Líneas de espera. Introducción.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Líneas de espera. Introducción."

Transcripción

1 Líneas de espera. Introducción. En este capítulo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares o de sistemas de colas. Los modelos sirven para encontrar el comportamiento de estado estable, como la longitud promedio de la línea y el tiempo de espera promedio para un sistema dado. El problema es determinar que capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que el cliente no llega a un horario fijo, es decir, no se sabe con exactitud en que momento llegarán los clientes. También el tiempo de servicio no tiene un horario fijo.

2 Definiciones, características y Terminología. Definición. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares o sistemas de colas. Los modelos sirven para encontrar el comportamiento de estado estable, como la longitud promedio de la línea y el tiempo de espera promedio para un sistema dado. Esta información, junto con los costos pertinentes, se usa, entonces, para determinar la capacidad de servicio apropiada. Costos de los sistemas de colas. Un sistema de colas puede dividirse en sus dos componentes de mayor importancia, la cola y la instalación de servicio. Las llegadas son las unidades que entran en el sistema para recibir el servicio. Siempre se unen primero a la cola ; si no hay línea de espera se dice que la cola esta vacía. De la cola, las llegadas van a la instalación de servicio de acuerdo con la disciplina de la cola, es decir, de acuerdo con la regla para decidir cuál de las llegadas se sirve después. El primero en llegar primero en ser servido es una regla común, pero podría servir con prioridades o siguiendo alguna otra regla. Una vez que se completa el servicio, las llegadas se convierten en salidas. Ambas componentes del sistema tienen costos asociados que deben de considerarse. Costo de Espera. Esperar significa desperdicio de algún recurso activo que bien se puede aprovechar en otra cosa y esta dado por : Costo total de espera = C w L Donde C w = costo de espera por hora (en dólares) por llegada por unidad de tiempo y L= longitud promedio de la línea. Costo de Servicio. Este en la mayoría se trata de comprar varias instalaciones de servicio, en estos casos solo se ocupan los costos comparativos o diferenciales.

3 Sistema de costo mínimo. Aquí hay que tomar en cuenta que para tasas bajas de servicio, se experimenta largas colas y costos de espera muy altos. Conforme aumenta el servicio disminuyen los costos de espera, pero aumenta el costo de servicio y el costo total disminuye, sin embargo, finalmente se llega a un punto de disminución en el rendimiento. Entonces el propósito es encontrar el balance adecuado para que el costo total sea el mínimo. Estructuras típicas. Las llegadas pueden ser personas, cartas, carros, incendios, ensambles intermedios en una fabrica, etc. En la siguiente tabla se muestran algunos ejemplos de varios sistemas de colas.

4 Ejemplos de sistemas de colas Situación Llegadas Cola Mecanismo de Servicio Aeropuerto Aviones Aviones en carreteo Pista Aeropuerto Pasajeros Sala de espera Avión Depto bomberos Compañía telefónica de Alarmas incendio Números marcados de Incendios Depto. De Bomberos. Llamadas Conmutador Lavado de carros Autos Autos sucios Mecanismo de lavado La corte Casos Casos atrasados Juez Panadería Clientes Clientes con números Carga camiones de Camiones Camiones en espera Vendedor Muelle de carga Oficina de correos Cartas Buzón Empleados por correos Crucero Autos Autos en línea Crucero Fábrica Subensamble Inventario en proceso Cartas de negocios Notas de dictado Cartas para mecanografiar Estación trabajo. Secretaria Reproducción Pedidos Trabajos Copiadoras Hospital Pacientes Personas enfermas Hospital Permitiendo que varíen el número de colas y el número de servidores, pueden hacerse los diagramas de los cuatro tipos de sistemas de la siguiente figura. Cada línea de espera individual y cada servidor individual se muestra por separado. de

5 El primer sistema que se muestra en la figura, se llama un sistema de un servidor y una cola o puede describir un lavado de carros automático o un muelle de descarga de un solo lugar. El segundo, una línea con múltiples servidores, es típico de una peluquería o una panadería en donde los clientes toman un número al entrar y se les sirve cuando llega el turno. El tercer sistema, aquél en que cada servidor tiene una línea de separada, es característico de los bancos y las tiendas de autoservicio. El cuarto sistema, es una línea con servidores en serie, puede describir una fábrica.

6 Modelo de un servidor y una cola. Este modelo puede aplicarse a personas esperando en una cola para comprar boletos para el cine, a mecánicos que esperan obtener herramientas de un expendio o a trabajos de computadora que esperan tiempo de procesador. Llegadas. Consiste en la entrada al sistema que se supone es aleatoria. No tienen horario, es impredicible en que momento llegarán. El modelo también supone que las llegadas vienen de una población infinita y llegan una a la vez. Cola. En este modelo se considera que el tamaño de la cola es infinito. La disciplina de la cola es primero en llegar, primero en ser servido sin prioridades especiales. También se supone que las llegadas no pueden cambiar lugares en la línea (cola) o dejar la cola antes de ser servidas. Instalación de Servicio. Se supone que un solo servidor proporciona el servicio que varía aleatoriamente. Salidas. No se permite que las unidades que salgan entren inmediatamente al servicio. Características de operación. Un servidor y una cola. Llegada Poisson. Cola infinita, primero en llegar primero en ser servido. Tiempos de servicio exponenciales. Cola : Longitud promedio de la línea : Tiempo de espera promedio : Sistema: Longitud promedio de la línea : Tiempo de espera promedio : Utilización de la instalación :

