RESUMEN EJECUTIVO 3 1. INTRODUCCIÓN 5 2. AUTOS ELÉCTRICOS 6 3. ANTECEDENTES 8 4. FRENO REGENERATIVO EXPERIENCIAS INTERNACIONALES 15

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESUMEN EJECUTIVO 3 1. INTRODUCCIÓN 5 2. AUTOS ELÉCTRICOS 6 3. ANTECEDENTES 8 4. FRENO REGENERATIVO 11 5. EXPERIENCIAS INTERNACIONALES 15"

Transcripción

1 CONTENIDOS CONTENIDOS 1 RESUMEN EJECUTIVO 3 1. INTRODUCCIÓN PREÁMBULO OBJETIVOS DEL INFORME ESTRUCTURA DEL DOCUMENTO 5 2. AUTOS ELÉCTRICOS INTRODUCCIÓN ANTECEDENTES HISTÓRICOS SITUACIÓN ACTUAL 7 3. ANTECEDENTES MÁQUINAS DE CORRIENTE CONTINUA TIPOS DE FRENADO CONTRAMARCHA FRENADO DINÁMICO FRENADO REGENERATIVO CONTROL MEDIANTE DISPOSITIVOS DE ESTADO SÓLIDO FRENO REGENERATIVO INTERFASE PARA UN FLUJO BIDIRECCIONAL COVERTIDOR STEP UP EXPERIENCIAS INTERNACIONALES CONCLUSIONES 17 1

2 7. RECOMENDACIONES 18 REFERENCIAS 19 2

3 RESUMEN EJECUTIVO El presente documento presenta la fase de recopilación de antecedentes del Proyecto Auto Eléctrico del curso Electrónica de Potencia del Departamento de Ingeniería Eléctrica de la Universidad de Chile. En este se hace énfasis al estudio del Estado del Arte del Frenado Regenerativo. El proyecto se centra en analizar la factibilidad de implementar un sistema de frenado regenerativo en el proyecto, indicando las ventajas y desventajas que presenta. Además se mencionan los circuitos de electrónica de potencia necesarios para realizar una implementación de este tipo. Las principales conclusiones de esta entrega se resumen en los siguientes puntos: Al desacelerar o frenar, el motor eléctrico actúa como generador, recuperando la energía cinética desde las ruedas, convirtiéndola en electricidad que puede ser guardada en la batería. Sistemas comerciales en uso permiten recuperar alrededor de un 30% de la energía cinética típicamente perdida como calor en frenos de fricción. En la actualidad hay una gran preocupación por el medio ambiente y por la disminución del impacto medioambiental. Esta preocupación se extiende al campo de la automoción justificadamente. Existen tres tipos de frenados eléctricos que son: contramarcha, frenado dinámico y frenado regenerativo. La velocidad de un motor de corriente continua con excitación externa, en derivación o compuesto puede variarse mediante cualquiera de las tres maneras siguientes: cambiando la resistencia de campo, cambiando el voltaje en el inducido o cambiando la resistencia en el inducido. Durante el frenado regenerativo, el motor ya sea de corriente alterna o de corriente continua deja de consumir electricidad y comienza a generar. En el manejo de motores con sistema de frenado regenerativo, el flujo de potencia a través del convertidor de interfase se invierte durante el frenado regenerativo mientras la energía cinética asociada con la inercia del motor y la carga se recupere y sea alimentado de vuelta al sistema. La complejidad del sistema de frenado regenerativo a hecho difícil su introducción en forma masiva en los diversos mercados de los vehículos eléctricos. 3

4 Un sistema de frenado regenerativo no es capaz de cubrir todos los requerimientos de frenado de un automóvil. NO recomendamos la utilización de este sistema ya que presenta un grado de complejidad y estudio necesario para su correcta utilización. Sin embargo es importante estudiar las bases teóricas y funcionamiento para una posible incorporación en el futuro. 4

5 1. Introducción El presente documento entrega una revisión del estado del arte del frenado regenerativo en motores eléctricos, en particular en los motores de corriente continua. Corresponde a la fase A del proyecto denominado Auto Eléctrico del curso Electrónica de Potencia (EM722). 1.1 Preámbulo Al desacelerar o frenar, el motor eléctrico actúa como generador, recuperando la energía cinética desde las ruedas, convirtiéndola en electricidad que puede ser guardada en la batería. Frenos de fricción tradicionales son requeridos, así como un sistema de control electrónico que permita maximizar la recuperación de energía y pueda operar el sistema dual de frenos. Sistemas comerciales en uso permiten recuperar alrededor de un 30% de la energía cinética típicamente perdida como calor en frenos de fricción. La energía recuperada al freno puede reducir el consumo energético en 15% en conducción en ciudad. 1.2 Objetivos del Informe El objetivo general del proyecto es diseñar y construir durante un semestre un auto eléctrico a partir de un automóvil convencional. Por este motivo los integrantes del proyecto dividieron el trabajo en 5 investigaciones temáticas, siendo uno de estos temas el estado del arte del frenado regenerativo, aplicable en primera instancia a un auto eléctrico. Se entregaran recomendaciones referente a las tecnologías aplicadas y las ventajas y desventajas de la implementación de estos sistemas. 1.3 Estructura del Documento En la siguiente sección se entrega la motivación que genero la idea del auto eléctrico y que rompió el paradigma del motor de combustión interna. En el capítulo tres se detallan los antecedentes que definen el concepto de frenado regenerativo, partiendo de un motor de corriente continua, junto con explicar las ventajas actuales de aplicar este tipo de sistema. En el capítulo cuatro se dan a conocer los elementos teóricos del freno regenerativo y los circuitos de electrónica de potencia necesarios para su implementación. A continuación en el capítulo cinco se dan a conocer aplicaciones del sistema de frenado regenerativo a nivel mundial 5

6 (en la actualidad) y finalmente en el capítulo seis y siete, se concluye en relación al tema tratado para dar las recomendaciones al proyecto que se esta desarrollando. 2. Autos Eléctricos 2.1 Introducción El desarrollo de este tipo de motores viene como con secuencia de mejorar las características de los motores eléctricos (ME) utilizados anteriormente como alternativa a los Motores de Combustión Interna (MCI), debido a la limitación de recursos energéticos y la contaminación. 2.2 Antecedentes Históricos En 1839 se construye en Escocia el primer Vehículo Eléctrico, aunque resulto ser muy poco competitivo con los vehículos de vapor que se fabricaban en Inglaterra. En 1870 se desarrolló también en el Reino Unido, un poco más evolucionado, y con una velocidad punta de 13 Km/h Y así continuamente a lo largo de la historia de la automoción se fueron creando diferentes modelos de prototipos de motores eléctricos En 1920 las prestaciones del Vehículo de Combustión Interna (MCI), superan notablemente las del Vehículo Eléctrico a partir de este año y hasta mediado de los sesenta el VE pasa al olvido. En 1970 la crisis del petróleo de esta época incrementa el interés por las energías renovables y mediante la financiación de los gobiernos promueve la Investigación y Desarrollo de nuevas alternativas energéticas, por lo que aparecen nuevos desarrollos de prototipos de VE más evolucionados. A pesar de todos los avances tecnológicos el principal problema de estos vehículos era la autonomía. En 1976 se presenta en USA la primera Ley Pública para la Investigación, desarrollo y demostración del vehículo eléctrico e híbrido. Desde este año y hasta la actualidad, son numerosas las iniciativas tanto de organismos oficiales como del sector privado para hacer que este tipo de vehículos sea una realidad. La evolución tecnológica de los componentes eléctricos ha sido en los últimos años espectacular. El avance en la tecnología de semiconductores ha permitido la aplicación de los motores de inducción, que elimina el problema de desgaste de los colectores y escobillas de los primeros motores de corriente continua. Otro aspecto importante en la evolución de los motores híbridos es el control de velocidad, donde el primitivo sistema, que variaba la corriente por conexión y desconexión de resistencias en serie, fue sustituido por rectificadores de silicio y los transistores que permiten un ajuste fijo de la velocidad y de una forma más eficaz. Disminuyendo las perdidas eléctricas notablemente. 6

