Tablas de mortalidad dinámicas para España. Una aplicación a la hipoteca inversa

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tablas de mortalidad dinámicas para España. Una aplicación a la hipoteca inversa"

Transcripción

1 Tablas de mortalidad dinámicas para España. Una aplicación a la hipoteca inversa Debón Aucejo, Ana Montes Suay, Francisco Sala Garrido, Ramón

2

3 La redacción de este texto y el desarrollo de la aplicación E-VITA que le acompaña, han sido posibles gracias a la ayuda financiera concedida a los autores por parte de la Fundación ICO

4

5 Índice general Introducción 1 1. Tablas de mortalidad Introducción Probabilidades relacionadas con el tiempo de supervivencia Estimación de las curvas de supervivencia Algunos modelos para la distribución del tiempo de supervivencia Tablas de mortalidad Estructura y clasificación de las tablas de mortalidad Estructura Clasificación: tablas estáticas y tablas dinámicas Evolución de la mortalidad Revisión de los modelos dinámicos para la graduación de la mortalidad Introducción Modelos paramétricos Modelos estructurales Modelos no estructurales Modelos no paramétricos Suavizado con p-splines Algoritmo Median-polish Últimas propuestas para la graduación de tablas dinámicas Modelización de los residuos Modelos frágiles (Frailty models) Riesgo de la longevidad La esperanza de vida residual Intervalos de confianza para la predicción i

6 ii ÍNDICE GENERAL 3. Análisis y predicción de la mortalidad española. Periodo Introducción Descripción de los datos y análisis preliminar Tratamiento de las edades superiores a 85 años Aplicación del modelo de Lee-Carter Resultados del ajuste Bondad de ajuste Predicción Predicción de q xt para el periodo Predicción de e xt para el periodo Cálculo de la hipoteca inversa Introducción Rentas vitalicias Determinación del valor de las rentas vitalicias anuales Determinación del valor de las rentas vitalicias fraccionadas Perspectiva general de la hipoteca inversa El planteamiento de la hipoteca inversa del ICO Apéndices 75 A. Aplicación E-VITA 77 A.1. Ventana Presentación A.2. Ventana Hipoteca Inversa A.3. Ventana Ajustes Lee-Carter A.4. Ventana Parámetros del modelo A.5. Ventana Proyección B. Código en R 83 Bibliografía 87

7 Índice de figuras 1.1. Gráfico de descenso de la mortalidad para algunas edades Rectangularización y expansión para los hombres Rectangularización y expansión para las mujeres Evolución de la esperanza de vida Descomposición de la Ley de Heligman y Pollard Regresión con B-splines (izquierda) y con p-splines (derecha) Residuos para un ajuste de Lee-Carter (izquierda) y residuos independientes (derecha) Probabilidades de muerte para los hombres Probabilidades de muerte para las mujeres Valores estimados para el modelo de Lee-Carter Residuos Deviance para el modelo de los hombres Residuos Deviance para el modelo de los mujeres Proyecciones para el periodo Predicciones para algunas edades Predicciones para edades avanzadas Esperanza de vida residual para edades elevadas A.1. La ventana Presentación A.2. La ventana Hipoteca Inversa A.3. La ventana Ajuste de Lee-Carter A.4. Gráfica de los parámetros a x que muestra la ventana Parámetros del modelo A.5. Gráfica de los parámetros b x que muestra la ventana Parámetros del modelo A.6. Gráfica de los parámetros k t que muestra la ventana Parámetros del modelo A.7. La ventana Proyección iii

8

9 Índice de tablas 4.1. Expresiones para las rentas vitalicias con cuotas constantes Expresiones para las rentas vitalicias con cuotas en progresión aritmética Expresiones para las rentas vitalicias fraccionas con cuotas constantes Estimación de los gastos de formalización y gestión Rentas percibidas a lo largo de los n años v

10

11 Prólogo Una de las más importantes derivaciones obtenidas a partir de los datos censales son las tablas de mortalidad de la población, instrumentos relevantes tanto para el cálculo actuarial (cálculo de primas y/o indemnizaciones) como para el estudio de la evolución de la población y sus movimientos. El profesional del seguro de vida ha de ser capaz de determinar adecuadamente las primas para garantizar así las cantidades que habrá de pagar la compañía a la muerte del asegurado. En consecuencia, la predicción adecuada de las probabilidades de muerte constituye un elemento principal en la reducción del riesgo que se asume. Otra característica de interés ligada a las tablas de mortalidad es la esperanza de vida de un individuo para las distintas edades. Se trata también de un indicador de la capacidad de supervivencia de una sociedad y su incremento supone, en todos los aspectos, una mejora de las condiciones de vida de la misma. A pesar de la importancia de ambas características, probabilidad de muerte y esperanza de vida, y de la indudable influencia que la edad y el tiempo del calendario (año) ejercen sobre ellos, son pocos los trabajos que las han estudiado conjuntamente para los datos de mortalidad españoles. El objetivo final de este trabajo ha sido la construcción de tablas de mortalidad dinámicas a partir de los datos de mortalidad y población publicados por el INE correspondientes al periodo , y la obtención de predicciones de la mortalidad y de la esperanza de vida para los años venideros. El presente texto presenta una exposición exhaustiva y actual de los distintos métodos de ajuste de tablas dinámicas, intentando encontrar el equilibrio entre el rigor teórico que los especialistas exigen y la claridad que los usuarios técnicos desean. Sólo uno de estos métodos será utilizado para obtener el producto final buscado, las tablas dinámicas de mortalidad española. La elección se ha basado en criterios de bondad tanto para el ajuste como para la predicción, y el resultado se ofrece en forma del software interactivo E-VITA accesible a través de la dirección La estructura del texto es la siguiente: El Capítulo 1 está dedicado a la definición de los conceptos fundamentales que se utilizan en una tabla de mortalidad estática, finalizando con un análisis de la evolución de la mortalidad en España durante el último siglo. Se persigue con ello evidenciar la necesidad de introducir modelos que 1