7 Probabilidad de que la línea exceda a n : A = tasa promedio de llegada. S = tasa promedio de servicio. Ejemplo : (Un supermercado ) Supóngase un supermercado grande con muchas cajas de salida, en donde los clientes llegan para que les marquen su cuenta con una tasa de 90 por hora y que hay 10 cajas en operación. Si hay poco intercambio entre las lìneas, puede tratarse este problema como 10 sistemas separados de una sola lìnea, cada uno con una llegada de 9 clientes por hora. Para una tasa de servicio de 12 por hora : Dados A = 9 clientes por hora S = 12 clientes por hora Entonces : = 2.25 Clientes = 0.25 horas o 15 minutos. = 3 clientes. = 0.33 horas o 20 minutos. = 0.75 o 75% 0.32 Entonces, para este ejemplo, el cliente promedio espera 15 minutos antes de ser servido. En promedio, hay un poco más de dos clientes en la línea o tres en el sistema. El proceso completo lleva un promedio de 20 minutos. La caja está ocupada el 75 % del tiempo. Y finalmente, el 32 % del tiempo habrá cuatro personas o más en el sistema ( o tres o más esperando en la cola).

8 Evaluación del sistema cuando se conoce el costo de espera. Los costos de servicio influyen en el método para encontrar el sistema de menor costo. Si el costo de servicio es un función lineal de la tasa de servicio, puede encontrarse una solución general para la tasa óptima. Para aplicar una solución general, se necesita una tasa de servicio que pueda variar de manera continua. Cuando los costos de servicio cambian en forma escalonada, se usa la técnica de prueba y error para encontrar el sistema de menor costo. Se calcula el costo total para una tasa de servicio, después para la siguiente y así sucesivamente. Esto continúa hasta que se encuentra un límite inferior o un mínimo tal, que el aumentar o el disminuir las tasas de servicio da costos totales más altos. Ejemplo: Se esta estudiando un muelle de carga y descarga de camiones para aprender cómo debe formarse una brigada. El muelle tiene espacio sólo para un camión, así es un sistema de un servidor. Pero el tiempo de carga o descarga puede reducirse aumentando el tamaño de la brigada. Supóngase que puede aplicarse el modelo de un servidor y una cola ( llegadas Poisson, tiempos de servicio exponenciales) y que la tasa promedio de servicio es un camión por hora para un cargador. Los cargadores adicionales aumentan la tasa de servicio proporcionalmente. Además, supóngase que los camiones llegan con una tasa de dos por hora en promedio y que el costo de espera es de $ 20 por hora por un camión. Si se le paga $ 5 por hora a cada miembro de la brigada, Cuál es el mejor tamaño de esta? Datos : A = 2 camiones por hora. S = 1 camión por persona. C w = costo de espera = $20 por hora por camión. C S = costo de servicio = $ 5 por hora por persona. Ahora sea k = número de personas en la brigada. Se busca k tal que la suma de los costos de espera y servicio se minimicen : Costo total = C w L S + k C S Las pruebas deben de empezar con tres miembros de la brigada, ya que uno o dos no podrían compensar la tasa de llegadas de dos camiones por hora. Para

9 una brigada de tres, la tasa de servicio es de tres camiones por hora y puede encontrarse L s con la siguiente ecuación : De la misma manera, para una brigada de cuatro : El costo es menor, por tanto se sigue adelante. Para una brigada de cinco : Este todavía es menor : Como este costo es mayor que el de la brigada de cinco, se rebasó el límite inferior de la curva de costo; el tamaño óptimo de la brigada es cinco personas.

10 Evaluación del sistema con costos de espera desconocidos. En lugar de estimar el costo de espera, el administrador puede especificar un promedio mínimo de tiempo de espera o de longitud de línea. Esto establece un límite superior para W q, el tiempo de espera en la cola ( o para L q, la longitud de línea en la cola). Con este límite superior puede encontrarse la tasa de servicio necesaria para cualquiera tasa de llegadas dadas. Ejemplo : Considérese un restaurante de comida rápida con un menú limitado. El restaurante se está diseñando para que todos los clientes se unan a una sola línea para ser servidos. Una persona tomará la orden y la servirá. Con sus limitaciones, la tasa de servicio puede aumentarse agregando más personal para preparar la comida y servir las ordenes. Esto constituye un sistema de un servidor y una cola. Si las llegadas y salidas son aleatorias, puede aplicarse el modelo de una cola. Supóngase que la administración quiere que el cliente promedio no espere más de dos minutos antes de que se tome su orden. Esto se expresa como : W q = 2 minutos Supóngase también que la tasa máxima de llegadas es de 30 órdenes por hora. Rearreglando términos, Como la tasa de servicio debe ser mayor que la tasa de llegadas, puede descartarse la solución negativa. Entonces : Para este ejemplo, se supuso : A = 30 ordenes por hora. W q = 2 minutos o horas Entonces :

11 = = 48.5 órdenes por hora. Para cumplir los requerimientos, se necesita una tasa de casi 50 órdenes por hora. Si, por ejemplo, una brigada de cinco pueden manejar 45 órdenes por hora y una de seis puede procesar 50 por hora, entonces sería necesario tener la brigada de seis.