7 El control de los motores eléctricos ha mejorado sustancialmente gracias a los microprocesadores. Sin embargo, las baterías no han evolucionado notablemente en cuanto a su desarrollo y abaratamiento, y hoy en día es el componente que más investigación y desarrollo necesita para mejorar las prestaciones y precios de estos vehículos. La tecnología híbrida fue diseñada para operar en zonas urbanas, donde existan problemas de polución ambiental, por lo que el sistema híbrido es muy adecuado para cumplir con el objetivo de reducción de emisiones contaminantes atmosféricas, especialmente en buses de transporte público. Operando únicamente como vehículo eléctrico, con la energía guardada en las baterías, tienen una autonomía de 80 a 200 Km. La llegada del siglo XXI encuentra a las automotrices realizando multimillonarias inversiones para que los vehículos que fabrican dejen la alimentación a gasolina o gasoil, y se encaminen, decididamente, hacia la motorización semieléctrica. Las cifras en juego son enormes. Se estima que cada una de las cinco marcas que dominan el mercado mundial (General Motors, Ford, Toyota, Daimler Chrysler y Volkswagen) mueven unos millones de dólares al año en este tipo de desarrollos. 2.3 Situación Actual En la actualidad hay una gran preocupación por el medio ambiente y por la disminución del impacto medioambiental. Esta preocupación se extiende al campo de la automoción justificadamente. La investigación sobre nuevas fuentes de energía no está igualmente avanzada en todas las compañías. Las marcas japonesas y europeas se centran en una mejor combustión y eficiencia en los motores actuales. En cambio, las grandes marcas americanas, empujadas por la estricta legislación sobre emisiones de California, se ven obligadas a investigar en este sentido. De esta manera, está aumentando la competitividad entre los fabricantes para desarrollar la tecnología más respetuosa con el medio ambiente, a la vez que se deben satisfacer las necesidades de los clientes. Esta competitividad es la manera más rápida de conseguir las mejoras medioambientales que estamos buscando, lo que no evita que se deban redactar normas que los fabricantes deban cumplir. Los fabricantes deben entender la protección medioambiental como una parte de la estrategia de la empresa dirigida a aumentar el valor a largo plazo. La industria de la automoción se está dedicando a investigar nuevos combustibles y fuentes de energía que resulten viables, fáciles de implantar y sean menos contaminantes. El objetivo es fabricar vehículos que contaminen menos, que sean más rápidos y más eficientes, todo ello a un razonable coste para los consumidores. Los tipos de motores que son adecuados para utilizar en los automóviles son los motores de combustión interna y los motores eléctricos. Otros, como las turbinas, que se utilizan en otros medios de transporte, no permiten las prestaciones de 7

8 aceleración a las que estamos acostumbrados si no es con un tamaño excesivamente grande. El agotamiento de los recursos fósiles es un hecho, si nos centramos en la disponibilidad de recursos energéticos, sobretodo de combustibles fósiles como el petróleo. Ciertas empresa de petróleo o de aceite mineral como por ejemplo EXXON o la BP afirman que disponemos de petróleo para 50 ó 100 años, que no hay motivo de preocupación. La realidad es que se ha estado estudiando esta disponibilidad y está constatado que estas empresas saben cual es el nivel de disponibilidad que actualmente hay de petróleo mineral. El petróleo barato, el líquido, se vaciará en unos 50 años, pero en este punto habremos utilizado la mitad de las fuentes de petróleo conocidas. La otra mitad es la que es muy costosa de extraer, es decir no esta disponible económicamente. Esto no quiere decir que se nos termina el petróleo, quiere decir que tendremos una bajada del crudo barato, quiere decir que si queremos mantener el mismo nivel de consumo de petróleo tendremos que hacer grandes inversiones y no podemos cambiar la tendencia de agotamiento. Tendremos un problema porque los precios del petróleo aumentaran. 3. Antecedentes 3.1 Máquinas de Corriente Continua La Máquina de corriente continua (C.C.) es constructivamente la más compleja entre las máquinas rotatorias tradicionales; sin embargo, fue la primera en ser construida, usada y desarrollada, allá por el año 1880, seguramente por el desconocimiento que los ingenieros de la época tenían de los circuitos de corriente alterna y de los campos magnéticos variables. Aparte de su mayor complejidad mecánica (escobillas, porta escobillas, colector, etc.), las máquinas de C.C. son menos robustas, requieren de mayor mantención y necesitan de una unión eléctrica entre la armadura (móvil) y el estator (fijo). Esto hace que, a igual potencia y tensión, una máquina de C.C. sea de mayor precio, requiera de mayor espacio y tenga un mayor costo de mantención que una máquina de corriente alterna. A pesar de lo anterior, las máquinas de C.C. han sido usadas y siguen usándose en forma amplia, principalmente como motor, en una gran variedad de accionamientos de industrias mineras, papeleras, etc., en especial cuando se requiere: Amplio rango de velocidades, ajustable de modo continuo. Una característica torque velocidad, constante, o una combinación de ambas por tramos. Rápida aceleración, desaceleración o cambio de sentido de giro (como en laminadoras de metal, ascensores, tracción, etc.). 8

9 Control de velocidad de muy alta calidad y precisión (como en el tensionado de laminadoras de papel). Correlación exacta de la velocidad entre dos o más partes del proceso industrial. Frenado regenerativo. 3.2 Tipos de Frenado Algunos motores eléctricos son frenados mediante dispositivos mecánicos operados magnéticamente. Otros, con frenados reostáticos. En los frenos mecánicos existe el inconveniente que el frenado depende fundamentalmente del estado de las superficies rozantes y en los frenos reostáticos aparece el problema de los relays y otros dispositivos electromecánicos, desgastables y sujetos a fallas. Ambos sistemas requieren una mantención periódica. A continuación describimos tres tipos de frenados eléctricos que son: contramarcha, frenado dinámico y frenado regenerativo Contramarcha Este sistema es utilizado en algunas aplicaciones especiales como, por ejemplo, algunas laminadoras las cuales deben detenerse súbitamente para luego cambiar de sentido de giro. Esto se efectúa sin suspender la excitación del motor e invirtiendo la tensión en la armadura. En el instante en que se ha invertido la tensión, el voltaje aplicado a la armadura y la f.c.e.m. son casi iguales y aditivas, luego, luego, para no ocasionar daños por el impulso de sobre corriente es necesario intercalar en serie una resistencia que es usualmente un 85% mayor que la resistencia de arranque normal Frenado Dinámico Es motor es llevado rápidamente a reposo haciendo uso de la acción generativa del motor. Si los terminales de la armadura son desconectados y se conecta a la armadura una resistencia de valor bajo, manteniendo la excitación, entonces se produce una detención del motor ya que la fuerza electromotriz produce una corriente en la resistencia con lo que la energía cinética acumulada en las partes rotatorias se disipa rápidamente en forma de calor. 9

