Organización del Computador I 1er. Parcial 17-Mayo Turno:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Organización del Computador I 1er. Parcial 17-Mayo-2005. Turno:"

Transcripción

1 Nota: En el parcial se puede tener la cartilla de Assembler y la de seguimiento (formatos de instrucción) pero no se pueden compartir. Para aprobar el parcial, son necesarios 6(seis) puntos. Para promocionar, 8 (ocho) puntos Justifique cada una de sus respuestas. Especifique, en caso de ser necesario, todos los cálculos intermedios utilizados. Realice cada ejercicio en hoja separada, numerando las hojas y detallando nombre en cada una de ellas. El examen debe ser entregado en tinta. Caso contrario, se pierde el derecho a revisión. 1. El siguiente fragmento de código Assembler Intel intenta calcular uno a uno los términos de la sucesión de Fibonacci: VECTOR DD 0, 1, 0, 0 INICIO: LEA EBX, VECTOR MOV ESI, EBX MOV EDI, EBX ADD EDI, 4 MOV EDX, 4 MOV ECX, FH CONT: MOV EAX, [ESI] ADD EAX, [EDI] MOV ESI, EDI ADD EDX, 4 AND EDX, ECX MOV EDI, EBX ADD EDI, EDX MOV [EDI], EAX JMP CONT FIN: Se pide: a) Decidir si el programa hace o no lo pretendido. En caso afirmativo, explicar su lógica; en caso negativo, explicar que está haciendo y porque no hace lo que se desea. b) En qué sistemas de numeración de base 2 tendría sentido considerar codificados los datos almacenados en VECTOR? c) Para cada sistema de numeración citado en b) Cuál de los valores de la lista que se presenta a continuación corresponde al último término correctamente calculado? (dicho término podría ser el mismo en más de uno de los sistemas citados): i. 1 ii iii iv v vi vii viii ix x d) Para cada sistema de numeración citado en b) modificar el programa para que finalice después de calcular el máximo término correcto. 2. Dados dos vectores con elementos de 32 bits, se desea determinar el número de elementos comunes a ambos. Por ejemplo, si se tiene V1 = ( 22, 0, 33, 11, 1, 13, 19) y V2 = ( 111, 13, 19, 22, 1, 2, 13, 0), el número de elementos comunes es 5 (los corresponden a los elementos 22, 0, 1, 13 y 19). Ambos vectores tienen al menos un elemento, y en cada uno de ellos los elementos no se repiten. Los vectores se encuentran apuntados por las etiquetas V EC1 y V EC2, y sus dimensiones están almacenadas en las etiquetas N1 y N2. Se pide escribir un fragmento en ensamblador Intel o Sparc que lleve a cabo la tarea descripta, dejando el resultado almacenado en la etiqueta TOTAL.

2 3. Las arquitecturas A1, A2 y A3 tienen en común lo siguiente: Direcciones de 16 bits. Datos de 32 bits. Código de operación de 8 bits. El direccionamientos es directo en todos los casos. No se utilizan registros. Arquitectura A1 Arquitectura A2 Arquitectura A3 MOV Op1,Op2 MOV Op1,Op2, Op3 LOAD Op ADD Op1,Op2 ADD Op1,Op2, Op3 STORE Op SUB Op1,Op2 SUB Op1,Op2, Op3 ADD Op SUB Op Responder: i. Escribir el formato de instrucción para cada arquitectura. ii. Para cada programa determinar su tamaño en bytes. iii. Dado el siguiente código C: a=b+c; b=a+c; d=a-b; escribirlo en cada arquitectura, señalando la cantidad de accesos a memoria por cada instrucción. 4. a) Decidir si las siguientes afirmaciones son verdaderas o falsas, justificando detalladamente en cada caso: i. Toda función booleana puede implementarse como circuito lógico. ii. Todo circuito lógico representa alguna función booleana. iii. Toda función booleana de 2 entradas puede implementarse con 7 o menos compuertas lógicas (sólo and, or y not) iv. Toda función booleana de 2 entradas puede implementarse con 3 o menos compuertas lógicas (sólo and, or y not) v. Toda función booleana de 2 entradas requiere al menos de 1 compuerta lógica para implementarse. b) Dada la siguiente tabla de verdad, construir una expresión lógica equivalente. Simplificarla y dibujar el diagrama de circuitos lógicos que la implementan. Usar sólo ands, ors y nots. A B C OUT La función anterior corresponde a un circuito muy utilizado en la lógica digital. Decir de cuál se trata y dar ejemplos de su uso.