12 2 Prólogo recojan y expliquen dicha evolución. El Capítulo 2 se ocupa de este tipo de modelos, los dinámicos, que introducen el tiempo del calendario. En algunos casos se trata de modelos clásicos adaptados a esta nueva circunstancias, otros son modelos ex-novo. Resumir convenientemente la información contenida en las tablas de mortalidad es una tarea que tradicionalmente se le ha encomendado a la esperanza de vida. A su definición y predicción se ha dedicado el final del Capítulo 2. El Capítulo 3 se ocupa del análisis de la mortalidad española en los últimos 25 años, ajustando a los datos del periodo una tabla dinámica mediante el modelo de Lee-Carter, el que presenta mejor comportamiento global entre los expuestos en el capítulo anterior. El Capítulo 4 introduce el concepto de hipoteca inversa, un producto financiero que está adquiriendo gran popularidad a medida que envejece la población y menguan las pensiones. Un simulador de cálculo de la hipoteca inversa, y del seguro asociado para poder hacer frente a la eventualidad de sobrevivir al periodo para la que fue contratada, ha sido incorporado al software E-VITA, cuyo manual de uso se detalla en el Apéndice A. En el Apéndice B se reproduce el código R utilizado para obtener los resultados del Capítulo 3. El texto se cierra con una exhaustiva y actualizada bibliografía que los autores esperan sea de utilidad para los lectores que deseen profundizar en parte o todos de los temas tratados. Valencia, julio de 2008

13 Capítulo 1 Tablas de mortalidad 1.1. Introducción Probabilidades relacionadas con el tiempo de supervivencia Estimación de las curvas de supervivencia Algunos modelos para la distribución del tiempo de supervivencia Tablas de mortalidad Estructura y clasificación de las tablas de mortalidad Estructura Clasificación: tablas estáticas y tablas dinámicas Evolución de la mortalidad

14

15 1.1 Introducción Introducción La tabla de mortalidad, también llamada tabla de vida, es un modelo teórico que permite medir las probabilidades de vida o de muerte de una población en función de la edad. Las probabilidades de muerte asociadas a cada edad constituyen la piedra angular en todo cuanto se relaciona, directa o indirectamente, con la demografía de un grupo humano, desde el nivel y tendencia de la mortalidad hasta los sistemas de previsión y seguros, pasando por los estudios de fecundidad, la evaluación de programas de salud o el estudio de los movimientos de población. Estos son sólo alguno de los campos de aplicación de las tablas de mortalidad. Centrándonos en el campo de los seguros y el sistema de pensiones, tanto público como privado, las tablas de mortalidad son utilizadas, entre otras actividades, para: i) estimar las reservas actuariales que garanticen el pago de la obligaciones previsionales del sistema público de pensiones, ii) efectuar los cálculos del otorgamiento de pensiones y capital asegurado que administran los seguros de rentas vitalicias y los seguros de invalidez y supervivencia en el caso del Sistema Privado de Pensiones y, iii) determinar las primas de seguros vida y la constitución de las reservas técnicas en el caso del sistema asegurador. El interés de las tablas de mortalidad queda fuera de toda duda a la vista de las distintas aplicaciones mencionadas en los dos párrafos anteriores. Hemos de señalar que la probabilidad de muerte para cada edad es la primera y más inmediata forma de medir las mortalidad, basta para ello con conocer los datos absolutos de defunciones y la población expuesta a riesgo de morir. Existen sin embargo otras medidas alternativas de gran utilidad que se recogen en una tabla de mortalidad. El capítulo está dedicado a introducir todos aquellos conceptos que permiten obtener una tabla de mortalidad, la descripción de su contenido y la clasificación de los distintos tipos de tablas. Y finaliza con una descripción de los cambios sufridos en la mortalidad española durante el periodo Probabilidades relacionadas con el tiempo de supervivencia Denotemos por x la edad de un individuo, con x [0,ω], donde ω representa el límite superior de supervivencia. Para dicho individuo, T o T x, representa su tiempo futuro de supervivencia, una variable aleatoria a la que podemos asociarle ξ = T +x, la edad de fallecimiento. La función de distribución de probabilidad de T, G(t) = P(T t), t 0,

16 6 Capítulo 1. Tablas de mortalidad representa la probabilidad que el individuo tiene de morir dentro de los t años siguientes. A partir de G(t) podemos definir la función de supervivencia s(t) = 1 G(t). Para cualquier t > 0, s(t) es la probabilidad que el individuo tiene de sobrevivir t años, de ahí que la hayamos denominado función de supervivencia. De su definición se derivan las dos propiedades siguientes: es una función no creciente, y en los extremos del intervalo de supervivencia toma los valores s(0) = 1, puesto que G(0) = 0, y s(ω) = 0, por tratarse de la edad máxima alcanzable. Algunos autores sugieren (Villalón, 1997) que es razonable y conveniente suponer que s(t) es una función continua de t. Probabilidades y valores esperados de interés pueden ser expresados en términos de las funciones g y G. La comunidad internacional de actuarios utiliza una notación propia para designar alguno de estos valores (Gerber, 1997). Así, tq x = G(t) = 1 s(t) es la probabilidad de que un individuo de edad x muera en t años. De igual forma tp x = 1 G(t) = s(t), (1.1) denota la probabilidad de que un individuo de edad x sobreviva al menos t años. Otra notación habitualmente utilizada es s tq x = P(s < T < s + t) = G(s + t) G(s) = s+t q x s q x, que denota la probabilidad de que un individuo de edad x sobreviva s años y muera dentro de los t años siguientes. De igual forma se usan frecuentemente y s+tp x = 1 G(s + t) = (1 G(s)) s tq x = G(s + t) G(s) = (1 G(s)) 1 G(s + t) 1 G(s) G(s + t) G(s) 1 G(s) = s p x tp x+s = s p x tq x+s. Si t = 1, el índice t se omite en los símbolos, por ejemplo q x denota la probabilidad de morir durante el año siguiente. Una medida de mortalidad muy utilizada es la llamada fuerza de mortalidad de x a la edad x+t, también conocida como función de riesgo o tasa de hazard, definida mediante µ x+t = g(t) 1 G(t) = d ln (1 G(t)). (1.2) dt