10 El valor ohmico de la resistencia es determinante en la rapidez, con lo que se consume la energía mecánica y por ello el tiempo requerido para frenar, generalmente se ha adoptado un valor de esta resistencia tal que produzca un impulso inicial del orden de 180% del valor inicial, sin embargo puede ser traspasado para frenados más violentos permitiendo mayores corrientes y el consiguiente chisporroteo en el colector. Esta forma de frenado sin embargo, no provee un frenado constante ya que a medida que la velocidad baja, en forma proporcional baja la generación, al principio el frenado es máximo y luego va reduciéndose a cero cuando el motor se detiene. Esto significa que el motor no está bloqueado cuando el motor no gira, luego se hace necesaria la existencia de frenado mecánico que provea este bloqueo. Si bien el frenado no es constante, es posible hacerlo controlando la excitación del generador, para lo cual basta con implementar un control realimentado mediante tiristores Frenado Regenerativo El término frenado regenerativo, a diferencia de los anteriores en que el motor es llevado a completo reposo, se aplica a un sistema donde la carga ejerce torque negativo sobre el motor, impulsándolo como si fuese un generador logrando devolver energía a la fuente. Este tipo de frenado es una modificación del frenado dinámico, requiere que la tensión inducida sea mayor que la tensión de la fuente. Esto significa que la rotación debe ser mayor que la normal, condición que es posible alcanzar solamente si la carga es de un carácter persecutorio, como en un ferrocarril en marcha cuesta abajo, un ascensor que está descendiendo o un automóvil cuesta abajo. Fuera del exceso de velocidad, se puede general si se aumenta la intensidad de excitación lo suficiente como para superar la tensión de la fuente; en otros casos, cuando varios motores impulsan una carga común, puedes ser conectados en diversas combinaciones serie o paralelo. El frenado regenerativo es de aplicación también, cuando se desea mantener limitada la velocidad de una carga dada. 3.3 Control Mediante Dispositivos de Estado Sólido La velocidad de un motor de corriente continua con excitación externa, en derivación o compuesto puede variarse mediante cualquiera de las tres maneras siguientes: cambiando la resistencia de campo, cambiando el voltaje en el inducido o cambiando la resistencia en el inducido. Quizá el más usual de estos métodos sea el de control de voltaje en el inducido, ya que permite amplias variaciones de velocidad sin afectar el momento de torsión máximo del motor. 10

11 Con el paso de los años se han desarrollado numerosos sistemas de control del motor para aprovechar los altos momentos de torsión y las velocidades variables que están disponibles a partir del control del voltaje en el inducido de los motores de C.C.. En la época en que aún no se tenían los componentes electrónicos de estado sólido, era muy difícil producir una variación del voltaje de C.C.. En realidad, la manera habitual de variar el voltaje en el inducido de un motor de C.C. era colocarle por separado su propio generador de C.C.. No obstante lo anterior, el avance tecnológico ha permitido un vertiginoso avance en la fabricación de dispositivos de estado sólido y por ende los costos de estos elementos han dejado de ser inalcanzables. Por este motivo su utilización en la electrónica de potencia permite tener control y variar casi cualquier voltaje del que se disponga y por ende con dispositivos de control con los cuales antes solo se soñaba. 4. Durante el frenado regenerativo, el motor ya sea de corriente alterna o de corriente continua deja de consumir electricidad y comienza a generar. Para que esta energía pueda ser utilizada en un mejoramiento de eficiencia, se requiere de los dispositivos de control necesarios. En los puntos siguientes, se detallan los circuitos de electrónica de potencia necesarios para realizar esta tarea en motores de C.A. y C.C. respectivamente. 4.1 Interfase para un Flujo Bidireccional En ciertas aplicaciones, por ejemplo, en el manejo de motores con sistema de frenado regenerativo, el flujo de potencia a través del convertidor de interfase se invierte durante el frenado regenerativo mientras la energía cinética asociada con la inercia del motor y la carga se recupere y sea alimentado de vuelta al sistema. Una forma de abordar esto en el pasado fue utilizar 2 convertidores en base a tiristores de frecuencia de línea conectados back to back, como aparece en la figura A. Durante el modo normal, el convertidor 1 actúa como un rectificador y la potencia fluye de la entrada ac al lado dc. Durante el frenado regenerativo, los pulsos de la compuerta (gate) al tiristor del convertidor 1 son bloqueados y el convertidor 2 opera en un modo invertido donde la polaridad de v d se mantiene igual pero la dirección de i d es invertida. La forma en que fue abordado esto presenta ciertas desventajas como: La corriente de entrada i s tiene una forma de onda distorsionada y el factor de potencia es bajo. 11

12 el voltaje dc V d es limitado en el modo inverso debido al requerimiento mínimo del ángulo de excitación del convertidor 2 mientras opere en el modo inverso Existe la posibilidad de falla en la conmutación en el modo inverso debido a los disturbios de la línea ac. Es posible sobre pasar estas limitaciones al usar un convertidor en modo de switch (switch-mode), como aparece en la figura B. Figura A Figura B 4.2 Covertidor Step Up La figura 1 muestra un convertidor step-up. Su principal aplicación es en el abastecimiento de potencia regulada dc y el frenado regenerativo de los motores dc. 12

13 El mecanismo esencial de control de la figura 1 es apagar (off) y prender (on) la potencia del switch semiconductor. Cuando el switch esta ON, la corriente a través de la inductancia aumenta y la energía almacenada en la inductancia aumenta también. Cuando el switch esta off, la corriente por la inductancia sigue circulando vía el diodo, La red RC y de regreso a la fuente. La inductancia esta descargando su energía y la polaridad del voltaje de la inductancia es tal que el terminal conectado al diodo es positivo con respecto al otro terminal conectado a la fuente. Se puede ver entonces que el voltaje del capacitor debe ser mayor que el voltaje de la fuente y por lo tanto este convertidor es conocido como boost converter. Se puede apreciar que la inductancia actual como una bomba, recibiendo energía cuando el switch esta cerrado y transfiriendo la a la red RC cuando esta abierta. Cuando el switch esta cerrado, el diodo no conduce y el capacitor sustenta el voltaje de salida. El circuito puede ser dividido en dos partes, como muestra la figura 2. Siempre y cuando el tiempo constante RC es mucho mayor que el periodo de abierto (on-period) del switch, el voltaje de salida se mantendrá más o menos constante. Cuando el switch esta abierto, el circuito equivalente que es aplicable corresponde a la figura 3. En este caso existe un único circuito conectado. 13

14 14

15 5. Experiencias Internacionales La complejidad del sistema de frenado regenerativo a hecho difícil su introducción en forma masiva en los diversos mercados de los vehículos eléctricos. Sin embargo es posible encontrar aplicaciones tan diversas como: monopatines, bicicletas, sillas de ruedas, trenes, automóviles, camiones, automóviles híbridos y también en ascensores. 15

16 16

17 6. Conclusiones Los controladores en la mayoría de los vehículos que tienen un sistema de frenado regenerativo, el motor es usado como generador para recargar las baterías. Durante el frenado regenerativo parte de la energía cinética es absorbida por los frenos y transformada en calor. Por ende, el aumento en el rango de un vehículo eléctrico alcanza entre el 5% y 10%. Junto con esto, se reduce el desgaste de los frenos y por consiguiente, se reducen los costos de mantenimiento. La energía regenerada queda expresada por la siguiente ecuación: Donde P regen = -e regen M vehicle a V e regen = Eficiencia del freno regenerativo (%) M vehicle = Mas del vehículo A = Aceleración del vehículo (m/s 2 ) V = Velocidad del Vehículo (m/s) Dado que para el desarrollo del proyecto se tiene un motor de potencia media, el cual se incorporara en una auto relativamente liviano, la potencia regenerada será aun menor (en base a las ecuaciones anteriores). Un sistema de frenado regenerativo no es capaz de cubrir todos los requerimientos de frenado de un automóvil. Debido a esto al diseñar un auto eléctrico se debe considerar la co-existencia de un sistema de frenos hidráulicos y si se desea el sistema regenerativo. Estos, son dos sistemas esencialmente distintos y separados. La integración de estos sistemas requiere de la construcción de un sistema computacional dedicado a mantener coordinado todo el tiempo ambos sistemas de frenado de modo que la acción del conductor se reparta de manera adecuada entre ambos sistemas de frenado sin que este último perciba que se trata de dos sistemas. 17