3 SOLUCIONES Ej1) Transcribo el código Assembler comentado: VECTOR DD 0, 1, 0, 0 INICIO: LEA EBX, VECTOR ;EBX será la base del direccionamiento indexado MOV ESI, EBX ;ESI arranca en V(0) MOV EDI, EBX ADD EDI, 4 ;EDI arranca en V(1) MOV EDX, 4 ;EDX será el offset del direccionamiento indexado MOV ECX, FH ;ECX es una máscara para sumar módulo 16 CONT: MOV EAX, [ESI] ADD EAX, [EDI] ;EAX=V(i)+V(i+1) MOV ESI, EDI ;ESI queda en V(i+1) para el próximo ciclo ADD EDX, 4 ;incrementa el offset a la palabra siguiente AND EDX, ECX ;se queda con el resto mod 16 MOV EDI, EBX ;Carga la base ADD EDI, EDX ;Suma el offset MOV [EDI], EAX JMP CONT FIN: a) El programa calcula la serie de Fibonacci sobre un vector de 4 elementos, almacenándolos de la siguiente manera: 0, 1, 0, 0 0, 1, 1, 0 0, 1, 1, 2 3, 1, 1, 2 3, 5, 1, 2 3, 5, 8, 2 3, 5, 8,13 que es lo mismo a: VECTOR(i+2 mod 4) = VECTOR(i+1 mod 4) + VECTOR(i mod 4) b) Para (2,32) sin signo, con signo, y complemento a 2. c) sin signo: el número máximo de la representación entera sin signo con 32 bits es 2^32 = , por lo tanto el número máximo debe ser ese o uno menor más cercano. Res: con signo: el número máximo de la representación entera con signo con 32 bits es 2^31 = , por lo tanto el número máximo debe ser ese o uno menor más cercano. Res: complemento a dos: IDEM con signo d) Luego de la linea ADD EAX, [EDI] se agregaría la siguiente linea: sin signo: JC FIN, ya que si la suma da carry significa que no se puede representar el número obtenido en notación sin signo. con signo: JO FIN o JS FIN, ya que si la suma da con signo significa que no se puede representar el número obtenido. Que como siempre estamos chequeando sobre sumas de dos positivos, equivale a chequear si ocurre overflow. complemento a dos: JO FIN o JS FIN, idem a con signo.

4 Ej2) Version usando una subrutina ;ESI:Puntero a VEC1 ;EAX: Contador de las posiciones de VEC1 (Desde N1 a 0) ;ECX: Contador de elementos en común. LEA ESI, VEC1 MOV EAX, N1 XOR ECX, ECX Ciclo: MOV EBX, [ESI] CALL Sumar ADD ESI, 4 DEC EAX JNZ Ciclo Fin: MOV TOTAL, ECX ;EBX tiene el valor de VEC1 a comparar,en ECX hago la suma si corresponde ;EDI: Puntero a VEC2 ;EAX: Contador de las posiciones de VEC2 (Desde N2 a 0) Sumar PROC NEAR PUSH EDI PUSH EAX PUSH EDX LEA EDI, VEC2 MOV EAX, N2 Ciclo2: MOV EDX, [EDI] CMP EDX, EBX JNE Distintos INC ECX JMP Terminar Distintos: ADD EDI, 4 DEC EAX JNE Ciclo2 Terminar: POP EDX POP EAX POP EDI RET ;Comparo el elemento del segundo vector (EDX) con el del primero (EBX)

