actividades Complementarias.

Actividades Complementarias. 4.1. Balanceo de Líneas. Unidad IV Monitoreo y Control de Operaciones El análisis de las líneas de producción es el foco central del análisis de disposiciones físicas por productos. El diseño del producto

Más detalles

Contenidos, criterios de evaluación y mínimos TECNOLOGÍAS 2º ESO

Contenidos, criterios de evaluación y mínimos TECNOLOGÍAS 2º ESO Contenidos, criterios de evaluación y mínimos TECNOLOGÍAS 2º ESO CONTENIDOS CRITERIOS DE EVALUACIÓN MÍNIMOS Bloque 1. Contenidos comunes a todos los bloques. Familiarización con las características básicas

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

SISTEMA DE PREDICCIÓN DE VENTAS PARA LA PROGRAMACIÓN DE OPERACIONES EN EMPRESAS PROVEEDORAS DE PRODUCTOS QUÍMICOS

SISTEMA DE PREDICCIÓN DE VENTAS PARA LA PROGRAMACIÓN DE OPERACIONES EN EMPRESAS PROVEEDORAS DE PRODUCTOS QUÍMICOS SISTEMA DE PREDICCIÓN DE VENTAS PARA LA PROGRAMACIÓN DE OPERACIONES EN EMPRESAS PROVEEDORAS DE PRODUCTOS QUÍMICOS Área de investigación: Operaciones Ma. del Rocío Castillo Estrada Universidad Nacional

Más detalles

BÁSICAS INGENIERÍA EN COMPUTACIÓN INTELIGENTE

BÁSICAS INGENIERÍA EN COMPUTACIÓN INTELIGENTE OBJETIVO: Formar profesionales en el área de las Ciencias de la Computación con un alto sentido de responsabilidad social y humanista; con conocimientos sólidos de los fundamentos matemáticos y teóricos

Más detalles

Introducción a las tablas dinámicas

Introducción a las tablas dinámicas Introducción a las tablas dinámicas Cuando tenemos una gran cantidad de datos en una planilla de cálculo, puede resultar difícil analizar toda la información. En estos casos, usaremos las tablas dinámicas,

Más detalles

TALLERES DE SOCIALIZACIÓN 2012

TALLERES DE SOCIALIZACIÓN 2012 Contenido TALLERES DE SOCIALIZACIÓN 2012 Presentación Qué evalúa PISA? Prueba de alfabetización matemática Dimensiones de la evaluación Prueba de lectura Prueba de ciencias Prueba de solución de problemas

Más detalles

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual Introducción Algunas de las personas que trabajan con SGBD relacionales parecen preguntarse porqué deberían preocuparse del diseño de las bases de datos que utilizan. Después de todo, la mayoría de los

Más detalles

ENSEÑANZAS DE GRADO EN INGENIERÍA INFORMÁTICA

ENSEÑANZAS DE GRADO EN INGENIERÍA INFORMÁTICA FICHA TÉCNICA DE PROPUESTA DE TÍTULO UNIVERSITARIO DE GRADO SEGÚN RD 55/2005, de 21 de enero ENSEÑANZAS DE GRADO EN INGENIERÍA INFORMÁTICA Denominación del Título: Ingeniero/a en Informática NÚMERO DE

Más detalles

EUSTAT COMO FUENTE DE INFORMACIÓN. Javier Zurikarai

EUSTAT COMO FUENTE DE INFORMACIÓN. Javier Zurikarai EUSTAT COMO FUENTE DE INFORMACIÓN Javier Zurikarai EUSKAL ESTATISTIKA ERAKUNDEA INSTITUTO VASCO DE ESTADISTICA Donostia-San Sebastián, 1 01010 VITORIA-GASTEIZ Tel.: 945 01 75 00 Fax.: 945 01 75 01 E-mail:

Más detalles

Área de Ciencias Naturales

Área de Ciencias Naturales Módulo 1. La simulación de roles científicos utilizando Internet como fuente de información Propuesta didáctica 1 Colección fotográfica de minerales Programación Utilizar las tecnologías para la comunicación

Más detalles

Servicios. Bibliotecas y/o repositorios digitales. Tecnología RFID aplicada a bibliotecas.

Servicios. Bibliotecas y/o repositorios digitales. Tecnología RFID aplicada a bibliotecas. Innovación y Tecnologías Documentales 102 NovaDoc ofrece toda una serie de servicios acordes con las nuevas exigencias de los centros de documentación, archivos históricos, archivos municipales, bibliotecas...

Más detalles

TEMA 3: EN QUÉ CONSISTE?