12 Modelo de un servidor con tiempos de servicio constantes. Este modelo es igual que el anterior, excepto que se supone que el tiempo de servicio es exactamente el mismo en cada llegada en lugar de ser aleatorio. Todavía se tiene una sola línea, tamaño de la cola infinito, disciplina de la cola como primero en llegar primero en ser servido y llegadas Poisson. Las aplicaciones típicas de este modelo pueden incluir un autolavado automático, una estación de trabajo en una pequeña fábrica o una estación de diagnóstico de mantenimiento preventivo. En general, el servicio lo proporciona una máquina. Las características de operación están dadas por 4 : En donde A = tasa promedio de llegadas (llegadas por unidad de tiempo) y S = tasa constante de servicio (llegadas por unidad de tiempo). Ejemplo: Supóngase un lavado automático de autos con una línea de remolque, de manera que los autos se mueven a través de la instalación de lavado como en una línea de ensamble. Una instalación de este tipo tiene dos tiempos de servicio diferentes : el tiempo entre autos y el tiempo para completar un auto. Desde el punto de vista de teoría de colas, el tiempo entre autos establece el tiempo de servicio del sistema. Un auto cada cinco minutos da una tasa de 12 autos por hora. Sin embargo, el tiempo para procesar un auto es el tiempo que se debe esperar para entregar un auto limpio. La teoría de colas no considera este tiempo.

13 Supóngase que el lavado de autos puede aceptar un auto cada cinco minutos y que la tasa promedio de llegadas es de nueve autos por hora ( con distribución Poisson). Sustituyendo :

14 Modelo con servidores múltiples. Supóngase que las llegadas son Poisson, los tiempos de servicio son exponenciales, hay una sola línea, varios servidores y una cola infinita que opera con la disciplina de primero en llegar primero en ser servido. Las ecuaciones para las características de operación se vuelven un poco más complicadas. Sea : N = número de servidores. A = tasa promedio de llegadas (llegadas por unidad de tiempo). S = tasa promedio de servicio por cada servidor (llegadas por unidad de tiempo). Entonces : La cantidad P 0 es la probabilidad de que no haya llegadas en una unidad de tiempo, lo cual no lo hace más fácil de calcular. Para dos o tres servidores pueden combinarse y simplificar las dos ecuaciones para obtener, para N=2

15 Nótese que para N = 1 este modelo se reduce al modelo de un servidor. Ejemplo: Considérese la biblioteca de una universidad cuyo personal está tratando de decidir cuántas copiadoras debe de instalar para uso de los estudiantes. Se ha escogido un equipo particular que puede hacer hasta 10 copias por minuto. No se sabe cuál es el costo de espera para un estudiante, pero se piensa que no deben tener que esperar más de ods minutos en promedio. Si el número promedio de copias que se hacen por ususario es cinco, cuántas copiadoras se deben instalar?. Se usa prueba y error para resolver este tipo de problemas, no se encuentra una solución general como se hizo para el modelo de un servidor. Se tratará primero con dos copiadoras, después con tres, y así hasta que se satisfaga el criterio del tiempo de espera. Cuál es la tasa de servicio? Si el número promedio de copias es cinco y la copiadora puede hacer hasta 10 copias por minuto, entonces pueden servirse en promedio hasta dos estudiantes por minuto. Pero, en esto no se toma en cuenta el tiempo para insertar la moneda, cambiar originales, para que un estudiante desocupe y otro comience a copiar. Supóngase que se permite un 70 % del tiempo para estas actividades. Entonces la tasa de servicio neta baja a 0.6 estudiantes por minuto. Además se supone que los periodos pico de copiado tienen una tasa de llegada de 60 estudiantes por hora, o 1 por minuto. Se comenzará con dos copiadoras, ya que una no sería suficiente. A = 1 por minuto. S = 0.6 por minuto. N = 2

16 Esto excede el criterio del máximo de 2 minutos de espera para el estudiante promedio. Se tratarán tres copiadoras. Se necesitan tres copiadoras. La utilización de cada una será :

Ambas componentes del sistema tienen costos asociados que deben de considerarse.

Ambas componentes del sistema tienen costos asociados que deben de considerarse. 1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares

Más detalles

Unidad V: Líneas de Espera

Unidad V: Líneas de Espera Unidad V: Líneas de Espera 5.1 Definiciones, características y suposiciones El problema es determinar que capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que el cliente

Más detalles

V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas

V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE INVESTIGACIÓN DE OPERACIONES II INGENIERIA INDUSTRIAL E INGENIERIA DE SISTEMAS V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas Maestro

Más detalles

Teoría de Líneas de Espera

Teoría de Líneas de Espera Teoría de Colas Teoría de Líneas de Espera COLAS: Líneas de espera que utiliza modelos matemáticos que describen sistemas de líneas particulares o Sistemas de Colas. Modelos presentan las siguientes características:

Más detalles

TOMA DE DECISIONES II

TOMA DE DECISIONES II TOMA DE DECISIONES II SESIÓN 12 TEORÍA DE COLAS LA TEORÍA DE COLAS La Teoría de Colas es un formulación matemática para la optimización de sistemas en que interactúan dos procesos normalmente aleatorios:

Más detalles

Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay

Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Procesos Estocásticos de Tiempo Contínuo Práctico Ejercicio 1 Sean X e Y variables

Más detalles

TEORIA DE COLAS SIMULACIÓN DE SISTEMAS

TEORIA DE COLAS SIMULACIÓN DE SISTEMAS SIMULACIÓN DE SISTEMAS UNIVERSIDAD ALAS PERUANAS FILIAL- ICA Ing. Las LINEAS DE ESPERA, FILAS DE ESPERA o COLAS, son realidades cotidianas: Personas esperando para una caja en un banco, Estudiantes esperando