5 Versión sin subrutinas: MOV EAX, N1 ; EAX va desde N1 a 0 MOV EDX, 0 ; EDX Contador de elementos comunes LEA ESI, VEC1 ; ESI: Puntero al primer vector Ciclo: CMP EAX, 0 JE FIN MOV EBX, [ESI] ; EBX tiene un elemento de VEC1 MOV ECX, N2 ; ECX va de N2 a 0 LEA EDI, VEC2 ; EDI: Puntero al segundo vector Ciclo2: CMP ECX, 0 JE FinCiclo2 CMP EBX, [EDI] JE Sumar ADD EDI, 4 DEC ECX JMP Ciclo2 Sumar: INC EDX FinCiclo2: ADD ESI, 4 DEC EAX JMP Ciclo Fin: MOV TOTAL, EDX Ej3) i) A1 Codop op1 op2 8 bits 16 bits 16 bits #bits por instrucción=40 bits= 5 bytes A2 Codop op1 op2 op3 8 bits 16 bits 16 bits 16 bits #bits por instrucción=56 bits= 7 bytes A3 Codop op1 8 bits 16 bits #bits por instrucción=24 bits= 3 bytes ii) MOV a,b ADD a,c MOV b,a ADD b,c MOV d,a SUBB d,b A1 A2 A3 //a=b ADD b,c,a //b+c=a LOAD b //temp=b //a=a+c=b+c ADD a,c,b //a+c=b ADD c //b=a SUBB a,b,d //a-b=d //temp+=c //b=b+c=a+c STORE a //a=temp //d=a LOAD a //temp=a //d=d-b=a-b ADD c //temp+=c STORE b //b=temp LOAD a //temp=a SUBB b //temp-=b STORE d //d=temp

6 iii) Código A1: 6 intrucciones * 5 bytes/instrucción=30 bytes Código A2: 3 intrucciones * 7 bytes/instrucción=21 bytes Código A3: 9 intrucciones * 3 bytes/instrucción=24 bytes Ej4) a) i) Verdadero. Cualquier función booleana pude expresarse mediante su tabla de verdad por ser una función finita. Dada la tabla de verdad se puede escribir una expresión lógica formada por negaciones, disyunciones y conjunciones como se vio en la clase como paso 1 del método de simplificación. Y dada esta expresión modelarla mediante circuitos lógicos es inmediato. ii) Falso. El caso más claro es el del flip-flop, que no representa función alguna por tener diferentdiferentes salidas para la misma entrada, dependiendo del estado interno (memoria). Otros ejemplos pueden ser circuitos realimentados que no son función por no tener una salida definida (ej.: not realimentado) o (respuesta mucho menos ortodoxa) circuitos lógicos que tienen múltiples salidas. iii) Verdadero. Dada la tabla de verdad de la función vemos la cantidad de salidas en 1 que tiene. Si son más de dos implementaremos la función negada a la cual negaremos la salida. En cualquier caso tenemos una tabla con (a lo más) dos lineas en 1. Pasando esto a la expresión lógica inmediata tenemos que el pero caso es: (nota. notb) + (nota. B)o lo que es lo mismo (nota. notb) + (notb. A), en ambos casos la cantidad de operadores lógicos es de 6 y se puede necesitar de una negación más al final por estar implementando la negacion de la funcion. En total no más de 7 compuertas. Esta cota se puede mejorar de 2 maneras: 1)Primero se puede notar que al pasar a circuito lógico no hace falta implementar dos veces el nota (o notb), así que la cota baja a 6 2)También se puede notar que en el caso de estar implementando (nota. notb) + (nota. B), nos conviene implementar su negacion, que queda (A. B) + (A. notb), con cuatro compuertas más una negacion al final, bajando la cota a 5 compuertas. iv)falso, basta una mención al xor o a su negación (sii). v) Falso. La función f(a,b)=a no requiere ninguna compuerta para su implementación, sino que podemos unir la entrada a con la salida directamente. Otro ejemplo pueden ser las constantes (asumiendo la existencia de tierra y positivo en el ciercuito). b) La función se puede simplificar a (a.c) + (not a.b). Se puede suponer que es un MULTIPLEXOR tomando como entrada selectora a A. Se utiliza para seleccionar de que entrada se toma una salida, por ejemplo se podría utilizar para seleccionar la salida de una alu como el dato que sale de la misma, o la entrada sin modificar. También se puede pensar que la función predica sobre la primalidad de el numero abc, pensando que está en codificación sin signo.