17 1.3 Estimación de las curvas de supervivencia 7 Se trata de una probabilidad condicionada, en concreto la de morir inmediatamente después del tiempo t, t + dt, siendo así que se ha sobrevivido hasta t. De (1.1) se obtiene µ x+t = d dt ln ( tp x ), e integrando ( tp x = exp t 0 ) µ x+s ds. (1.3) 1.3. Estimación de las curvas de supervivencia La estimación de las curvas de supervivencia puede plantearse desde dos enfoques distintos, que como veremos dan lugar a su vez a modelos específicos. El primero de ellos consiste en postular una distribución de probabilidad para la variable T. El segundo, que podríamos denominar enfoque actuarial, supone la construcción de una tabla de mortalidad Algunos modelos para la distribución del tiempo de supervivencia La modelización de T a partir de una función de distribución explícita, G, tiene la ventaja de permitir su estimación mediante un reducido número de parámetros. Ventaja nada desdeñable cuando se dispone de pocos datos. A lo largo del tiempo diversos autores han propuesto modelos para el comportamiento probabilístico de T. Entre los más utilizados, los que se exponen a continuación. De Moivre (1724) postula la existencia de una edad ω máxima y supone que T se distribuye uniformemente entre las edades 0 y ω x, de forma que g(t) = 1 ω x, 0 < t < ω x, µ x+t = 1 ω x t, 0 < t < ω x. Gompertz (1825) supone que la fuerza de mortalidad crece exponencialmente µ x+t = Bc x+t,t > 0, lo que expresa mejor el comportamiento de T y además no requiere la hipótesis de la edad máxima ω.

18 8 Capítulo 1. Tablas de mortalidad Makeham (1860) añade una componente constante A > 0 al crecimiento exponencial y postula la siguiente ley µ x+t = A + Bc x+t,t > 0. La probabilidad de supervivencia en este modelo es ( tp x = exp At B ) ln c cx (c t 1). Weibull (1939) sugiere que la fuerza de mortalidad crece como una potencia de t en lugar de hacerlo exponencialmente µ x+t = k(x + t) n, siendo k > 0 y n > 0 parámetros fijos. La probabilidad de supervivencia se expresa ahora ( tp x = exp k ( (x + t) n+1 x n+1)). n + 1 Otros autores proponen modelos más sofisticados, en la creencia que una sola ley no recoge adecuadamente toda la experiencia de mortalidad. Thiele (1972) propone un modelo que relaciona la fuerza de mortalidad con la edad de distinta forma según el rango de ésta última, µ x = a 1 exp( b 1 x) + a 2 exp ( 12 ) b 2(x c) 2 + a 3 exp(b 3 x), donde el primer término representa la mortalidad infantil, el último, que es una curva Gompertz, corresponde a la mortalidad para edades avanzadas y el central es una curva normal. Perks (1825) introduce una nueva familia de curvas cuya expresión general es, µ x = A + Bc x Kc x Dc x. Estas leyes son sólo aplicables a las edades adultas y muchas fallan al representar lo que conoce como la joroba de los accidentes en las edades adultas. Heligman y Pollard (1980) mejoran la propuesta de Perks con el modelo q x p x = A (x+b)c + D exp ( E(log x log F) 2) + GH x,

19 1.3 Estimación de las curvas de supervivencia 9 cuyo número de parámetros puede parecer excesivo. Sin embargo, todos ellos tienen una interpretación real. Así, A es q 1, C mide la ratio con la que los niños se adaptan al entorno, G indica el nivel de mortalidad de las edades elevadas mientras que H mide el incremento de esa mortalidad, D representa la intensidad de la joroba de los accidentes, que más adelante se describe, F la sitúa y E indica su velocidad. Una descripción más detallada y un listado más exhaustivo de las leyes de mortalidad puede encontrarse en Benjamin y Pollard (1992), Gerber (1997) y Tabeau, van den Berg Jeths y Heathcote (Eds) (2001) Tablas de mortalidad A partir de T podemos definir una variable aleatoria discreta, K = T, que representa el número entero de años futuros vividos. Su distribución de probabilidad viene dada por P(K = k) = P(k T < k + 1) = k p x q x+k, k = 0, 1, 2... y su valor esperado, la esperanza de vida abreviada, e x = kp(k = k) = k=1 k k k p x q x+k, k=1 o, alternativamente, e x = P(K k) = k=1 kp x. Si S representa la fracción del año de muerte durante la cual el individuo de edad x sobrevive, se tiene T = K +S. Esta nueva variable, S, es continua y toma valores en [0, 1[. Suponiendo su distribución uniforme, podemos aproximar su valor esperado por 1/2, y k=1 ė x = E[T] e x La distribución de probabilidad del tiempo de vida futuro puede ser construida a partir de lo que denominamos una tabla de mortalidad. Se trata, esencialmente, de una tabla que recoge las probabilidades de morir en el año siguiente a la edad que se ha sobrevivido, q x, y que definen completamente la distribución de K. La distribución de T puede obtenerse a partir de una tabla de mortalidad mediante interpolación, para lo cual son necesarias hipótesis sobre el comportamiento probabilístico de u q x, o de la fuerza de mortalidad, µ x+u, para edades intermedias x + u, con x entero positivo y 0 < u < 1. Veamos alguna de estas hipótesis.