TEMA 3: EN QUÉ CONSISTE? Módulo 7 Sesión 3 5/16 TEMA 3: EN QUÉ CONSISTE? La metodología seguida para aplicar correctamente la técnica de RGT se basa en cuatro fases (Figura 1). En la primera de ellas, se seleccionan los elementos

Más detalles

Ambiente Virtual de Comercio Electrónico B2B para la Comunidad Virtual de Negocios del departamento del Cauca

Ambiente Virtual de Comercio Electrónico B2B para la Comunidad Virtual de Negocios del departamento del Cauca Ambiente Virtual de Comercio Electrónico B2B para la Comunidad Virtual de Negocios del departamento del Cauca Ing. WILSON ALFREDO ORTEGA ORDOÑEZ Ing. JUAN CARLOS MENDEZ CAMACHO Universidad del Cauca Facultad

Más detalles

Índice PROCEDIMIENTO GENERAL RAZÓN SOCIAL DE LA EMPRESA. Sistema de evaluación del desempeño. Código PG-29 Edición 0

Índice PROCEDIMIENTO GENERAL RAZÓN SOCIAL DE LA EMPRESA. Sistema de evaluación del desempeño. Código PG-29 Edición 0 Índice 1. TABLA RESUMEN... 2 2. OBJETO... 2 3. RESPONSABILIDADES... 2 4. RESPONSABILIDADES... 3 5. ENTRADAS... 3 6. SALIDAS... 3 7. PROCESOS RELACIONADOS... 3 8. DIAGRAMA DE FLUJO... 4 9. DESARROLLO...

Más detalles

BSC IN INGENIERÍA EN SISTEMAS Y TECNOLOGÍA DE INFORMACIÓN

BSC IN INGENIERÍA EN SISTEMAS Y TECNOLOGÍA DE INFORMACIÓN MAT1024 Matemáticas iniciales Nivel : Anáhuac Este curso cubre el estudio fundamental de conceptos algebraicos y trigonométricos para resolver problemas teóricos, y la importancia de las matemáticas en

Más detalles

ANALISIS MULTIVARIANTE

ANALISIS MULTIVARIANTE ANALISIS MULTIVARIANTE Es un conjunto de técnicas que se utilizan cuando se trabaja sobre colecciones de datos en las cuáles hay muchas variables implicadas. Los principales problemas, en este contexto,

Más detalles

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata v.1.0 Clase 5 Docente: Gustavo Valencia Zapata Temas Clase 5: Conceptos de Minería de Datos Herramientas de DM Referencias Minería de datos Proceso de DM www.gustavovalencia.com Minería de datos La minería

Más detalles

CAPITULO I GENERALIDADES

CAPITULO I GENERALIDADES CAPITULO I GENERALIDADES 1.1 INTRODUCCIÓN Actualmente muchas empresas de mediano alcance se están preparando para la era de la globalización, preparándose no solo económicamente sino en la mejora de procesos.

Más detalles

CAPITULO III 3. MARCO METODOLÓGICO 3.1. ENFOQUE DE LA INVESTIGACIÓN

CAPITULO III 3. MARCO METODOLÓGICO 3.1. ENFOQUE DE LA INVESTIGACIÓN CAPITULO III 3. MARCO METODOLÓGICO 3.1. ENFOQUE DE LA INVESTIGACIÓN El enfoque de la investigación será mixto, cualitativo y cuantitativo: Cuantitativo porque consiste en utilizar la recolección y el análisis

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 2 - Juan Alfonso Lara Torralbo 1 Índice de contenidos (I) Introducción a Data Mining Actividad. Tipos

Más detalles

1. Análisis espacial

1. Análisis espacial 1. Análisis espacial Todos los elementos que rodean a los hombres, ya sean de carácter físico o humano, generan en él una serie de interrogantes acerca de la existencia de los mismos, su composición, su

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN

TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Desarrollo de habilidades del pensamiento

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Postgrado en SQL Server 2008. Experto en Creación y Administración Profesional de

Postgrado en SQL Server 2008. Experto en Creación y Administración Profesional de Postgrado en SQL Server 2008. Experto en Creación y Administración Profesional de Base de TITULACIÓN DE FORMACIÓN CONTINUA BONIFICADA EXPEDIDA POR EL INSTITUTO EUROPEO DE ESTUDIOS EMPRESARIALES Postgrado