Práctica 4 - Arquitectura CPU

Práctica 4 - Arquitectura CPU Práctica 4 - Arquitectura CPU Organización del Computador 1 1er. Cuatrimestre 2006 Programación en Assembler Ejercicio 1 Dados los siguientes valores de la memoria y del registro R0 de la arquitectura

Más detalles

Entorno de Ejecución del Procesador Intel Pentium

Entorno de Ejecución del Procesador Intel Pentium Arquitectura de Ordenadores Arquitectura del Procesador Intel Pentium Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática Entorno de Ejecución del Procesador

Más detalles

Apellidos Nombre DNI

Apellidos Nombre DNI Apellidos Nombre DNI Examen de Arquitectura de Computadores (Telemática) Convocatoria de Junio: 25 5 2 Se dispone de un programa escrito en ensamblador encargado de transformar un número escrito en decimal

Más detalles

Apellidos Nombre DNI

Apellidos Nombre DNI A continuación se muestra el listado de un programa cuyo objetivo es encontrar una palabra dentro de una cadena de caracteres de la sección de datos y copiar dicha palabra en otra zona de la sección de

Más detalles

La arquitectura CISCA

La arquitectura CISCA La arquitectura CISCA Miquel Albert Orenga Gerard Enrique Manonellas PID_00181526 CC-BY-SA PID_00181526 La arquitectura CISCA Los textos e imágenes publicados en esta obra están sujetos excepto que se

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Tema 4: Familia x86 Carlos Garre 1 Familia x86 Contenidos Concepto de familia: la familia x86. Generaciones de la familia x86. Primera generación: 8086. Segunda generación: 80286. Tercera generación: 80386.

Más detalles

Arquitectura intel 8086. Preámbulo de OSO para alumnos formados en el procesador MIPS. Asignatura Sistemas Operativos Murcia abril de 2005

Arquitectura intel 8086. Preámbulo de OSO para alumnos formados en el procesador MIPS. Asignatura Sistemas Operativos Murcia abril de 2005 Arquitectura intel 8086 Preámbulo de OSO para alumnos formados en el procesador MIPS Asignatura Sistemas Operativos Murcia abril de 2005 página 1. Introducción 2 2.- Direccionamiento y Registros de Segmento

Más detalles

ISA (Instruction Set Architecture) Arquitectura del conjunto de instrucciones

ISA (Instruction Set Architecture) Arquitectura del conjunto de instrucciones ISA (Instruction Set Architecture) Arquitectura del conjunto de instrucciones Instruction Set Architecture (ISA) Arquitectura del conjunto de instrucciones software Conjunto de instrucciones hardware Universidad

Más detalles

"Programación en Ensamblador del microprocesador Pentium (I)"

Programación en Ensamblador del microprocesador Pentium (I) PRÁCTICA 3 "Programación en Ensamblador del microprocesador Pentium (I)" ÍNDICE 3.1.- El microprocesador Pentium. 3.2.- Inserción de ensamblador en Visual Studio. 3.3.- Facilidades para la depuración de

Más detalles

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS

DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS DISEÑO DE CIRCUITOS LOGICOS COMBINATORIOS Circuitos Combinacionales Un circuito combinacional es un circuito digital cuyas salidas, en un instante determinado son función, exclusivamente, de la combinación

Más detalles

Organización n del Computador. CPU (ISA) Conjunto de Instrucciones de la Arquitectura

Organización n del Computador. CPU (ISA) Conjunto de Instrucciones de la Arquitectura Organización n del Computador CPU (ISA) Conjunto de Instrucciones de la Arquitectura Estructura (computadora) periféricos Computador Computador Unidad Central de Proceso CPU Sistema de interconexión Memoria

Más detalles

Generación de código para funciones. Generación de código para funciones. Generación de código para funciones. Generación de código para funciones