Más detalles

TEORIA DE COLAS, FENOMENOS DE ESPERA

TEORIA DE COLAS, FENOMENOS DE ESPERA Universidad del Bío-Bío Facultad de Ingeniería Depto. Ingeniería Industrial Investigación de Operaciones II: TEORIA DE COLAS, FENOMENOS DE ESPERA Integrantes: Pedro Chávez Cristian Guajardo Victor Pino

Más detalles

DIRECCIÓN DE OPERACIONES Y TOMA DE DECISIONES INGENIERÍA INDUSTRIAL CICLO DE PROFESIONALIZACIÓN

DIRECCIÓN DE OPERACIONES Y TOMA DE DECISIONES INGENIERÍA INDUSTRIAL CICLO DE PROFESIONALIZACIÓN TEORIA DE COLAS: Líneas de Espera Claro Ana Milena, Cardona Luz Dary, Ruiz Lina María, Gómez Juan Fernando, Estudiantes Ingeniería Industrial Universidad Católica de Oriente. Mayo 21 de 2011. Resumen:

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías Teoría a de Colas o Filas de Espera M. En C. Eduardo Bustos Farías as Introducción Una línea de espera es la resultante de un sistema cuando la demanda por un bien o servicio supera la capacidad que puede

Más detalles

Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística

Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística Teoría de Colas Ernesto Ponsot Balaguer Universidad de Los Andes Escuela de Estadística El Objetivo La teoría de colas o líneas de espera, procura el estudio riguroso del fenómeno (muy común en estos tiempos)

Más detalles

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México LECTURA 7.1 SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Hipoteca de tasa fija

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Formulación de Modelos de Programacón Lineal 25 de julio de 2003 La (LP es una herramienta para resolver problemas de optimización

Más detalles

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas).

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). Teoría de Colas TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). IO 07/08 - Teoría de Colas 1 Teoría de Colas: ejemplos

Más detalles

INTRODUCCIÓN A LAS FINANZAS (Informática)

INTRODUCCIÓN A LAS FINANZAS (Informática) INTRODUCCIÓN A LAS FINANZAS (Informática) SEGUNDO SEMESTRE 2011 Apunte N 2 Objetivos de la unidad Al finalizar la Unidad Nº2, debe ser capaz de: Entender el concepto de costo de oportunidad del dinero,

Más detalles

Actividades Complementarias.

Actividades Complementarias. 4.1. Balanceo de Líneas. Unidad IV Monitoreo y Control de Operaciones El análisis de las líneas de producción es el foco central del análisis de disposiciones físicas por productos. El diseño del producto

Más detalles

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A.. Suponga que en una estación con un solo servidor

Más detalles

Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema Tema 11 Conceptos básicos de Teoría de Colas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar en qué consiste la Teoría de Colas. D.R. Universidad TecMilenio 1 Introducción

Más detalles

Contabilidad de costos

Contabilidad de costos Contabilidad de costos CAPITULO 6 CONCEPTO Y OBJETIVOS. En la actualidad, desde el punto de vista de la gerencia, una buena administración no puede prescindir de la aplicación de un sistema de costos adecuado

Más detalles

Unidad 2: Gestión de Procesos

Unidad 2: Gestión de Procesos Unidad 2: Gestión de Procesos Tema 5: Planificación de procesos. 5.1 Criterios y tipos de planificación. 5.2 Algoritmos de planificación. 5.3 Métodos multicolas y multiprocesadores. 5.4 Evaluación de políticas

Más detalles

Grado polinomial y diferencias finitas

Grado polinomial y diferencias finitas LECCIÓN CONDENSADA 7.1 Grado polinomial y diferencias finitas En esta lección Aprenderás la terminología asociada con los polinomios Usarás el método de diferencias finitas para determinar el grado de

Más detalles

Dada esta igualdad, una celda que tenga una densidad de 1.210 estará entregando una tensión a circuito abierto de 2,05 Volt.

Dada esta igualdad, una celda que tenga una densidad de 1.210 estará entregando una tensión a circuito abierto de 2,05 Volt. 4.Tensión La tensión que puede entregar una celda es una característica fundamental de los elementos que la componen. Dos metales cualesquiera sumergidos en un electrolito conductor producirán una tensión,

Más detalles

TEMA 5. MUESTREO PARA LA ACEPTACIÓN.

TEMA 5. MUESTREO PARA LA ACEPTACIÓN. TEMA 5. MUESTREO PARA LA ACEPTACIÓN. Introducción. Planes de muestreo por atributos simple, doble, múltiple y rectificativos Dodge-Romig, Norma militar 1000STD-105D. Pautas a seguir para el cambio de rigor

Más detalles

EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB

EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB PROBLEMA 1. El Banco Nacional de Occidente piensa abrir una ventanilla de servicio en automóvil para servicio a los clientes. La gerencia estima que los

Más detalles

4. SISTEMAS DE COSTOS P OR PROCESOS

4. SISTEMAS DE COSTOS P OR PROCESOS 4. SISTEMAS DE COSTOS POR PROCESOS 4.1. Sistema de costos por procesos Si observamos los sistemas productivos de una empresa desde el punto de vista de la continuidad de sus líneas de fabricación, del

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

INTRODUCCIÓN A LA CONTABILIDAD DE COSTOS DEFINICIÓN

INTRODUCCIÓN A LA CONTABILIDAD DE COSTOS DEFINICIÓN INTRODUCCIÓN A LA CONTABILIDAD DE COSTOS DEFINICIÓN Contabilidad de costos, en el sentido más general de la palabra, es cualquier procedimiento contable diseñado para calcular lo que cuesta hacer algo.