18 7. Recomendaciones En este trabajo se pudo apreciar la gran utilidad que presenta la incorporación de un sistema de frenado regenerativo en el motor, tal como se indico en las conclusiones. Dado que este proyecto (auto eléctrico) es a pequeña escala, con fines académicos y considerando los limites de tiempo en la puesta en marcha de esta obra, NO recomendamos la utilización de este sistema ya que presenta un grado de complejidad y estudio necesario para su correcta utilización. Sin embargo es importante estudiar las bases teóricas y funcionamiento para una posible incorporación en el futuro. Junto con lo anterior se debe mencionar que al aplicación de un sistema de frenado regenerativo depende de la conexión interna del motor y del sistema de control que se este utilizando. Por lo tanto representa un nivel de complejidad superior en un proyecto que cuenta con poco tiempo para su desarrollo. Es importante destacar que no se realizó un estudio de factibilidad económica ya que prematuramente se determino la infactibilidad técnica para nuestro caso. 18

19 REFERENCIAS [1] POWER ELECTRONICS. Mohan, Undeland, Robins. John Wiley & Sons, INC. Segunda edición. [2] MÁQUINAS ELÉCTRICAS. Morales, Palma, Romo, Valdenegro. Publicación C/5. Universidad de Chile, Departamento de Ingeniería Eléctrica. [3] MEMORIA DE TÍTULO, Lehuede. Universidad de Chile, Departamento de Ingeniería Eléctrica (1977). [4] MÁQUINA ELÉCTRICAS. Chapman. McGraw-Hill. Segunda Edición. 19

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

6º Tema.- Accionamientos y actuadores eléctricos.

6º Tema.- Accionamientos y actuadores eléctricos. Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 6º Tema.- Accionamientos y actuadores eléctricos. Huelva, Noviembre 2008 Profesor: Rafael Sánchez Sánchez Página 1 de

Más detalles

VEHÍCULOS ELÉCTRICOS, VEHÍCULOS ELÉCTRICOS HIBRIDOS PLUG-IN, E VEHÍCULOS HIBRIDOS ELÉCTRICOS

VEHÍCULOS ELÉCTRICOS, VEHÍCULOS ELÉCTRICOS HIBRIDOS PLUG-IN, E VEHÍCULOS HIBRIDOS ELÉCTRICOS VEHÍCULOS ELÉCTRICOS, VEHÍCULOS ELÉCTRICOS HIBRIDOS PLUG-IN, E VEHÍCULOS HIBRIDOS ELÉCTRICOS RESUMEN QUÉ SON LOS VEHÍCULOS ELÉCTRICOS, VEHÍCULOS ELÉCTRICOS HIBRIDOS PLUG-IN, E VEHÍCULOS HIBRIDOS ELÉCTRICOS?

Más detalles

Así funcionan EL RINCÓN los vehículos Híbridos TÉCNICO eléctricos

Así funcionan EL RINCÓN los vehículos Híbridos TÉCNICO eléctricos Vehículo Hibrido eléctrico Un vehículo híbrido es un vehículo de propulsión alternativa que combina un motor movido por energía eléctrica proveniente de baterías y un motor de combustión interna. Una de

Más detalles

CONTROL ELECTRÓNICO DE MOTORES CA. Tema 4

CONTROL ELECTRÓNICO DE MOTORES CA. Tema 4 CONTROL ELECTRÓNICO DE MOTORES CA Tema 4 2 INDICE 3.1 MOTORES DE CORRIENTE ALTERNA... 4 3.2 REGULACIÓN DE LA VELOCIDAD... 4 CONTROL DE LA TENSIÓN Y FRECUENCIA DE LÍNEA.... 5 CONTROL VECTORIAL... 10 3.3.

Más detalles

INDICE Capitulo I. 1. Introducción a los Principios de las Máquinas Capitulo 2. Transformadores

INDICE Capitulo I. 1. Introducción a los Principios de las Máquinas Capitulo 2. Transformadores INDICE Prefacio XXI Capitulo I. 1. Introducción a los Principios de las Máquinas 1.1. Las máquinas eléctricas y los transformadores en la vida cotidiana 1 1.2. Nota sobre las unidades y notación Notación

Más detalles

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR Máquinas Eléctricas Las máquinas eléctricas son convertidores electromecánicos capaces de transformar energía desde un sistema eléctrico a un sistema mecánico o viceversa Flujo de energía como MOTOR Sistema

Más detalles

Motores Síncronos. Florencio Jesús Cembranos Nistal. Revista Digital de ACTA 2014. Publicación patrocinada por

Motores Síncronos. Florencio Jesús Cembranos Nistal. Revista Digital de ACTA 2014. Publicación patrocinada por Florencio Jesús Cembranos Nistal Revista Digital de ACTA 2014 Publicación patrocinada por 2014, Florencio Jesús Cembranos Nistal 2014, Cualquier forma de reproducción, distribución, comunicación pública

Más detalles

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián GENERADORES DE CORRIENTE ALTERNA Ley de Faraday La Ley de inducción electromagnética ó Ley Faraday se basa en los experimentos que Michael

Más detalles

Sistemas Traccionarios de Corriente Alterna. Estudio y Descripción de componentes. ORGANIZACIÓN AUTOLIBRE Gabriel González Barrios

Sistemas Traccionarios de Corriente Alterna. Estudio y Descripción de componentes. ORGANIZACIÓN AUTOLIBRE Gabriel González Barrios Sistemas Traccionarios de Corriente Alterna Estudio y Descripción de componentes. ORGANIZACIÓN AUTOLIBRE Gabriel González Barrios Los vehículos eléctricos se han desarrollado en forma lenta, pero en cada

Más detalles

Generadores de corriente continua

Generadores de corriente continua Generadores de corriente continua Concepto Los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo

Más detalles

Introducción Convertidores Electrónicos

Introducción Convertidores Electrónicos 1 TEMA 0: INTRODUCCIÓN A LA ELECTRÓNICA DE POTENCIA BIBLIOGRAFÍA o FISHER, M. J.: Power Electronics Ed. PWS - KENT Publishing Company. o RASHID, M. H.: Electrónica de Potencia Ed. Prentice Hall International

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

ELEL10. Generadores de CC. Dinamos

ELEL10. Generadores de CC. Dinamos . Dinamos los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira

Más detalles

ELEL10. Fuerza contraelectromotriz (fcem)

ELEL10. Fuerza contraelectromotriz (fcem) Los motores de corriente directa transforman la energía eléctrica en energía mecánica. Impulsan dispositivos tales como malacates, ventiladores, bombas, calandrias, prensas, preforadores y carros. Estos

Más detalles

VARIADORES DE FRECUENCIA

VARIADORES DE FRECUENCIA VARIADORES DE FRECUENCIA REPASO DE CONCEPTOS ELECTROTÉCNICOS. Como paso previo a la lectura de estos apuntes, sería conveniente un repaso a los conceptos básicos de los motores asíncronos de jaula de ardilla,