Generación de código para funciones. Generación de código para funciones. Generación de código para funciones. Generación de código para funciones Ejemplo introductorio: escritura de funciones en NASM Ejemplo introductorio: escritura de funciones en NASM En estas transparencias pondremos una subrutina ASPLE y la generación de código equivalente En

Más detalles

Módulo 08 Lenguaje Ensamblador

Módulo 08 Lenguaje Ensamblador Módulo 08 Lenguaje Ensamblador Organización de Computadoras Depto. Cs. e Ing. de la Comp. Universidad Nacional del Sur Copyright Copyright 2011-2015 A. G. Stankevicius Se asegura la libertad para copiar,

Más detalles

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA ARQUITECTURA DE LAS COMPUTADORAS PRACTICA SISTEMAS NUMÉRICOS INTRODUCCIÓN TEÓRICA: Definimos Sistema de Numeración como al conjunto de reglas que permiten, con una cantidad finita de símbolos, representar

Más detalles

ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ

ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ Sistemas Numéricos 1.-Sistema Numérico. a) Definición: Llamaremos sistema numéricos base M el conjunto de M símbolos que nos sirven

Más detalles

Circuitos Digitales II y Laboratorio Electrónica Digital II y Laboratorio

Circuitos Digitales II y Laboratorio Electrónica Digital II y Laboratorio Circuitos Digitales II y Laboratorio Electrónica Digital II y Laboratorio Fundamentos de Arquitectura de Computadores Modelo de von Neumann Profesor: Felipe Cabarcas Correo:cabarcas@udea.edu.co Oficina:

Más detalles

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8 Dpto. de ATC, Universidad de Sevilla - Página de Capítulo : INTRODUCCIÓN SISTEMAS DE REPRESENTACIÓN NUMÉRICA Introducción Bases de numeración Sistema decimal Sistema binario Sistema hexadecimal REPRESENTACIÓN

Más detalles

Tema 2. Diseño del repertorio de instrucciones

Tema 2. Diseño del repertorio de instrucciones Soluciones a los problemas impares Tema 2. Diseño del repertorio de instrucciones Arquitectura de Computadores Curso 2009-2010 Tema 2: Hoja: 2 / 16 Tema 2: Hoja: 3 / 16 Base teórica Al diseñar un computador,

Más detalles

LENGUAJE ENSAMBLADOR 80386 PRÁCTICA 11 PRÁCTICA 11 CUATRO OPERACIONES FUNDAMENTALES EN NÚMEROS DE 8 BYTES

LENGUAJE ENSAMBLADOR 80386 PRÁCTICA 11 PRÁCTICA 11 CUATRO OPERACIONES FUNDAMENTALES EN NÚMEROS DE 8 BYTES PRÁCTICA 11 SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE DOS NÚMEROS ENTEROS POSITIVOS DE HASTA 20 DÍGITOS DECIMALES 1. INTRODUCCIÓN Mediante esta práctica, trabajaremos con números binarios de hasta veinte

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente:

Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente: Departamento de Ingeniería de Sistemas Facultad de Ingeniería Universidad de Antioquia Arquitectura de Computadores y Laboratorio ISI355 (2011 2) Práctica No. 1 Diseño e implementación de una unidad aritmético

Más detalles

MODULO II: ARQUITECTURA DEL PROCESADOR

MODULO II: ARQUITECTURA DEL PROCESADOR MODULO II: ARQUITECTURA L PROCESAR Tema 2: Formato de instrucciones y modos de direccionamiento Objetivos: Entender la arquitectura del repertorio de instrucciones (ISA) de un computador, los formatos

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Universidad Rey Juan Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Repertorio de instrucciones y modos de direccionamiento: conceptos básicos Luis Rincón Córcoles Licesio J. Rodríguez-Aragón Programa

Más detalles

SISTEMAS BASADOS EN MICROPROCESADOR 2º Grado Ingeniería Informática (EPS UAM) EXAMEN FINAL EXTRAORDINARIO JULIO 2013 ENUNCIADO DEL PROBLEMA