20 10 Capítulo 1. Tablas de mortalidad A) Linealidad de u q x Si suponemos que u q x es una función lineal de u, la interpolación entre u = 0 y u = 1 conduce a uq x = uq x, luego y B) µ x+u constante Si µ x+u = µ x+ 1 2 up x = 1 uq x, µ x+u = q x 1 uq x. u ]0, 1[, de (1.3) se sigue up x = e uµ x+ 1 2 = [e µ x+ 1 2 ] u = (p x ) u. Se deduce de aquí que la distribución de S, dado K = k, es una distribución exponencial truncada que depende de k, P(S u K = k) = 1 pu x+k 1 p x+k. (1.4) Las variables S y K no son independientes en este caso. C) Linealidad de 1 u q x+u Esta hipótesis se conoce como la hipótesis de Balducci. A semejanza de lo que ocurre en A), 1 uq x+u = (1 u)q x. De forma que, y Finalmente, up x = p x 1 up x+u = µ x+u = P(S u K = k) = 1 q x 1 (1 u)q x q x 1 (1 u)q x. u 1 (1 u)q x+k, (1.5) muestra que tampoco ahora las variables aleatorias S y K son independientes.

21 1.3 Estimación de las curvas de supervivencia 11 Observemos que en los tres supuestos considerados la fuerza de mortalidad es discontinua en los valores enteros, pero lo más llamativo y poco creíble es que bajo la hipótesis de Balducci la fuerza de mortalidad decrece entre dos enteros consecutivos. Cuando las probabilidades de muerte son muy pequeñas, en las hipótesis B) y C) las expresiones (1.4) y (1.5) conducen a una distribución uniforme para S independiente de K. La problemática de los tantos interanuales, según las tres hipótesis consideradas, la resume Betzuen (1995) en el siguiente cuadro, en el que t [0, 1] y l x es el número de supervivientes con edad x. Hipótesis A Hipótesis B Hipótesis C tq x = a + bt µ x+t = µ 1 tq x = a + bt tq x = tq x t q x = 1 exp( µt) 1 tq x+t = (1 t)q x l x+t = l x tq x l x+t = l x exp( µt) l x+t = l xl x+t l x+1 + td x 1 hq x+t = (1 h)q x 1 tq x 1 hq x+t = (1 h)q x 1 (h t)q x Señalemos por último que la asignación de la edad de un individuo incide en los resultados del estudio, tal como señala Betzuen (1995). El problema surge porque existen diferentes criterios para llevar a cabo dicha asignación. Los dos más utilizados en la práctica dan lugar a los conceptos de edad actuarial y edad entera alcanzada. Edad actuarial.- Se trata de un método muy popular entre los actuarios y consiste en atribuir como edad de fallecimiento la edad entera más próxima al cumpleaños. Se asigna la edad x a todos los individuos con edad comprendida en el intervalo [x 1/2, x + 1/2[. Edad entera alcanzada.- Consiste en atribuir la edad como número de años enteros vividos, es decir, la forma habitual de asignar la edad a un individuo. Se asigna la edad x a todos los individuos con edad comprendida en el intervalo [x,x + 1[.

22 12 Capítulo 1. Tablas de mortalidad 1.4. Estructura y clasificación de las tablas de mortalidad Las tablas de mortalidad surgen de la necesidad de establecer reservas apropiadas con las que hacer frente a las obligaciones derivadas de los contratos de seguros de larga duración. El problema exige establecer una distriución de probabilidad, una estadística de la mortalidad y un instrumento matemático adecuados. Detalles acerca de los orígenes de las tablas y su evolución pueden consultarse en el libro de Nieto y Vegas (1993), quién atribuye a Halley (1693) el primer trabajo conocido de tablas de mortalidad completas construidas a partir de la hipótesis de estacionariedad, de la que más tarde nos ocuparemos. Posteriormente, Nicolás Titens, Jorge Barret y F. Bayly introdujeron los llamados símbolos de conmutación que permitieron agilizar el cálculo de las operaciones de seguro Estructura Palacios (1996) define la tabla de mortalidad como una serie temporal que indica la reducción paulatina de un grupo inicial de individuos debido a los fallecimientos. Así pues, lo que realmente contiene la tabla es el número de individuos que sobreviven. La tabla de mortalidad es una abstracción matemática que representa un modelo del comportamiento de la evolución y constante decrecimiento de un colectivo, construida a partir de las observaciones de un colectivo real. Su estructura básica, como nos describe Villalón (1994), debe estar constituida, al menos, por cinco columnas, encabezadas por los símbolos x, l x, d x, q x y p x. La primera, x, representa la edad del individuo en el rango, 0 x ω, siendo ω la edad límite. La segunda, l x, representa el número de individuos que sobreviven a la edad x. La tercera, d x, representa el número de los individuos que fallecen entre las edades x y x + 1, d x = l x l x+1. La cuarta, q x, es el tanto anual de fallecimiento a la edad x, proporción de los individuos que fallecen entre las edades x y x + 1, q x = d x l x.

23 1.4 Estructura y clasificación de las tablas de mortalidad 13 La quinta, p x, es el tanto anual de supervivencia a la edad x, p x = l x+1 l x. Una tabla básica como la descrita permite la obtención de algunas características de interés, como por ejemplo la esperanza de vida residual a la edad x, que representa los años que le restan por vivir a un individuo que ha cumplido x años. Su expresión es e x = T x l x, (1.6) donde T x es el total de años que todos los individuos que sobreviven a la edad x esperan vivir, T x = i x L i, siendo L x = l (x+1) + d x /2 el correspondiente número de personas-años. Las tablas pueden completarse, y habitualmente lo hacen, con los símbolos de conmutación: D x, N x, S x, C x, M x y R x. Estos símbolos son relaciones que facilitan los cálculos de primas, reservas y otras operaciones de seguros. Están calculados para un determinado tipo de interés, denominado tipo de interés técnico i, a partir del cual se obtiene el llamado factor de actualización, v x, o factor de descuento compuesto. Éste factor permite convertir un capital futuro a n años en un capital inicial, al eliminar el efecto de los intereses, v x = 1 (1 + i) x. Las expresiones de los símbolos de conmutación son las siguientes: D x N x = l x v x = D x + D x D ω S x = N x + N x N ω C x = d x v x+1 M x = C x + C x C ω R x = M x + M x M ω Clasificación: tablas estáticas y tablas dinámicas El fenómeno de la supervivencia viene caracterizado porque sus sucesos hacen referencia al hecho de que un individuo cualquiera perteneciente a un grupo específico, alcance y supere una edad concreta. Al intentar modelizarlo aparece la edad como como parámetro fundamental. A la edad se la denomina también en ocasiones tiempo biológico, para diferenciarla del tiempo cronológico que es el tiempo físico o del