Más detalles

Bloques Repetitivos: Iteración

Bloques Repetitivos: Iteración Fuente: www.appinventor.org Traducción hecha con Google Traductor y mejorada por mi: piatticarlos@gmail.com Bloques Repetitivos: Iteración Una cosa para la que los ordenadores son buenos es la repetición

Más detalles

Teoría de Colas o Fenómenos de Espera

Teoría de Colas o Fenómenos de Espera Teoría de Colas o Fenómenos de Espera Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Introducción 2 Introducción............................................................

Más detalles

Tema 1 Introducción a la Ingeniería de Software

Tema 1 Introducción a la Ingeniería de Software Tema 1 Introducción a la Ingeniería de Software Curso Ingeniería de Software UMCA Profesor Luis Gmo. Zúñiga Mendoza 1. Software En la actualidad todo país depende de complejos sistemas informáticos. Podemos

Más detalles

DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B. Bloque 1. Contenidos comunes.

DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B. Bloque 1. Contenidos comunes. DESARROLLO DE LA PROGRAMACIÓN PARA 4º ESO Opción B Contenidos mínimos según real decreto 1631/2006 Bloque 1. Contenidos comunes. o Planificación y utilización de procesos de razonamiento y estrategias

Más detalles

Ejercicios de Teoría de Colas

Ejercicios de Teoría de Colas Ejercicios de Teoría de Colas Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Demuestra que en una cola M/M/1 se tiene: L = ρ Solución. L = = = = = ρ np n nρ n (1 ρ) nρ n n=1 ρ n ρ

Más detalles

Unidad 8. Análisis y evaluación de inversiones

Unidad 8. Análisis y evaluación de inversiones Unidad 8. Análisis y evaluación de inversiones 0. ÍNDICE. 1. CONCEPTO DE INVERSIÓN. 2. TIPOS DE INVERSIÓN. 2.1. Atendiendo a su período de vinculación con la empresa. 2.2. Según su materialización. 2.3.

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Estrategia de procesos y planificación n de capacidad

Estrategia de procesos y planificación n de capacidad Estrategia de procesos y planificación n de capacidad Contenido Cuatro estrategias de proceso Enfoque de proceso Proceso repetitivo Enfoque de producto Enfoque de la personalización a gran escala Comparación

Más detalles

Esta sección es una introducción al estudio que lo resume brevemente y constituye el primer avance del proyecto a entregar la semana II.

Esta sección es una introducción al estudio que lo resume brevemente y constituye el primer avance del proyecto a entregar la semana II. Guía del Proyecto de Curso El proyecto de curso debe basarse en un proyecto real en el que hayan trabajado o estén próximos a trabajar. En él deben demostrar los conocimientos y conceptos adquiridos en

Más detalles

Universidad Nacional del Sur Departamento de Ciencias e Ingeniería de la Computación Análisis y Diseño de Sistemas 1er.Cuatrimestre de 2006.

Universidad Nacional del Sur Departamento de Ciencias e Ingeniería de la Computación Análisis y Diseño de Sistemas 1er.Cuatrimestre de 2006. Análisis y Diseño de Sistemas Dpto. Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Clase 2 Calidades del producto y del proceso Lic. María Mercedes Vitturini [mvitturi@cs.uns.edu.ar]

Más detalles

Familia y Otros Pasajeros

Familia y Otros Pasajeros Resumen Familia y Otros Pasajeros: Viajando por Carreteras Planeando un viaje por carretera con su familia? Recuerde que los pasajeros más jóvenes necesitan atención especial para garantizar que el viaje

Más detalles

Integradora 1. Introducción a la administración de operaciones

Integradora 1. Introducción a la administración de operaciones Administración de operaciones Integradora 1. Introducción a la administración de operaciones Objetivos de aprendizaje del tema Al finalizar la actividad integradora serás capaz de: Analizar y representar

Más detalles

Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía

Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía Regresión múltiple I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía I.- INTRODUCCIÓN Como la Estadística Inferencial nos permite trabajar con una variable a nivel de intervalo

Más detalles

Guía del entrenador de estilo de vida: fase principal

Guía del entrenador de estilo de vida: fase principal Guía del entrenador de estilo de vida: fase principal Sesión 15: Usted puede manejar el estrés Índice Introducción y preparación Lista de preparación Síntesis Presentación de la clase 1ª Parte: Progreso

Más detalles

Cómo funciona un control proporcional derivativo (PD)?

Cómo funciona un control proporcional derivativo (PD)? Cómo funciona un control proporcional derivativo (PD)? Adaptación del artículo: http://iesseveroochoa.edu.gva.es/severobot/2011/01/29/como-funciona-un-controlador-pd/ para el El tren de tracción diferencial

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES Para la valuación de opciones hay dos modelos ampliamente reconocidos como son el modelo binomial y el modelo de Black

Más detalles

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones CAPÍTULO 4 37 CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN Para diseñar el SGE, lo primero que se necesita es plantear diferentes formas en las que se pueda resolver el problema para finalmente decidir

Más detalles

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO.

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMA 1 A un puerto de carga y descarga de material, llegan durante la noche los barcos, que serán descargados durante el día siguiente.