SISTEMAS BASADOS EN MICROPROCESADOR 2º Grado Ingeniería Informática (EPS UAM) EXAMEN FINAL EXTRAORDINARIO JULIO 2013 ENUNCIADO DEL PROBLEMA SISTEMAS BASADOS EN MICROPROCESADOR 2º Grado Ingeniería Informática (EPS UAM) EXAMEN FINAL EXTRAORDINARIO JULIO 2013 ENUNCIADO DEL PROBLEMA IMPLEMENTACIÓN DE UN DRIVER DOS INTERFAZ CON UN SISTEMA DE RADIO

Más detalles

Práctica 4. Introducción a la programación en lenguaje ensamblador

Práctica 4. Introducción a la programación en lenguaje ensamblador Enunciados de prácticas Práctica 4. Introducción a la programación en lenguaje ensamblador Laboratorio de Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Práctica 4:

Más detalles

Departamento de Sistemas e Informática

Departamento de Sistemas e Informática Departamento de Sistemas e Informática Programación en Assembler - Clase 1 Digital II Presentación de Docentes y Material Docentes: Ing. Andrés Capalbo Ing. Diego Alegrechi Ing. Esteban Almirón Material

Más detalles

Ejemplo del uso de las subrutinas

Ejemplo del uso de las subrutinas Ejemplo del uso de las subrutinas Enunciado del problema: Diseñar un contador BCD que cuente de 0 a 59 para simular un timer de 60 segundos y que el conteo de dos dígitos BCD, sea desplegado en los displays

Más detalles

Programas de ordenador (software)

Programas de ordenador (software) Programas de ordenador (software) Jorge Juan Chico , Julián Viejo Cortés 2011, 2014, 2015 Departamento de Tecnología Electrónica Universidad de Sevilla Usted es libre

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Pregunta correcta= 0,3 Pregunta no contestada= 0 Pregunta incorrecta (tipo test)= -0,15

Pregunta correcta= 0,3 Pregunta no contestada= 0 Pregunta incorrecta (tipo test)= -0,15 Pregunta correcta= 0,3 Pregunta no contestada= 0 Pregunta incorrecta (tipo test)= -0,15 Sistemas operativos, arquitectura von Neumann, configuración del PC (3 puntos) 1) Señale la opción correcta: [_]

Más detalles

FUNCIONES ARITMÉTICAS Y

FUNCIONES ARITMÉTICAS Y Tema 3 FUNCIONES ARITMÉTICAS Y LÓGICAS 3.. INTRODUCCIÓN Hasta ahora hemos visto como se podían minimizar funciones booleanas, y como se podían implementar a partir de puertas discretas. En los temas siguientes

Más detalles

TRAB. PRÁCTICO Nº 3: UNIDAD CENTRAL DE PROCESAMIENTO (C.P.U.)

TRAB. PRÁCTICO Nº 3: UNIDAD CENTRAL DE PROCESAMIENTO (C.P.U.) OBJETIVOS: El alumno deberá asimilar los siguientes conocimientos: Concepto de buses, características, tipos. Ciclo de Reloj, de Máquina y de Instrucción. Unidad de Control (UC). Definición, clasificación,

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009 ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2009 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.

Más detalles

TEMA 4. MÓDULOS COMBINACIONALES.

TEMA 4. MÓDULOS COMBINACIONALES. TECNOLOGÍA DE COMPUTADORES. CURSO 27/8 TEMA 4. MÓDULOS COMBINACIONALES. 4.. Módulos combinacionales básicos MSI. Los circuitos combinacionales realizados con puertas lógicas implementan funciones booleanas,

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

Examen de Arquitectura de Computadores 2 22 de febrero del 2011

Examen de Arquitectura de Computadores 2 22 de febrero del 2011 Examen de Arquitectura de Computadores 2 22 de febrero del 2011 Indique su nombre completo y número de cédula en cada hoja. Numere todas las hojas e indique el total de hojas en la primera. Escriba las

Más detalles

Registros y Contadores

Registros y Contadores Registros y Contadores Mario Medina C. mariomedina@udec.cl Registros Grupos de flip-flops con reloj común Almacenamiento de datos Desplazamiento de datos Construcción de contadores simples Como cada FF

Más detalles

U i n d id d a 3. El Element os á bá i s cos de un programa

U i n d id d a 3. El Element os á bá i s cos de un programa Programación Digital U id d 3 El t bá i Unidad 3. Elementos básicos de un programa 1. Concepto de Programa Es un conjunto de instrucciones (órdenes dadas a la computadora), que producirán la ejecución

Más detalles

UNIDAD 4: El procesador: Camino de los datos y Control.