24 14 Capítulo 1. Tablas de mortalidad calendario. Esta distinción es necesaria cuando, por ejemplo, se quiere comparar la mortalidad de individuos de la misma edad en periodos distintos. Los hipótesis básicas, que constituyen la base fundamental de las deducciones que han de conducirnos a la construcción de una tabla de mortalidad (Vegas, 1982), son: Principio de homogeneidad.- Los individuos del grupo son equivalentes en lo que se refiere a mortalidad, en el sentido de que tienen la misma función de distribución de probabilidad para la variable edad de muerte ξ. El grupo es homogéneo. Principio de independencia.- Los individuos que integran el grupo se definen con variables estocásticamente independientes. Esto equivale a decir que las variables asociadas la supervivencia de los individuos del grupo son mutuamente independientes. Principio de estacionariedad.- La probabilidad de que un individuo de no sobreviva a una edad concreta es independiente del año de su cálculo. Con estas hipótesis la probabilidad de que n individuos no sobrevivan a las edades x 1, x 2,..., x n, respectivamente, viene dada por P(ξ 1 < x 1,ξ 2 < x 2,...,ξ n < x n ) = G x1 (x 1 ξ 1 ) G x2 (x 2 ξ 1 )... G xn (x n ξ n ) = x1 ξ 1 q x1 x2 ξ 2 q x2... xn ξ n q xn Es evidente que si el estudio del fenómeno de la supervivencia se refiere sólo al tiempo biológico es porque se admite implícitamente la hipótesis de estacionariedad del fenómeno. Si todas las consideraciones y formulaciones que se hacen vienen referidas al tiempo biológico o edad, con exclusión de toda referencia al tiempo cronológico, la tabla de mortalidad resultante es una tabla de mortalidad estática o de momento. Un estudio completo debería abarcar ambos conceptos temporales, puesto que en su formulación más general la estacionariedad puede estar ausente y la expresión matemática del fenómeno de la supervivencia depende entonces de ambos tiempos. Se obtiene entonces una tabla de mortalidad dinámica. Como reflexión a la comparación teórica de las tablas estáticas y dinámicas, hemos de añadir que las primeras nacen con una fecha de caducidad implícita, puesto que la mortalidad desciende y la esperanza de vida aumenta con el paso de los años, de forma que necesitaríamos pedirle al asegurado una dotación adicional cuando pasaran un número determinado de años, mientras que con las segundas las posibles modificaciones son menores.

25 1.5 Evolución de la mortalidad Evolución de la mortalidad Antes de introducir y desarrollar los diferentes modelos dinámicos de tablas de mortalidad, consideramos importante poner de relieve las diferencias existentes entre las experiencias de mortalidad correspondientes a diferentes periodos. Esta sección esta dedicada a ilustrar dichas diferencia mediante un ejemplo concreto. Se pretende con ello justificar la necesidad de introducir modelos dinámicos que permitan una mejor predicción de la mortalidad futura. Los datos utilizados en el ejemplo corresponden a la mortalidad observada en España durante el periodo de para un rango de edades de 0 a 110, y han sido obtenidos de H.D.M. (2005). La Figura 1.1 permite observar como, en general, las probabilidades de muerte han descendido en el transcurso del tiempo, aunque con diferente comportamiento para los distintos grupos de edad. Al igual que otros países desarrollados, en España han sido especialmente llamativos el descenso que que ha sufrido la mortalidad infantil, el aumento de mortalidad en la última década para edades intermedias y la estabilidad, e incluso ligero aumento, para las edades elevadas debido al aumento de población longeva que se ha producido en los últimos años. log(qx) edats log(qx) edats any any (a) Hombres (b) Mujeres Figura 1.1: Gráfico de descenso de la mortalidad para algunas edades Las tendencias recientes de la mortalidad han sido descritas entre otros por Olivieri (2001), quien define al respecto dos procesos: el de expansión y el de rectangularización de la curva de supervivientes, Figuras 1.2 (a) y 1.3 (a) para hombres y mujeres, respectivamente. La curva de supervivientes se desplaza hacia edades muy elevadas, aspecto que se ha denominado expansión y que se traduce también en un desplazamiento de las moda de la curva de muertes, Figuras 1.2 (b) y 1.3 (b), hacia esas mismas edades. Un incremento de la concentración de muertes en torno a la moda de la curva de muertes implica a su vez, que la curva de supervivientes se

TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA

TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA Ana Debón 1 Ramón Sala 2 Universitat de Valencia Resumen: Es una realidad que la esperanza de vida está aumentando en todos los países desarrollados. Así

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

-- -- ~ INTRODUCCIÓN VII

-- -- ~ INTRODUCCIÓN VII -- -- ~ '" Indz'ce general li J PRÓLOGO INTRODUCCIÓN XIII XVII 1. PROBABILIDAD DE MUERTE Y SUPERVIVENCIA 1 1.1. Introducción 1 1.2. Principales variables aleatorias 1 1.2.1. Edad de muerte de un recién

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA

NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA A NTONIO F ERNÁNDEZ M ORALES MÁLAGA, 2006 Nociones Básicas de Estadística Actuarial Vida Antonio Fernández Morales Málaga, 2006 Nociones Básicas de Estadística

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS La estimación o proyección de ingresos futuros puede llevarse a cabo mediante diferentes métodos estadísticos de extrapolación, entre ellos: sistema

Más detalles

Modelos Estocásticos para los Sistemas Pensionales de Prestación Definida y de Ahorro Individual Día 1 : Rentas Vitalicias.