Más detalles

PLAN DE LAS TECNOLOGÍAS DE LA INFORMACIÓN Y LA COMUNICACIÓN CEIP PEDRO BRIMONIS

PLAN DE LAS TECNOLOGÍAS DE LA INFORMACIÓN Y LA COMUNICACIÓN CEIP PEDRO BRIMONIS PLAN DE LAS TECNOLOGÍAS DE LA INFORMACIÓN Y LA COMUNICACIÓN CEIP PEDRO BRIMONIS 1. Introducción. Actualmente, la mayoría de los gobiernos y de los educadores reconocen que la utilización de las TIC en

Más detalles

5.3.2.8 FICHA DE LA MATERIA INGENIERÍA DEL SOFTWARE, SISTEMAS DE INFORMACIÓN Y SISTEMAS INTELIGENTES

5.3.2.8 FICHA DE LA MATERIA INGENIERÍA DEL SOFTWARE, SISTEMAS DE INFORMACIÓN Y SISTEMAS INTELIGENTES 5.3.2.8 FICHA DE LA MATERIA INGENIERÍA DEL SOFTWARE, SISTEMAS DE INFORMACIÓN Y SISTEMAS INTELIGENTES DENOMINACIÓN DE LA MATERIA INGENIERÍA DEL SOFTWARE, SISTEMAS DE INFORMACIÓN Y SISTEMAS INTELIGENTES

Más detalles

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 1 1 BASES DE DATOS DISTRIBUIDAS TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 3.1 Metodología del procesamiento de consultas distribuidas 3.2 Estrategias de

Más detalles

PLANTEAR TRABAJOS ESCRITOS EN LA EDUCACIÓN PRIMARIA

PLANTEAR TRABAJOS ESCRITOS EN LA EDUCACIÓN PRIMARIA PLANTEAR TRABAJOS ESCRITOS EN LA EDUCACIÓN PRIMARIA AUTORÍA AURORA MINGORANCE MULEY TEMÁTICA METODOLOGÍA ETAPA E.P. Resumen Este artículo pretende enseñar una forma de plantear trabajos para que los alumnos

Más detalles

Funciones CONJUNTO EXCEL 2013 AVANZADO

Funciones CONJUNTO EXCEL 2013 AVANZADO EXCEL 2013 AVANZADO Esta función contará la cantidad de celdas que contengan palabras de cuatro letras y que terminen con la A. El asterisco cumple una función similar, pero la diferencia radica en que

Más detalles

Capítulo 2 Tecnología data warehouse

Capítulo 2 Tecnología data warehouse Capítulo 2 Tecnología data warehouse El objetivo de éste capítulo es mostrar la tecnología data warehouse (DW) como una herramienta para analizar la información. Este capítulo se encuentra organizado de

Más detalles

UML, ejemplo sencillo sobre Modelado de un Proyecto

UML, ejemplo sencillo sobre Modelado de un Proyecto UML, ejemplo sencillo sobre Modelado de un Proyecto Normal &DOLILFDU 0L3DQRUDPD 626 (VFULEHSDUD1RVRWURV Por Armando Canchala Contenido Introducción Objetivo Requerimientos Casos de Uso Subcasos de Uso

Más detalles

INSTRUMENTACIÓN ELECTRÓNICA II

INSTRUMENTACIÓN ELECTRÓNICA II ASIGNATURA DE GRADO: INSTRUMENTACIÓN ELECTRÓNICA II Curso 2014/2015 (Código:68024058) 1.PRESENTACIÓN DE LA ASIGNATURA Esta asignatura optativa está contemplada como una ampliación de los contenidos de

Más detalles

MICROSOFT ACCESS 2003

MICROSOFT ACCESS 2003 MICROSOFT ACCESS 2003 1. AVANZADO Nº Horas: 18 Objetivos: Curso en el que se estudian los tipos de objetos consulta, formulario e informe: cuál es su papel, cuándo se utilizan, etc. Se detalla el diseño

Más detalles

GLOSARIO DE TÉRMINOS

GLOSARIO DE TÉRMINOS MINISTERIO DE EDUCACIÓN, CULTURA Y DEPORTE SECRETARÍA DE ESTADO DE EDUCACIÓN Y FORMACIÓN PROFESIONAL DIRECCIÓN GENERAL DE FORMACIÓN PROFESIONAL INSTITUTO NACIONAL DE LAS CUALIFICACIONES GLOSARIO DE TÉRMINOS

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. HOJAS DE COMPROBACIOÓN Y HOJAS DE RECOGIDA DE DATOS 1.- INTRODUCCIÓN En este documento se describe el proceso de obtención de información a partir de la recogida y análisis de datos, desde el establecimiento

Más detalles