UNIDAD 4: El procesador: Camino de los datos y Control. UNIDAD 4: El procesador: Camino de los datos y Control. 4.1 Introducción El rendimiento de una máquina depende de tres factores clave: Conteo de Instrucciones, tiempo del ciclo de reloj y ciclos de reloj

Más detalles

Representación de Datos y Aritmética Básica en Sistemas Digitales

Representación de Datos y Aritmética Básica en Sistemas Digitales Representación de Datos y Aritmética Básica en Sistemas Digitales Departamento de Sistemas e Informática Escuela de Electrónica Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional

Más detalles

Test: Conteste exclusivamente en HOJA DE LECTURA ÓPTICA. No olvide marcar que su tipo de examen es A.

Test: Conteste exclusivamente en HOJA DE LECTURA ÓPTICA. No olvide marcar que su tipo de examen es A. MATERIAL PERMITIDO: los libros Estructura y tecnología de computadores y Problemas de estructura y tecnología de computadores, ed. Sanz y Torres, y calculadora. NO SE PERMITEN FOTOCOPIAS. INSTRUCCIONES:

Más detalles

Aprendiendo Sistemas Operativos: Programación de Procesadores de Arquitectura IA-32

Aprendiendo Sistemas Operativos: Programación de Procesadores de Arquitectura IA-32 Aprendiendo Sistemas Operativos: Programación de Procesadores de Arquitectura IA-32 Este documento forma parte de la serie Aprendiendo Sistemas Operativos y sirve como una introducción a los aspectos básicos

Más detalles

Arquitectura de Computadores

Arquitectura de Computadores Arquitectura de Computadores Ricardo.Sanz@upm.es Curso 2004-2005 Arquitectura de Computadores Arquitectura de computadores es la disciplina que estudia la organización y funcionamiento de los computadores

Más detalles

Organización Básica de un Computador y Lenguaje de Máquina

Organización Básica de un Computador y Lenguaje de Máquina Organización Básica de un Computador y Prof. Rodrigo Araya E. raraya@inf.utfsm.cl Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 Organización Básica

Más detalles

Análisis general de un Microprocesador

Análisis general de un Microprocesador Análisis general de un Microprocesador Arquitectura del chip Repertorio de instrucciones Sistema mínimo Señales de control Función de cada pin del µp Herramientas de desarrollo Performance. ARQUITECTURA

Más detalles

Intel 8086. Arquitectura. Programación en Ensamblador Ing. Marcelo Tosini - 2001

Intel 8086. Arquitectura. Programación en Ensamblador Ing. Marcelo Tosini - 2001 Intel 8086 Arquitectura Características generales Procesador de 16 bits Bus de direcciones de 20 bits : 1 Mbyte Bus de datos interno de 16 bits Bus de datos externo de 16 bits en el 8086 8 bits en el 8088

Más detalles

Práctica 2. Registros y posiciones de memoria

Práctica 2. Registros y posiciones de memoria Enunciados de prácticas Práctica 2. Registros y posiciones de memoria Estructura y Organización de Computadores Grados en Ingeniería Informática e Ingeniería de Computadores Curso 2012-2013 Práctica 2:

Más detalles

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2 Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL Fundamentos de Electrónica.2 Sistema Digital. Paso de mundo analógico a digital. Tipos de Sistemas Digitales. Representación de la información. Sistemas

Más detalles

circuitos digitales Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007

circuitos digitales Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Oliverio J. Santana Jaria Sistemas Digitales 8. Análisis lógico l de los circuitos digitales Ingeniería Técnica en Informática de Sistemas Los Curso 26 27 El conjunto circuitos de puertas digitales lógicas

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

MICROPROCESADOR RISC SINTETIZABLE EN FPGA PARA FINES DOCENTES

MICROPROCESADOR RISC SINTETIZABLE EN FPGA PARA FINES DOCENTES MICROPROCESADOR RISC SINTETIZABLE EN FPGA PARA FINES DOCENTES J.D. MUÑOZ1, S. ALEXANDRES1 Y C. RODRÍGUEZ-MORCILLO2 Departamento de Electrónica y Automática. Escuela Técnica Superior de Ingeniería ICAI.