Más detalles

OPINIÓN DEL SUBGRUPO DE TRANSPORTES DE LA PTE HPC SOBRE EL VEHÍCULO ELÉCTRICO

OPINIÓN DEL SUBGRUPO DE TRANSPORTES DE LA PTE HPC SOBRE EL VEHÍCULO ELÉCTRICO ANTECEDENTES Con el objetivo de conocer la opinión de los miembros de la PTE HPC sobre el vehículo eléctrico, se distribuyó un cuestionario entre los miembros del Subgrupo de aplicación de las pilas de

Más detalles

EL FUTURO DE LA MOVILIDAD Y EL TRANSPORTE EL VEHÍCULO ELÉCTRICO? Parte I 1

EL FUTURO DE LA MOVILIDAD Y EL TRANSPORTE EL VEHÍCULO ELÉCTRICO? Parte I 1 EL FUTURO DE LA MOVILIDAD Y EL TRANSPORTE EL VEHÍCULO ELÉCTRICO? Parte I Junio2013 EL FUTURO DE LA MOVILIDAD Y EL TRANSPORTE EL VEHÍCULO ELÉCTRICO? Parte I 1 Contenido: 1. Introducción 2. Parte I: Qué

Más detalles

El control de motores para los microrrobots

El control de motores para los microrrobots SEMINARIO DE DISEÑO Y CONSTRUCCIÓN DE MICRORROBOTS El control de motores para los microrrobots TRABAJO REALIZADO POR: Felipe Antonio Barreno Herrera. Estudiante de Ing. Téc. Industrial esp. Electrónica

Más detalles

CONVERSIÓN DE AUTO CONVENCIONAL A ELÉCTRICO ORGANIZACIÓN AUTOLIBRE

CONVERSIÓN DE AUTO CONVENCIONAL A ELÉCTRICO ORGANIZACIÓN AUTOLIBRE CONVERSIÓN DE AUTO CONVENCIONAL A ELÉCTRICO ORGANIZACIÓN AUTOLIBRE La conversión del vehículo convencional a tracción eléctrica consta de diferentes etapas que permiten lograr una correcta transformación

Más detalles

VEHICULO HIBRIDO ELÉCTRICO (HEV)

VEHICULO HIBRIDO ELÉCTRICO (HEV) VEHICULO HIBRIDO ELÉCTRICO (HEV) INTRODUCCIÓN Un vehículo híbrido es aquel que combina dos o más sistemas, que a su vez consumen fuentes de energía diferentes. Uno de los sistemas es el generador de la

Más detalles

MOTORES ELÉCTRICOS. Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales

MOTORES ELÉCTRICOS. Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales MOTORES ELÉCTRICOS Proyectos de Ingeniería Mecánica Ing. José Carlos López Arenales Motores Eléctricos Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por

Más detalles

ARRANQUE Y CONTROL DE LA VELOCIDAD DE MOTORES TRIFÁSICOS DE INDUCCIÓN Resumen

ARRANQUE Y CONTROL DE LA VELOCIDAD DE MOTORES TRIFÁSICOS DE INDUCCIÓN Resumen ARRANQUE Y CONTROL DE LA VELOCIDAD DE MOTORES TRIFÁSICOS DE INDUCCIÓN Resumen Norberto A. Lemozy 1 INTRODUCCIÓN A continuación se presenta un resumen de los distintos métodos de arranque y de control de

Más detalles

Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA

Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA Resumen Máquinas eléctricas de corriente alterna: constitución, funcionamiento y aplicaciones características. José Ángel Laredo García jgarci2@platea.pntic.mec.es CONVERTIDORES ELECTROMECÁNICOS DE ENERGÍA

Más detalles

ESCUELA ESPECIALIZADA EN INGENIERÍA ITCA-FEPADE. Diseño de circuitos de control para válvulas proporcionales en sistemas hidráulicos

ESCUELA ESPECIALIZADA EN INGENIERÍA ITCA-FEPADE. Diseño de circuitos de control para válvulas proporcionales en sistemas hidráulicos Diseño de circuitos de control para válvulas proporcionales en sistemas hidráulicos Ing. Rigoberto Alfonso Morales Resumen. Este artículo trata sobre los aspectos relacionados a la técnica de control electrónico

Más detalles

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ REPASAMOS CONCEPTOS MAGNETISMO Imanes naturales : atraen al hierro. Características de los imanes: -La atracción magnética es más intensa en los extremos de la barra magnética. -Un imán se parte en varios

Más detalles

INTRODUCCIÓN A LA ELECTRÓNICA DE POTENCIA

INTRODUCCIÓN A LA ELECTRÓNICA DE POTENCIA INTRODUCCIÓN A LA ELECTRÓNICA DE POTENCIA Introducción En el mundo de hoy la electrónica de potencia cuenta con cuantiosas aplicaciones en diferentes áreas, encontramos aplicaciones en el control de velocidad

Más detalles

Frenado Eléctrico de motores de Corriente Continua

Frenado Eléctrico de motores de Corriente Continua Frenado Eléctrico de motores de Corriente Continua Regla de la mano izquierda o regla de Fleming Frenado mecánico Una corriente en un campo magnético produce una fuerza que no siempre es de acción motora

Más detalles

23 de abril de 2013 1

23 de abril de 2013 1 23 de abril de 2013 1 2 3 La mejora de los transporte públicos en las zonas urbanas debe de ser una prioridad en las sociedades modernas. Autobuses Seguros Eficientes /Rentables Silenciosos Accesibles

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

INTRODUCCION. Generadores de CC. Dinamos

INTRODUCCION. Generadores de CC. Dinamos INTRODUCCION Los Motores y generadores eléctricos, son un grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina

Más detalles

TEGNOLOGIA ELECTROMECÀNICA V SEMESTRE - 2014

TEGNOLOGIA ELECTROMECÀNICA V SEMESTRE - 2014 TEGNOLOGIA ELECTROMECÀNICA V SEMESTRE - 2014 DOCENTE: JULIO CÉSAR BEDOYA PINO INGENIERO ELECTRÓNICO ASIGNATURA: ELECTRÓNICA DE POTENCIA TIRISTOR Es un componente electrónico constituido por elementos semiconductores

Más detalles

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna.

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. CONTENIDO: 6.1. El motor asíncrono trifásico, principio de funcionamiento. 6.2. Conjuntos constructivos. 6.3. Potencia, par y rendimiento.

Más detalles

EL PRIMER TODO CAMINO CON TECNOLOGÍA HÍBRIDA DEL MUNDO

EL PRIMER TODO CAMINO CON TECNOLOGÍA HÍBRIDA DEL MUNDO EL PRIMER TODO CAMINO CON TECNOLOGÍA HÍBRIDA DEL MUNDO LEXUS Y LA NOVEDOSA TECNOLOGÍA HÍBRIDA En marzo de 997, Toyota Motor Corporation anunció la creación de un nuevo tren de transmisión denominado Toyota

Más detalles

Funcionamiento Hibrido.