Modelos Estocásticos para los Sistemas Pensionales de Prestación Definida y de Ahorro Individual Día 1 : Rentas Vitalicias. Modelos Estocásticos para los Sistemas Pensionales de Prestación Definida y de Ahorro Individual Día 1 : Rentas Vitalicias. Minicurso para el IX Coloquio Internacional de Estadística Métodos Estadísticos

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

EL SEGURO DE VIDA EN ESPAÑA. LAS TABLAS BIOMÉTRICAS RICARDO LOZANO ARAGÜÉS DIRECTOR GENERAL ESPAÑA

EL SEGURO DE VIDA EN ESPAÑA. LAS TABLAS BIOMÉTRICAS RICARDO LOZANO ARAGÜÉS DIRECTOR GENERAL ESPAÑA EL SEGURO DE VIDA EN ESPAÑA. LAS TABLAS BIOMÉTRICAS RICARDO LOZANO ARAGÜÉS DIRECTOR GENERAL ESPAÑA ÍNDICE 1º. TENDENCIAS DEMOGRÁFICAS. 2º. LOS SEGUROS DE VIDA EN ESPAÑA. Instrumentos de previsión social.

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

Aplicación de los modelos de credit scoring para instituciones microfinacieras.

Aplicación de los modelos de credit scoring para instituciones microfinacieras. Econ. Reynaldo Uscamaita Huillca Aplicación de los modelos de credit scoring para instituciones microfinacieras. OBJETIVO Proporcionar al ejecutivo del sistema financiero un modelo solido que permita tomar

Más detalles

Trabajo No 2. Análisis Supervivencia y Seguros de Vida

Trabajo No 2. Análisis Supervivencia y Seguros de Vida Trabajo No 2. Análisis Supervivencia y Seguros de Vida Norman Giraldo Gómez Curso de Actuaría - Escuela de Estadística ndgirald@unal.edu.co Octubre, 2010 1. Notas 1. La notación (xm) indica mujer de edad

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS 1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS Primera Evaluación TEMA 1. NÚMEROS REALES Distintos tipos de números. Recta real. Radicales. Logaritmos. Notación científica. Calculadora. TEMA 2.

Más detalles

PRESENTACIÓN DE LA TESIS 1 1. INTRODUCCIÓN 4 2. ESTRUCTURA Y METODOLOGÍA DE LA TESIS 8

PRESENTACIÓN DE LA TESIS 1 1. INTRODUCCIÓN 4 2. ESTRUCTURA Y METODOLOGÍA DE LA TESIS 8 Índice ÍNDICE PRESENTACIÓN DE LA TESIS 1 1. INTRODUCCIÓN 4 2. ESTRUCTURA Y METODOLOGÍA DE LA TESIS 8 PARTE I: INSTRUMENTOS MATEMÁTICOS DE LA TEORÍA DE LOS SUBCONJUNTOS BORROSOS 19 CAPÍTULO 1: ELEMENTOS

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2009/2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad INTRODUCCIÓN

Más detalles

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL Contextualización En la primera parte del curso hemos estudiado el análisis clásico de series temporales en el que se asume que una serie temporal resulta de la

Más detalles

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ Estacionalidad Qué es la estacionalidad? La estacionalidad es una componente que se presenta en series de frecuencia inferior a la anual (mensual, trimestral,...), y supone oscilaciones a corto plazo de

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Capítulo 8. Tipos de interés reales. 8.1. Introducción

Capítulo 8. Tipos de interés reales. 8.1. Introducción Capítulo 8 Tipos de interés reales 8.1. Introducción A lo largo de los capítulos 5 y 7 se ha analizado el tipo de interés en términos nominales para distintos vencimientos, aunque se ha desarrollado más

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

Máster Universitario en Ciencias Actuariales y Financieras Universidad de Alcalá Curso Académico 2014/2015 Primer Curso Segundo Cuatrimestre

Máster Universitario en Ciencias Actuariales y Financieras Universidad de Alcalá Curso Académico 2014/2015 Primer Curso Segundo Cuatrimestre INTRODUCCIÓN A LA BIOMETRÍA. Tablas de Mortalidad y Supervivencia Máster Universitario en Ciencias Actuariales y Financieras Universidad de Alcalá Curso Académico 2014/2015 Primer Curso Segundo Cuatrimestre

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

DIPLOMADO ACTUALIZACIO N EN MATEMA TICAS PARA PROFESIONALES DE BANCA Y SEGUROS

DIPLOMADO ACTUALIZACIO N EN MATEMA TICAS PARA PROFESIONALES DE BANCA Y SEGUROS DIPLOMADO ACTUALIZACIO N EN MATEMA TICAS PARA PROFESIONALES DE BANCA Y SEGUROS Objetivo y alcance del diplomado General Brindar al participante una actualización en diferentes temas de probabilidad y estadística,

Más detalles

Modelos económicos discretos versus continuos: un estudio comparativo a través de la amortización de hipotecas

Modelos económicos discretos versus continuos: un estudio comparativo a través de la amortización de hipotecas Modelos económicos discretos versus continuos: un estudio comparativo a través de la amortización de hipotecas Apellidos, nombre Departamento Centro Cortés López, Juan Carlos; Romero Bauset, José Vicente;

Más detalles

DSegún el Prof. Gil Peláez1, una operación

DSegún el Prof. Gil Peláez1, una operación 38-47 Planificación fin copia 1 26/12/03 12:52 Página 38 PLANIFICACION FINANCIERA Estudio comparativo entre las operaciones financieras ciertas y las operaciones financiero-actuariales LAS OPERACIONES

Más detalles

Los pronósticos pueden ser utilizados para conocer el comportamiento futuros en muchas fenómenos, tales como:

Los pronósticos pueden ser utilizados para conocer el comportamiento futuros en muchas fenómenos, tales como: TEMA 1: PRONÓSTICOS 1.1. Introducción Pronostico es un método mediante el cual se intenta conocer el comportamiento futuro de alguna variable con algún grado de certeza. Existen disponibles tres grupos

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

T. 5 Inferencia estadística acerca de la relación entre variables

T. 5 Inferencia estadística acerca de la relación entre variables T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas

Más detalles

Estudio comparativo de los currículos de probabilidad y estadística español y americano