Más detalles

2 Teoría de colas o líneas de espera

2 Teoría de colas o líneas de espera 2 Teoría de colas o líneas de espera El tráfico en redes se puede modelar con la ayuda de la teoría de colas, es por ello ue es importante estudiarlas y comprenderlas. Existen varias definiciones sobre

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

Ejercicios de Macroeconomía Avanzada

Ejercicios de Macroeconomía Avanzada Ejercicios de Macroeconomía Avanzada José L Torres Chacón Departamento de Teoría e Historia Económica Universidad de Málaga Septiembre 200 ii Indice I Sistemas dinámicos básicos 5 Introducción a la dinámica

Más detalles

MANTENIMIENTO PREDICTIVO Y MONITOREO SEGUN CONDICION

MANTENIMIENTO PREDICTIVO Y MONITOREO SEGUN CONDICION MANTENIMIENTO PREDICTIVO Y MONITOREO SEGUN CONDICION Dr. lng. Pedro Saavedra G. Profesor Departamento de Ingeniería Mecánica Universidad de Concepción Ingeniero Consultor en Mantenimiento Predictivo. El

Más detalles

DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE CADENAS DE MARKOV ABSORVENTES TEORIA DE COLAS O LINEAS DE ESPERA

DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE CADENAS DE MARKOV ABSORVENTES TEORIA DE COLAS O LINEAS DE ESPERA INVESTIGACIÓN DE OPERACIONES II CADENAS DE MARKOV CADENAS DE MARKOV ERGODICAS CADENA REGULAR DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE MÉTODO ANALÍTICO CADENAS DE MARKOV ABSORVENTES TEORIA DE

Más detalles

B.2.2. Principios para la gestión de proyectos

B.2.2. Principios para la gestión de proyectos B.2.2. Principios para la gestión de proyectos La gestión de proyectos es la aplicación de conocimientos, conocimiento técnico, herramientas y técnicas para planificar actividades a fin de satisfacer o

Más detalles

SIMULACIÓN DE MODELOS POBLACIONALES

SIMULACIÓN DE MODELOS POBLACIONALES 7 SIMULACIÓN DE MODELOS POBLACIONALES 7.1 Objetivo En esta práctica construiremos, simularemos y analizaremos diversos modelos simples que estudian el crecimiento de poblaciones, a través del programa

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

4. HERRAMIENTAS ESTADÍSTICAS

4. HERRAMIENTAS ESTADÍSTICAS 4. HERRAMIENTAS ESTADÍSTICAS 4.1 Definiciones La mayor parte de las decisiones se toman en función de la calidad, como en la mayoría de las demás áreas del moderno esfuerzo humano (por ejemplo, en la evaluación

Más detalles

CONTABILIDAD Y FINANZAS PARA LA TOMA DE DECISIONES SEMANA 1

CONTABILIDAD Y FINANZAS PARA LA TOMA DE DECISIONES SEMANA 1 CONTABILIDAD Y FINANZAS PARA LA TOMA DE DECISIONES SEMANA 1 ÍNDICE COSTEO DIRECTO Y ANÁLISIS DE COSTO-VOLUMEN-UTILIDAD... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 1. COSTEO DIRECTO Y COSTEO POR

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

Distribuciones de Probabilidad en Arena

Distribuciones de Probabilidad en Arena Distribuciones de Probabilidad en Arena Arena posee una amplia gama de funciones o distribuciones estadísticas incorporadas para la generación de números aleatorios. Estas distribuciones aparecen cuando,

Más detalles

Estudio Técnico INTRODUCCIÓN

Estudio Técnico INTRODUCCIÓN Estudio Técnico INTRODUCCIÓN Cuando la empresa o persona a decidido generar o fabricar parte de los productos o servicios que el mercado demanda para satisfacer sus necesidades, en ese momento se deben

Más detalles

Discriminación de precios y tarifa en dos etapas

Discriminación de precios y tarifa en dos etapas Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology CLASE DE REPASO Nº 6 Discriminación de precios y tarifa en dos etapas Viernes - 29 de octubre de 2004 RESUMEN DE LA CLASE

Más detalles

UNIDAD 2: COSTOS POR PROCESOS II: Ampliación de Conceptos

UNIDAD 2: COSTOS POR PROCESOS II: Ampliación de Conceptos UNIDAD 2: COSTOS POR PROCESOS II: Ampliación de Conceptos Descripción Temática Una de las finalidades de la implementación de un sistema de costos es determinar con el mayor nivel de exactitud posible,

Más detalles

El aeropuerto se puede modelar como un sistema de colas M/G/1 con distribución uniforme de tiempo de servicio E[S] = 60 seg y σ 2 S = 48 seg 2.