Funcionamiento Hibrido. Funcionamiento Hibrido. Electiva III, Electrónica Automotriz Chiliquinga Toro Víctor Alfonso Ramón Chávez Juan Gabriel Ingeniería Electrónica, Universidad Politécnica Salesiana, Quito, Ecuador junior_23v@hotmail.com

Más detalles

EL PROBLEMA DEL ENCENDIDO

EL PROBLEMA DEL ENCENDIDO EL PROBLEMA DEL ENCENDIDO El principal problema del encendido tradicional que usa ruptor es la necesidad de que la corriente primaria se establezca rápidamente para que, al cortarla haya llegado ya su

Más detalles

Los vehículos eléctricos

Los vehículos eléctricos Los vehículos eléctricos Loreto Inés Roás Valera U n i v e r s i d a d A n t o n i o d e N e b r i j a 2 5 / 1 1 / 2 0 1 1 1 ÍNDICE Introducción 2 Medio ambiente 3 Eficiencia energética 4 Consumo 4 Sistema

Más detalles

TEMA 1: LA ELECTRICIDAD

TEMA 1: LA ELECTRICIDAD TEMA 1: LA ELECTRICIDAD 1.- Producción y consumo de la electricidad Existen muchas formas de producir electricidad. Las podemos separar en energías no renovables y energías renovables. Las energías no

Más detalles

SISTEMAS DE EXCITACIÓN

SISTEMAS DE EXCITACIÓN 1 SISTEMAS DE EXCITACIÓN INTRODUCCIÓN El sistema de excitación entendido como la fuente de corriente de campo para la excitación principal de una máquina, incluyendo los medios de control es el punto inicial

Más detalles

LEY EXPOSICION DE MOTIVOS

LEY EXPOSICION DE MOTIVOS (P. de la C. 3969) LEY Para enmendar el inciso (e) de la Sección 3030.03 de la Ley 1-2011, según enmendada, conocida como Código de Rentas Internas para un Nuevo Puerto Rico, a los fines de ampliar el

Más detalles

DESCRIPCION DE LOS NUMEROS ANSI / IEEE

DESCRIPCION DE LOS NUMEROS ANSI / IEEE DESCRIPCION DE LOS NUMEROS ANSI / IEEE 1. Elemento principal, es el dispositivo de iniciación, tal como el interruptor de control, relé de tensión, interruptor de flotador, etc., que sirve para poner el

Más detalles

Proyecto energías limpias. Auto solar Planteamiento del problema.

Proyecto energías limpias. Auto solar Planteamiento del problema. Proyecto energías limpias. Auto solar Planteamiento del problema. #40 En la ciudad de México existe un gran problema, que es la contaminación ambiental. México (DF), la capital de la Republica de México

Más detalles

Dudas más comunes del transporte eléctrico

Dudas más comunes del transporte eléctrico Dudas más comunes del transporte eléctrico Cuál es el mejor vehículo para convertir? El vehículo de elección depende del uso que usted quiera darle y del dinero que quiera invertir. La primera recomendación

Más detalles

6. Máquinas eléctricas.

6. Máquinas eléctricas. 6. Máquinas eléctricas. Definiciones, clasificación y principios básicos. Generadores síncronos. Campos magnéticos giratorios. Motores síncronos. Generadores de corriente continua. Motores de corriente

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

DISEÑO Y CONSTRUCCIÓN DE UN TROCEADOR CONMUTADO POR CORRIENTE PARA REALIZAR UN CONTROL DE VELOCIDAD A UN MOTOR DC

DISEÑO Y CONSTRUCCIÓN DE UN TROCEADOR CONMUTADO POR CORRIENTE PARA REALIZAR UN CONTROL DE VELOCIDAD A UN MOTOR DC DISEÑO Y CONSTRUCCIÓN DE UN TROCEADOR CONMUTADO POR CORRIENTE PARA REALIZAR UN CONTROL DE VELOCIDAD A UN MOTOR DC Jeanette Sánchez 1, Edgar Villalva 2, Carlos Castillo 3, Fabricio Cedeño 4, Douglas Gómez

Más detalles

FÍSICA II : CORRIENTE Y CIRCUITOS ELÉCTRICOS GUÍA DE PROBLEMAS

FÍSICA II : CORRIENTE Y CIRCUITOS ELÉCTRICOS GUÍA DE PROBLEMAS UNSL ENJPP FÍSICA II : CORRIENTE Y CIRCUITOS ELÉCTRICOS GUÍA DE PROBLEMAS 1. Una plancha eléctrica, con una resistencia de 30,25 Ω, está conectada a una línea eléctrica de 220 V de voltaje. Cuál es la

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.4.

Más detalles

CONVERTIDORES AC-AC TEMA 6. 6.2 Monofásico de corriente alterna AC - Voltaje Controlador. 6.1. Introducción.

CONVERTIDORES AC-AC TEMA 6. 6.2 Monofásico de corriente alterna AC - Voltaje Controlador. 6.1. Introducción. FACULTAD NACIONAL DE INGENIERIA 6.1. Introducción. CONVERTIDORES AC-AC La electrónica de potencia ac-ac convertidor de corriente alterna, en forma genérica, acepta de energía eléctrica de un sistema y

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A)

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A) Flujo magnético Φ El campo magnético se representa a través de las líneas de fuerza. La cantidad de estas líneas se le denomina flujo magnético. Se representa por la letra griega Φ; sus unidades son weber

Más detalles

7º) ESTABILIZADORES DE TENSIÓN - EN QUE CONSISTEN DE QUÉ Y COMO PROTEGEN UTILIZACIÓN PARA CORRIENTE MONOFÁSICA Y TRIFÁSICA

7º) ESTABILIZADORES DE TENSIÓN - EN QUE CONSISTEN DE QUÉ Y COMO PROTEGEN UTILIZACIÓN PARA CORRIENTE MONOFÁSICA Y TRIFÁSICA 7º) ESTABILIZADORES DE TENSIÓN - EN QUE CONSISTEN DE QUÉ Y COMO PROTEGEN UTILIZACIÓN PARA CORRIENTE MONOFÁSICA Y TRIFÁSICA Un Estabilizador de Tensión es fundamentalmente un aparato que recibe en la entrada

Más detalles

Control electrónico de Motores: Conceptos Arranque motores AC Control electrónico de motores DC Control electrónicos motores AC

Control electrónico de Motores: Conceptos Arranque motores AC Control electrónico de motores DC Control electrónicos motores AC Universidad de Jaén Escuela Politécnica Superior Electrónica Industrial Control electrónico de Motores: Conceptos Arranque motores AC Control electrónico de motores DC Control electrónicos motores AC 19/11/2007

Más detalles

Corriente Alterna: actividades complementarias

Corriente Alterna: actividades complementarias Corriente Alterna: actividades complementarias Transformador Dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna. Para el caso de un transformador

Más detalles

TIRISTORES Y OTROS DISPOSITIVOS DE DISPARO

TIRISTORES Y OTROS DISPOSITIVOS DE DISPARO TIRISTORES Y OTROS DISOSITIVOS DE DISARO Oscar Montoya Figueroa Los tiristores Los tiristores son dispositivos de amplio uso en las áreas de electrónica comercial e industrial, y de los que funcionan con

Más detalles

Capítulo V Motores eléctricos

Capítulo V Motores eléctricos Capítulo V Motores eléctricos Hay dos cosas infinitas: el Universo y la estupidez humana. Y del Universo no estoy seguro. Albert Einstein Diseño y construcción de un robot de vigilancia con paralizador

Más detalles

LA REALIDAD DEL COCHE ELÉCTRICO. Isidoro Gracia Plaza Ingeniero Industrial

LA REALIDAD DEL COCHE ELÉCTRICO. Isidoro Gracia Plaza Ingeniero Industrial LA REALIDAD DEL COCHE ELÉCTRICO Isidoro Gracia Plaza Ingeniero Industrial Cultura y hábitos El actual usuario de un vehículo automóvil es generalmente propietario, lo utiliza intensamente, incluso para

Más detalles

1. QUÉ SON LOS ARMÓNICOS?

1. QUÉ SON LOS ARMÓNICOS? POWER ELECTRONICS ARMÓNICOS EN SECTORES INDUSTRIALES 1. QUÉ SON LOS ARMÓNICOS? Se puede demostrar que cualquier forma de onda periódica (repetitiva) puede ser representada como una serie de ondas senoidales

Más detalles

Tecnología híbrida de Toyota: Presentación del nuevo Prius

Tecnología híbrida de Toyota: Presentación del nuevo Prius Tecnología híbrida de Toyota: Presentación del nuevo Prius Monografía ASEPA 18 de junio de 2010 José Manuel Méndez Brand Senior Manager Toyota España, S.L.U. Contenido presentación Introducción Historia

Más detalles

Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke

Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke Aplicación Medidas de la tensión de salida en variadores de velocidad con osciloscopios digitales ScopeMeter Serie 190 de Fluke Por Viditec La utilización de variadores de velocidad o "inversores de frecuencia"

Más detalles

Unidad Académica de Ingeniería Eléctrica. Programa del curso: Máquinas Eléctricas I y Lab.