Estudio comparativo de los currículos de probabilidad y estadística español y americano Estudio comparativo de los currículos de probabilidad y estadística español y americano Jaldo Ruiz, Pilar Universidad de Granada Resumen Adquiere las mismas capacidades en Probabilidad y Estadística un

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

Cómo obtener un Modelo de Regresión Logística Binaria con SPSS

Cómo obtener un Modelo de Regresión Logística Binaria con SPSS Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo obtener un Modelo de Regresión Logística Binaria con SPSS Vanesa Berlanga-Silvente y Ruth Vilà-Baños Fecha de presentación:

Más detalles

Predicción de tablas de vida dinámicas hasta el año 2025 para México

Predicción de tablas de vida dinámicas hasta el año 2025 para México COLEGIO DE POSTGRADUADOS INSTITUCION DE ENSEÑANZA E INVESTIGACION EN CIENCIAS AGRÍCOLAS CAMPUS MONTECILLO POSTGRADO DE SOCIOECONOMÍA, ESTADÍSTICA E INFORMATICA ECONOMÍA Predicción de tablas de vida dinámicas

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Regresión lineal múltiple

Regresión lineal múltiple . egresión lineal múltiple egresión lineal múltiple. Introducción. En el tema anterior estudiamos la correlación entre dos variables y las predicciones que pueden hacerse de una de ellas a partir del conocimiento

Más detalles

Enseñanza e Investigación en Ciencias Sociales

Enseñanza e Investigación en Ciencias Sociales Cursos Metodológicos para la Enseñanza e Investigación en Ciencias Sociales Organizado por: Fundación General UGr-Empresa Facultad de Ciencias Económicas y Empresariales Universidad de Granada Econometría

Más detalles

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt Controladores PID Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional de Quilmes Marzo 2002 Controladores

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo VI Concepto de error 6.1 Introducción Uno de los temas más importantes en

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Guías Excel 2007 Matrices Guía 77

Guías Excel 2007 Matrices Guía 77 MATRICES Las hojas de cálculo poseen prestaciones interesantes la gestión de matrices de tipo matemático. Unas consisten en facilitar los cálculos matriciales y otras están orientadas a cálculos estadísticos.

Más detalles

Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida

Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida Algunas consideraciones sobre los efectos en bienestar de contratos con Costos de Administración Variables en los Seguros Ordinarios de Vida Fernando Solís Soberón Emma Izquierdo Ortega Diciembre 1992

Más detalles

ESTADÍSTICA. [análisis regresivo]

ESTADÍSTICA. [análisis regresivo] ESTADÍSTICA wikipedia.com la estadística es una ciencia con base matemática referente a la recolección, análisis e interpretación de datos, que busca explicar condiciones regulares en fenómenos de tipo

Más detalles

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Departamento de Matemática Aplicada Universidad Granada Introducción El Cálculo o Análisis Numérico es

Más detalles

Segmentación y predicción en los modelos de tarificación

Segmentación y predicción en los modelos de tarificación Segmentación y predicción en los modelos de tarificación Caro Carretero, Raquel. rcaro@doi.icai.upcomillas.es Departamento de Organización Industrial Universidad Pontificia Comillas. ICAI RESUMEN El análisis

Más detalles

Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y):

Una serie temporal o cronológica es en una sucesión de valores que adopta una variable (Y): INTRODUCCIÓN Nos vamos a ocupar ahora de estudiar un fenómeno desde la perspectiva temporal, observando su evolución a través del tiempo, lo que se denomina investigación diacrónica o longitudinal, en

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS ESCUELA DE POSGRADO FACULTAD DE CIENCIAS MATEMÁTICAS UNIDAD DE POSGRADO CONSTRUCCIÓN DE TABLAS DINÁMICAS DE MORTALIDAD MEDIANTE EL MÉTODO DE LEE CARTER Y SU APLICACIÓN

Más detalles

Espacio afín. Transformaciones afines y movimientos

Espacio afín. Transformaciones afines y movimientos Capítulo Espacio afín. Transformaciones afines y movimientos. Espacio afín y espacio afín métrico Definición. El espacio afín (tridimensional) está constituido por los siguientes elementos. El espacio

Más detalles

Simulación Computacional. Tema 1: Generación de números aleatorios

Simulación Computacional. Tema 1: Generación de números aleatorios Simulación Computacional Tema 1: Generación de números aleatorios Irene Tischer Escuela de Ingeniería y Computación Universidad del Valle, Cali Typeset by FoilTEX 1 Contenido 1. Secuencias pseudoaleatorias

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INSTITUTO DE ECONOMIA Oficina de Publicaciones Casilla 76, Correo 17, Santiago.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INSTITUTO DE ECONOMIA Oficina de Publicaciones Casilla 76, Correo 17, Santiago. ISSN:0716-7334 PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE INSTITUTO DE ECONOMIA Oficina de Publicaciones Casilla 76, Correo 17, Santiago INTRODUCCION AL ANALISIS DE RENTAS VITALICIAS Gonzalo Edwards G. *

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

Modelos de elección binaria

Modelos de elección binaria Modelos de elección binaria Prof.: Begoña Álvarez García Econometría II 2007-2008 Estamos interesados en la ocurrencia o no-ocurrencia de un cierto evento (ej: participación en el mercado laboral; inversión

Más detalles

Estadística I. Finanzas y Contabilidad

Estadística I. Finanzas y Contabilidad Estadística I. Finanzas y Contabilidad Práctica 1: INTRODUCCIÓN AL USO DE SOFTWARE ESTADÍSTICO OBJETIVO: Los estudiantes deberán conocer el funcionamiento de la Hoja de Cálculo EXCEL y utilizarla para

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

MATEMÁTICAS ACTUARIALES Y OPERACIONES DE SEGUROS

MATEMÁTICAS ACTUARIALES Y OPERACIONES DE SEGUROS MATEMÁTICAS ACTUARIALES Y OPERACIONES DE SEGUROS F. SANDOYA Se puede citar libremente este texto, pero señalando claramente la cita. CITAR ESTE TEXTO COMO: Sandoya, Fernando; Matemáticas Actuariales y