El aeropuerto se puede modelar como un sistema de colas M/G/1 con distribución uniforme de tiempo de servicio E[S] = 60 seg y σ 2 S = 48 seg 2. ESTUDIO DE OPERACIONES URBANAS MATERIAL REUNIDO POR JAMES S. KANG OTOÑO 2001 Soluciones trabajo 4 3/10/2001 1. Problema 4.12 LO (Pinker, 1994; Kang, 2001) El aeropuerto se puede modelar como un sistema

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Anexo 4. Herramientas Estadísticas

Anexo 4. Herramientas Estadísticas Anexo 4 Herramientas Estadísticas La estadística descriptiva es utilizada como una herramienta para describir y analizar las características de un conjunto de datos, así como las relaciones que existen

Más detalles

Modelos Matemáticos de Poblaciones

Modelos Matemáticos de Poblaciones Capítulo 1 Modelos Matemáticos de Poblaciones 1.1. Introducción Actualmente, en algunos campos de la Ciencia los esfuerzos van dirigidos, dentro de ciertas limitaciones, a conocer el desarrollo de algunos

Más detalles

Web: www.iesmarmenor.org Curso 2012-2013 MATEMÁTICAS-I 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN. La recta en el plano. (1 semana)

Web: www.iesmarmenor.org Curso 2012-2013 MATEMÁTICAS-I 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN. La recta en el plano. (1 semana) MATEMÁTICAS-I DISTRIBUCIÓN TEMPORAL DE LOS CONTENIDOS 1ª EVALUACIÓN 2ª EVALUACIÓN 3ª EVALUACIÓN Aritmética y Álgebra Trigonometría (4 semanas) Números complejos Vectores en el plano La recta en el plano

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

Modelo Integral y Dinámico de Análisis, Planeación, Programación y Control de Capacidades Productivas

Modelo Integral y Dinámico de Análisis, Planeación, Programación y Control de Capacidades Productivas Modelo Integral y Dinámico de Análisis, Planeación, Programación y Control de Capacidades Productivas La siguiente lección pretende ampliar el concepto y lo que significa el proceso de Planeación de Capacidades

Más detalles

Estas cuestiones deberán resolverse como parte de la planificación de la capacidad.

Estas cuestiones deberán resolverse como parte de la planificación de la capacidad. Es en relación con la capacidad que deben considerarse las siguientes cuestiones: Cuales son las tendencias del mercado en términos de tamaño y ubicación del mercado e innovaciones tecnológicas? Con cuanta

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

UNIDAD 4. Producción: proceso por el cual los insumos se combinan, se transforman y se convierten en productos.

UNIDAD 4. Producción: proceso por el cual los insumos se combinan, se transforman y se convierten en productos. UNIDAD 4 Dra. Elena Alfonso Producción: proceso por el cual los insumos se combinan, se transforman y se convierten en productos. La relación entre la cantidad de factores productivos requerida y la cantidad

Más detalles

Formulación y Evaluación de Proyectos Análisis de Riesgo. Juan Quinteros

Formulación y Evaluación de Proyectos Análisis de Riesgo. Juan Quinteros Formulación y Evaluación de Proyectos Análisis de Riesgo Juan Quinteros Qué es el riesgo? El riesgo implica incertidumbre. La incertidumbre no necesariamente implica riesgo. La aversión al riesgo es una

Más detalles

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA

Más detalles

EVALUACIÓN N DE PROYECTOS. Eco. Juan Carlos Gilardi PROMPEX Marzo 2007

EVALUACIÓN N DE PROYECTOS. Eco. Juan Carlos Gilardi PROMPEX Marzo 2007 EVALUACIÓN N DE PROYECTOS Eco. Juan Carlos Gilardi PROMPEX Marzo 2007 DEFINICION Evaluar un proyecto implica identificar y cuantificar creativamente costos y beneficios de una idea o alternativa con el

Más detalles

Consejos: 2 prácticas: Ser amable Hacer concesiones Cómo vencer las 4 quejas terco en error deshonesto egoísta

Consejos: 2 prácticas: Ser amable Hacer concesiones Cómo vencer las 4 quejas terco en error deshonesto egoísta A la teoría de colaboración se le llama simultaneidad o informática en paralelo, la cual es una parte de las ciencias informáticas La investigación de la colaboración está en el ámbito de las ciencias

Más detalles

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O.

MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. MATEMÁTICAS CONTENIDOS MÍNIMOS DE 1º E.S.O. Calcular el valor de posición de cualquier cifra en cualquier número natural. Aplicar las propiedades fundamentales de la suma, resta, multiplicación y división

Más detalles

Los elementos que usualmente componen la identidad digital son:

Los elementos que usualmente componen la identidad digital son: Enero 2016 Programa Civismo Digital - Escolar Material Educativo Lección: TU IDENTIDAD EN INTERNET v. 1.0 Topico: Alfabetización Digital, Huella Digital Objetivo: Fomentar en los alumnos la importancia

Más detalles

1 :GENERALIDADES DE LA CONTABILIDAD ADMINISTRATIVA.

1 :GENERALIDADES DE LA CONTABILIDAD ADMINISTRATIVA. 1 :GENERALIDADES DE LA CONTABILIDAD ADMINISTRATIVA. OBJETIVO: Permitirá al alumno analizar el papel que juega la información contable en el proceso administrativo para facilitar las funciones de planeación,

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO

IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO AUTORÍA JAIME MESA JIMÉNEZ TEMÁTICA PROGRAMACIÓN EN CONTROL NUMÉRICO ETAPA F. P. Resumen La programación en control numérico

Más detalles

Presentación 3. Antecedentes 4. Qué evalúa el examen? 5. Componentes, estructura y ejemplos 5

Presentación 3. Antecedentes 4. Qué evalúa el examen? 5. Componentes, estructura y ejemplos 5 Guía RAE Ingeniería Mecánica Énfasis Industrial ENERO 2013 1 Índice Presentación 3 Antecedentes 4 Qué evalúa el examen? 5 Componentes, estructura y ejemplos 5 2 Presentación Estimado/a estudiante Los exámenes

Más detalles

UNIDAD 5: Mejora del rendimiento con la segmentación.