Unidad Académica de Ingeniería Eléctrica. Programa del curso: Máquinas Eléctricas I y Lab. Universidad Autónoma de Zacatecas Unidad Académica de Ingeniería Eléctrica Programa del curso: Máquinas Eléctricas I y Lab. Carácter Semestre recomendado Obligatorio 6o. Sesiones Créditos Antecedentes

Más detalles

AUTOBUS URBANO ELÉCTRICO ELÉCTRICO-HIBRIDO TEMPUS.

AUTOBUS URBANO ELÉCTRICO ELÉCTRICO-HIBRIDO TEMPUS. AUTOBUS URBANO ELÉCTRICO ELÉCTRICO-HIBRIDO TEMPUS. Tempus es el primer autobús con tracción eléctrica y sistema de generación de energía a bordo, íntegramente desarrollado y fabricado en España. Técnicamente

Más detalles

Unidad Didactica. Motores Asíncronos Monofásicos

Unidad Didactica. Motores Asíncronos Monofásicos Unidad Didactica Motores Asíncronos Monofásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

Unidad II: Actuadores

Unidad II: Actuadores Unidad II: Actuadores Los actuadores tienen como misión generar el movimiento de los elementos del robot según las órdenes dadas por la unidad de control. Se clasifican en tres grandes grupos, según la

Más detalles

CONTROLADORES DE FRECUENCIA VARIABLE

CONTROLADORES DE FRECUENCIA VARIABLE CONTROLADORES DE FRECUENCIA VARIABLE 2.1. Velocidad base La velocidad de la flecha del motor a voltaje, frecuencia y carga nominal se conoce como velocidad base, cuando se varía la frecuencia de alimentación

Más detalles

Sistemas de Electrónica de Potencia

Sistemas de Electrónica de Potencia Capítulo 1 Sistemas de Electrónica de otencia 1.1 Introducción La Electrónica de otencia (E) es una de las ramas de la Electrónica que más se ha desarrollado en los últimos tiempos. Esto se puede atribuir,

Más detalles

AHORRO DE ENERGÍA CON VARIADORES DE VELOCIDAD

AHORRO DE ENERGÍA CON VARIADORES DE VELOCIDAD BENEFICIOS DE LOS VARIADORES DE VELOCIDAD PREPARADO POR: ING. ALBERTO SANDOVAL RODRIGUEZ CONSULTOR EN ECONOMIA DE ENERGIA DOCENTE: FACULTAD DE ELECTRICIDAD Y ELECTRONICA -UNI www.cenytec.com VENTAJAS ECONOMICAS

Más detalles

Las máquinas eléctricas de acuerdo a sus usos se dividen en:

Las máquinas eléctricas de acuerdo a sus usos se dividen en: MÁQUINAS ELÉCTRICAS 1. CLASIFICACIÓN DE LAS MÁQUINAS ELÉCTRICAS 1.1. CLASIFICACIÓN POR USOS Las máquinas eléctricas de acuerdo a sus usos se dividen en: A. Generadores.- Transforman la energía mecánica

Más detalles

CARGADOR DE ACUMULADORES CON GENERADOR A INDUCCION

CARGADOR DE ACUMULADORES CON GENERADOR A INDUCCION CARGADOR DE ACUMULADORES CON GENERADOR A INDUCCION Ing. Victor Hugo KURTZ (*) Ing. Fernando BOTTERON (**) (*) UNIVERSIDAD NACIONAL DE MISIONES Facultad de Ingeniería - Dpto. de Electrónica Juan Manuel

Más detalles

TITULO: DISEÑO Y CONSTRUCCIÓN DE UN INVERSOR TRIFASICO TIPO PUENTE CON TRANSISTORES

TITULO: DISEÑO Y CONSTRUCCIÓN DE UN INVERSOR TRIFASICO TIPO PUENTE CON TRANSISTORES TITULO: DISEÑO Y CONSTRUCCIÓN DE UN INVERSOR TRIFASICO TIPO PUENTE CON TRANSISTORES Ricardo García Paredes 1, William Torres Escandón 2, Darío Zúñiga Burgos 3, Norman Chootong Ching 4 1 Ingeniero Electrónico

Más detalles

La tecnología de los motores eléctricos en vehículos.

La tecnología de los motores eléctricos en vehículos. Monografía: Vehículos híbridos y eléctricos La tecnología de los motores eléctricos en vehículos. Jaime Rodríguez Arribas y Marcos Lafoz Pastor Dpto. Ingeniería Eléctrica Tracción eléctrica en vehículos

Más detalles

1.Consumo de Energía a Nivel Mundial (hasta 2012)

1.Consumo de Energía a Nivel Mundial (hasta 2012) 1.Consumo de Energía a Nivel Mundial (hasta 2012) Energía Nuclear Fuentes Renovables Gas Natural Petróleo Carbón Japón EUA OECD Europa Francia Alemania Italia Inglaterra Canadá China Corea China Taipei

Más detalles

Física Máquinas Eléctricas

Física Máquinas Eléctricas MAQUINAS ROTANTES Nota: este es un extracto del apunte del ing. Narciso Beyrut Ruiz (Universidad Veracruzana, México) está resumido y adaptado al programa de Diseño Industrial. 2.1 GENERALIDADES. Las máquinas

Más detalles

CNCI, Mazo 2006. Generadores de CA. Grupos Electrógenos Generadores de CA pág. 1 de 34

CNCI, Mazo 2006. Generadores de CA. Grupos Electrógenos Generadores de CA pág. 1 de 34 Generadores de CA Grupos Electrógenos Generadores de CA pág. 1 de 34 Tabla de contenido Tema 1: Generación de corriente alterna (CA)...3 Describir la generación de corriente alterna (CA) y establecer los

Más detalles

Preguntas y respuestas sobre el coche eléctrico

Preguntas y respuestas sobre el coche eléctrico 14 de abril de 2010 Preguntas y respuestas sobre el coche eléctrico Qué opina Greenpeace sobre el coche eléctrico? Greenpeace es partidario de la electrificación del transporte porque ésta permite una

Más detalles

Vehículos híbridos y eléctricos Diseño del tren propulsor

Vehículos híbridos y eléctricos Diseño del tren propulsor Vehículos híbridos y eléctricos Diseño del tren propulsor Vehículos híbridos y eléctricos Diseño del tren propulsor José María López Martínez D XTRA EDITORIAL Consulte la página www.dextraeditorial.com

Más detalles

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO CAPITULO VI AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO 6.1 INTRODUCCION. En el Capítulo V estudiamos uno de los dispositivos más útiles para detectar el paso de una corriente por un circuito: El galvanómetro

Más detalles

INFORME INSTALACIONES HÍBRIDAS

INFORME INSTALACIONES HÍBRIDAS INFORME INSTALACIONES HÍBRIDAS Instalaciones Híbridas pág. 1 INDICE 1. INTRODUCCION Y CONCEPTOS GENERALES 3. 2. ELEMENTOS DE LAS INSTALACIONES HÍBRIDAS...4. 3. INSTALACIONES HÍBRIDAS HABITUALES...5. 4.