Más detalles

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS Badler, Clara E. Alsina, Sara M. 1 Puigsubirá, Cristina B. 1 Vitelleschi, María S. 1 Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE) TRATAMIENTO DE BASES DE DATOS

Más detalles

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7 Página 1 de 7 1 CRITERIOS DE EVALUACIÓN 1.1 SECUENCIA POR CURSOS DE LOS CRITERIOS DE EVALUACION PRIMER CURSO 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones

Más detalles

5. SISTEMA DE COSTOS ESTÁNDAR

5. SISTEMA DE COSTOS ESTÁNDAR 5. SISTEMA DE COSTOS ESTÁNDAR Entre los diversos procedimientos técnicos que los ejecutivos y funcionarios de las organizaciones privadas, públicas o no gubernamentales, tienen que utilizar para administrar

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

La rentabilidad actuarial como método de comparación de las operaciones financieras y aseguradoras

La rentabilidad actuarial como método de comparación de las operaciones financieras y aseguradoras La rentabilidad actuarial como método de comparación de las operaciones financieras y aseguradoras Autores: José Enrique Devesa Carpio. Universidad de Valencia. Facultad de Economía. Avenida de los Naranjos

Más detalles

Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS

Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS ESTIMACIÓN DE UN MODELO DE REGRESIÓN LINEAL CON EXCEL La Herramienta para análisis Regresión

Más detalles

Creación de bases biométricas para el seguro de dependencia. SCOR inform - Noviembre 2012

Creación de bases biométricas para el seguro de dependencia. SCOR inform - Noviembre 2012 Creación de bases biométricas para el seguro de dependencia SCOR inform - Noviembre 2012 Creación de bases biométricas para el seguro de dependencia Autor Laure de Montesquieu Responsable del Centro de

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE 1. Fórmulas utilizadas en la simulación de la evolución del precio de una acción

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

Métodos empleados en la elaboración de proyecciones sobre mortalidad

Métodos empleados en la elaboración de proyecciones sobre mortalidad Asociación Internacional de la Seguridad Social Decimoquinta Conferencia Internacional de Actuarios y Estadísticos de la Seguridad Social Helsinki, Finlandia, 23-25 de mayo de 2007 Métodos empleados en

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Universidad del CEMA Master en Finanzas 2006

Universidad del CEMA Master en Finanzas 2006 Universidad del CEMA Master en Finanzas 2006 La Simulación como una herramienta para el manejo de la incertidumbre Fabián Fiorito ffiorito@invertironline.com Tel.: 4000-1400 Hoy en día la simulación es

Más detalles

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO Jorge Galbiati Riesco En este apunte se da una visión general sobre algunos procedimientos en el análisis en series de tiempo. Inicialmente presentamos

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD

ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD MODALIDAD CIENTÍFICO-TÉCNICO 1. NOMBRE DE LA MATERIA: Matemáticas II 2. NOMBRE DEL COORDINADOR: Miguel Delgado Pineda (mdelgado@mat.uned.es,

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA Capítulo 4 INFERENCIA ESTADÍSTICA 4.1. Introducción Inferir: Sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. La estadística, ciencia o rama de las Matemáticas que se

Más detalles

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL Ramón Mahía Febrero 013 Prof. Ramón Mahía ramon.mahia@uam.es Qué se entiende por Multicolinealidad en el marco

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K CONTENIDOS 1. Introducción a las colas poissonianas. 2. Modelo de colas poissoniano con un servidor M/M/1 3. Modelo con un servidor y capacidad finita M/M/1/K 4. Modelo con varios servidores M/M/c. Fórmula

Más detalles

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3.

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3. LECTURA 6.3 SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México CAPITULO 3 SIMULACIÓN 3.1 INTRODUCCIÓN Simulación es el desarrollo de un modelo lógico-matemático de

Más detalles

Curso. Análisis Estadístico de Datos Climáticos

Curso. Análisis Estadístico de Datos Climáticos Curso I-1 Análisis Estadístico de Datos Climáticos Distribuciones de Probabilidad Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Montevideo, Uruguay 2011 I-2 DISTRIBUCIONES DE PROBABILIDAD

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 DEPARTAMENTO: MATEMÁTICAS MATERIA: MATEMÁTICAS ACADÉMICAS CURSO: 3º ESO OBJETIVOS DEL ÁREA DE MATEMÁTICAS A LAS ENSEÑANZAS ACADÉMICAS 3º ESO

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO

ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO Máster en ESTADÍSTICA APLICADA Y ESTADÍSTICA PARA EL SECTOR PÚBLICO Temario MÓDULO 0: HOMOGENEIZACIÓN Homogeneización en bases matemáticas 3,0 Cr. ECTS Espacios de Medida Algebra. Matrices y Determinantes

Más detalles

Serie Documentos de Trabajo. Tablas de Mortalidad CNSF 2000-I y CNSF 2000-G. Documento de trabajo No. 80

Serie Documentos de Trabajo. Tablas de Mortalidad CNSF 2000-I y CNSF 2000-G. Documento de trabajo No. 80 Tablas de Mortalidad CNSF 2-I y CNSF 2-G Manuel Mendoza Ramírez Ana María Madrigal Gómez Evangelina Martínez Torres Mayo 2 Serie Documentos de Trabajo Documento de trabajo No. 8 Índice 1. Antecedentes

Más detalles

El concepto de integral con aplicaciones sencillas

El concepto de integral con aplicaciones sencillas El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS UNIVERSIDAD DE LOS ANDES FACULTAD DE ODONTOLOGIA MERIDA EDO. MERIDA PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS Mérida, Febrero 2010. Integrantes: Maria A. Lanzellotti L. Daniela Paz U. Mariana

Más detalles

Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo en convertidores CC-CC clásicos

Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo en convertidores CC-CC clásicos ESCUELA POLITÉCNICA SUPERIOR Grupo de Sistemas Electrónicos de Potencia PROYECTO FIN DE CARRERA INGENIERÍA INDUSTRIAL Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo

Más detalles