UNIDAD 5: Mejora del rendimiento con la segmentación. UNIDAD 5: Mejora del rendimiento con la segmentación. 5.1 Un resumen de segmentación La segmentación (pipelining) es una técnica de implementación por la cual se solapa la ejecución de múltiples instrucciones.

Más detalles

Investigación Operativa

Investigación Operativa Investigación Operativa Ingeniería Informática Curso 08/09 Introducción Programación lineal Programación entera Programación combinatoria y en redes Simulación Sistemas de colas Introducción: Qué es la

Más detalles

MEJORAMIENTO DEL CDS COAH00R CON LA APLICACIÓN DEL PROGRAMA 5 S

MEJORAMIENTO DEL CDS COAH00R CON LA APLICACIÓN DEL PROGRAMA 5 S MEJORAMIENTO DEL CDS COAH00R CON LA APLICACIÓN DEL PROGRAMA 5 S Autor: Coautor: Lic. Corina Ramírez Romo Lic. Nancy Fabiola Lomas Jordán Lic. Julio Héctor Martínez Rivas Lic. José Antonio Rebolloso García

Más detalles

Sección 1 NIIF PYMES NIIF Completo Principales diferencias Pequeñas y Medianas Entidades Alcance

Sección 1 NIIF PYMES NIIF Completo Principales diferencias Pequeñas y Medianas Entidades Alcance Sección 1 NIIF PYMES NIIF Completo Principales diferencias Pequeñas y Medianas Entidades Alcance Esta sección describe las características de las PYMES. Las PYMES son entidades que: (a) no tienen obligación

Más detalles

Fundamentos de negocio Recursos Humanos > Cómo enfrentar y dirigir los cambios (Desarrollo organizacional) > Planea los cambios en tu empresa

Fundamentos de negocio Recursos Humanos > Cómo enfrentar y dirigir los cambios (Desarrollo organizacional) > Planea los cambios en tu empresa Qué es el desarrollo organizacional? Si existiera un empresario capaz de diseñar la organización perfecta para su empresa, si las condiciones del entorno fueran estables y predecibles y si la ciencia ya

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 12-O. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 21

Más detalles

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira 2010 Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA Universidad Tecnológica De Pereira Conceptos Básicos de Hidrología La hidrología es una ciencia clave en el estudio de los sistemas de

Más detalles

DISEÑO DEL SOFTWARE TRAFFIC ANALYZER. Analyzer. En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software

DISEÑO DEL SOFTWARE TRAFFIC ANALYZER. Analyzer. En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software 3 Diseño del Software Traffic Analyzer En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software que analiza el tráfico en redes de telefonía y computadoras, denominado Traffic

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Diagramas del UML. A continuación se describirán los diagramas más comunes del UML y los conceptos que representan: Diagrama de Clases

Diagramas del UML. A continuación se describirán los diagramas más comunes del UML y los conceptos que representan: Diagrama de Clases El UML está compuesto por diversos elementos gráficos que se combinan para conformar diagramas. Debido a que el UML es un lenguaje, cuenta con reglas para combinar tales elementos. La finalidad de los

Más detalles

NIVEL: 4º E.S.O. ÁREA: MATEMÁTICAS A

NIVEL: 4º E.S.O. ÁREA: MATEMÁTICAS A NIVEL: 4º E.S.O. ÁREA: MATEMÁTICAS A .- 1ª EVALUACIÓN BLOQUE I: TEMA 1: TEMA 2: BLOQUE II: TEMA 3: TEMA 4: TEMA 5: NÚMEROS NÚMEROS REALES PROBLEMAS ARITMÉTICOS ÁLGEBRA POLINOMIOS E C U A C I O N E S, I

Más detalles

RENDIMIENTO DE: CARGADOR FRONTAL Y RETROEXCAVADORA

RENDIMIENTO DE: CARGADOR FRONTAL Y RETROEXCAVADORA RENDIMIENTO DE: CARGADOR FRONTAL Y RETROEXCAVADORA Algunos equipos de carga son el cargador frontal, retroexcavadora, pala hidráulica, pala mecánica, draga y otras, que en ocasiones, también se utilizan

Más detalles

Modelado de flujo en redes. Jhon Jairo Padilla A., PhD.

Modelado de flujo en redes. Jhon Jairo Padilla A., PhD. Modelado de flujo en redes Jhon Jairo Padilla A., PhD. Conceptos básicos Demanda o volumen de Demanda: Es el tráfico que están requiriendo los usuarios de una red. Para transportar el volumen de demanda

Más detalles

Unidad 16. Depreciación

Unidad 16. Depreciación Unidad 16 Depreciación INTRODUCCIÓN Desde el momento mismo en que se adquiere un bien, éste empieza a perder valor. Esta pérdida de valor es conocida como depreciación. La depreciación se define como la

Más detalles

Conclusiones. Particionado Consciente de los Datos

Conclusiones. Particionado Consciente de los Datos Capítulo 6 Conclusiones Una de las principales conclusiones que se extraen de esta tesis es que para que un algoritmo de ordenación sea el más rápido para cualquier conjunto de datos a ordenar, debe ser

Más detalles

Teoría del Juego - Juegos Combinatoriales Imparciales

Teoría del Juego - Juegos Combinatoriales Imparciales Teoría del Juego - Juegos Combinatoriales Imparciales Carlos Gámez Taller de Resolución de Problemas Escuela de Matemática Universidad de El Salvador Estudio de Casos Esquema Introducción Juegos de Agarrar

Más detalles