Más detalles

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO DPTO. TECNOLOGÍA (ES SEFAAD) UD 4.-ELECTCDAD UD 4.- ELECTCDAD. EL CCUTO ELÉCTCO. ELEMENTOS DE UN CCUTO 3. MAGNTUDES ELÉCTCAS 4. LEY DE OHM 5. ASOCACÓN DE ELEMENTOS 6. TPOS DE COENTE 7. ENEGÍA ELÉCTCA.

Más detalles

Fuentes de alimentación

Fuentes de alimentación Fuentes de alimentación Electrocomponentes SA Temario Reguladores lineales Descripción de bloques Parámetros de selección Tipos de reguladores Productos y aplicaciones Reguladores switching Principio de

Más detalles

Inicialmente, sin aplicar ninguna corriente a las bobinas (que también reciben el nombre de fases) y con M en una posición cualquiera, el imán

Inicialmente, sin aplicar ninguna corriente a las bobinas (que también reciben el nombre de fases) y con M en una posición cualquiera, el imán FUNCIONAMIENTO motor paso a paso es un dispositivo electromecánico que convierte una serie de impulsos eléctricos en desplazamientos angulares discretos, lo que significa es que es capaz de avanzar una

Más detalles

Uso de vehículos eléctricos para el reparto de paquetería en el ámbito urbano

Uso de vehículos eléctricos para el reparto de paquetería en el ámbito urbano 21 Uso de vehículos eléctricos para el reparto de paquetería en el ámbito urbano 1. RESUMEN El Grupo La Veloz Cooperativa nace en junio de 1993, a iniciativa de un grupo de jóvenes que, en situación de

Más detalles

ALTA TECNOLOGÍA SUIZA en el mundo del automóvil para el MAÑANA

ALTA TECNOLOGÍA SUIZA en el mundo del automóvil para el MAÑANA ALTA TECNOLOGÍA SUIZA en el mundo del automóvil para el MAÑANA Suiza, tierra de montañas, relojes, chocolates y coches! Los automóviles no pueden ser producidos en serie allí, pero pocos o ninguno de los

Más detalles

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 Por Guillermo Martín Díaz Alumno de: 1º Ingeniería Informática Curso 2005/2006 ËQGLFH Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 2 0RWRUHVGH&RUULHQWHFRQWLQXD Son los mas

Más detalles

Inversores De Frecuencia

Inversores De Frecuencia Inversores De Frecuencia QUÉ ES UN INVERSOR? Un inversor es un control para motores, que hace variar la velocidad a motores C.A. De inducción. Esta variación la logra variando la frecuencia de alimentación

Más detalles

VÁLVULAS Y VARIADORES DE VELOCIDAD COMO ELEMENTO FINAL DE CONTROL

VÁLVULAS Y VARIADORES DE VELOCIDAD COMO ELEMENTO FINAL DE CONTROL VÁLVULAS Y VARIADORES DE VELOCIDAD COMO ELEMENTO FINAL DE CONTROL José Acedo Sánchez Repsol YPF RESUMEN Como el título indica, se trata de la utilización del variador de velocidad como elemento final de

Más detalles

Capítulo 2. Breve descripción de los convertidores electrónicos de potencia.

Capítulo 2. Breve descripción de los convertidores electrónicos de potencia. Capítulo.- Breve descripción de los convertidores electrónicos de potencia. Capítulo. Breve descripción de los convertidores electrónicos de potencia. Un convertidor electrónico de potencia es un circuito

Más detalles

MONOGRAFÍA A 2 ASEPA

MONOGRAFÍA A 2 ASEPA Instituto Universitario de Investigación del Automóvil MONOGRAFÍA A 2 ASEPA VEHÍCULOS HÍBRIDOS Y ELÉCTRICOS ÍNDICE LA TECNOLOGÍA DE LOS VEHÍCULOS HÍBRIDOS Y ELÉCTRICOS 1. INTRODUCCIÓN 2. VEHÍCULOS HÍBRIDOS

Más detalles

MOTOR ELECTRICO TIPOS Y FUNDAMENTOS

MOTOR ELECTRICO TIPOS Y FUNDAMENTOS Hay muchos tipos de motores Motor eléctrico Existen varios tipos de motores y continuará proliferando nuevos tipos de motores según avance la tecnología. Pero antes de adentrarnos en la clasificación,

Más detalles

Incremento de la producción ya que la velocidad del motor de puede aumentar a elección sin intervenir en el proceso.

Incremento de la producción ya que la velocidad del motor de puede aumentar a elección sin intervenir en el proceso. Características Los reguladores de velocidad son controles electrónicos de motores que controlan la velocidad y el par de los motores de corriente alterna convirtiendo las magnitudes físicas de frecuencia

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA ELECTRONICA DE POTENCIA Compilación y armado: Sergio Pellizza Dto. Apoyatura Académica I.S.E.S. Los tiristores son una familia de dispositivos semiconductores de cuatro capas (pnpn), que se utilizan para

Más detalles

El Vehículo Eléctrico

El Vehículo Eléctrico CAPÍTULO 4 El Vehículo Eléctrico 4.1 INTRODUCCIÓN. Como se mencionó a lo largo del capítulo 1, el sistema se desarrolla sobre un vehículo eléctrico infantil, cuyo funcionamiento difiere, en gran medida,

Más detalles

MODULO Nº6 TIRISTORES UNIDIRECCIONALES

MODULO Nº6 TIRISTORES UNIDIRECCIONALES MODULO Nº6 TIRISTORES UNIDIRECCIONLES UNIDD: CONVERTIDORES C - CC TEMS: Tiristores. Rectificador Controlado de Silicio. Parámetros del SCR. Circuitos de Encendido y pagado del SCR. Controlador de Ángulo

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

UPS s STAND BY: Su aplicación

UPS s STAND BY: Su aplicación UPS s STAND BY: Su aplicación Los UPS s STAND BY de ENERGIT S.A., tienen la finalidad de proveer energía de emergencia durante un corte de luz. Por su concepto de funcionamiento, donde el inversor arranca

Más detalles

ENERGÍA SOLAR FOTOVOLTAICA

ENERGÍA SOLAR FOTOVOLTAICA ENERGÍA SOLAR FOTOVOLTAICA I. INTRODUCCIÓN El sol como fuente de energía renovable La energía solar, asociada al enorme flujo de radiaciones emitido por el sol y capturado por nuestro planeta, es el origen

Más detalles

Sistema de control de velocidad y giro de un motor de corriente continua

Sistema de control de velocidad y giro de un motor de corriente continua Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica Sistema de control de velocidad y giro de un motor de corriente continua Por: Mariana Jiménez Gamboa Ciudad Universitaria

Más detalles

Cómo movernos para ser un Hogar + Sostenible

Cómo movernos para ser un Hogar + Sostenible Cómo movernos para ser un Hogar + Sostenible La movilidad de las personas siempre ha sido un aspecto fundamental de la actividad humana, ha aumentado de forma muy significativa en todo el mundo, nos ha

Más detalles