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA. b a. C.S. c. s - 66 Electrónica Digital

3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA. b a. C.S. c. s - 66 Electrónica Digital 3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA 3.1. Operaciones aritméticas: suma, resta, comparación y producto 3.2. Unidad lógica y aritmética: ALU 3.3. Codificación de números en binario 3.4. Codificación

Más detalles

decir de las funciones f g. Posteriormente se obtienen los términos independientes

decir de las funciones f g. Posteriormente se obtienen los términos independientes 4.8. EJERCICIOS DEL CAPÍTULO 157 decir de las funciones f g. Posteriormente se obtienen los términos independientes para cada función. fg2, 3 =dcb f4, 5, 6, 7 =dc f0, 2, 4, 6 =da g0, 2, 8, 10 =ca g2, 6,

Más detalles

Materia Introducción a la Informática

Materia Introducción a la Informática Materia Introducción a la Informática Unidad 1 Sistema de Numeración Ejercitación Prof. Alejandro Bompensieri Introducción a la Informática - CPU Ejercitación Sistemas de Numeración 1. Pasar a base 10

Más detalles

Por ejemplo, los números binarios sin signo que se pueden construir con 4 bits son: bit más significativo more significant bit (msb)

Por ejemplo, los números binarios sin signo que se pueden construir con 4 bits son: bit más significativo more significant bit (msb) istema binario Un sistema binario utiliza únicamente dos símbolos para representar la información. Comúnmente los símbolos usados son los dígitos y 1, por eso reciben el nombre de dígitos binarios (binary

Más detalles

Lo que definimos como CPU (Central Process Unit) o Unidad Central de Proceso, está estructurado por tres unidades operativamente diferentes:

Lo que definimos como CPU (Central Process Unit) o Unidad Central de Proceso, está estructurado por tres unidades operativamente diferentes: Facultad de Ciencias Exactas y Naturales y Agrimensura Departamento de Ingeniería Cátedra : Proyecto Final Apuntes : Microprocesadores Tema 6-1 : Esquema de un µp. La CPU Lo que definimos como CPU (Central

Más detalles

Capitulo 12. Tira de bits

Capitulo 12. Tira de bits Capitulo 12. Tira de bits 12.1 Representación de números naturales (enteros positivos) base 10 base 2 base 16 decimal binario hexadecimal 0 0 0 1 1 1 2 10 2 3 11 3 4 100 4 5 101 5 6 110 6 7 111 7 8 1000

Más detalles

Estructura de Computadores. Capítulo 3b: Programación en

Estructura de Computadores. Capítulo 3b: Programación en Estructura de Computadores Capítulo 3b: Programación en ensamblador del MIPS. José Daniel Muñoz Frías Universidad Pontificia Comillas. ETSI ICAI. Departamento de Electrónica y Automática Estructura de

Más detalles

Crear el shellcode polimórfico

Crear el shellcode polimórfico Crear el shellcode polimórfico Programación Michał Piotrowski Grado de dificultad En el artículo que apareció en el último número de la revista hakin9 hemos aprendido a crear y modificar el código de la

Más detalles

Arquitecturas RISC. Arquitectura de Computadoras y Técnicas Digitales - Mag. Marcelo Tosini Facultad de Ciencias Exactas - UNCPBA

Arquitecturas RISC. Arquitectura de Computadoras y Técnicas Digitales - Mag. Marcelo Tosini Facultad de Ciencias Exactas - UNCPBA Arquitecturas RISC Características de las arquitecturas RISC Juego de instrucciones reducido (sólo las esenciales) Acceso a memoria limitado a instrucciones de carga/almacenamiento Muchos registros de

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

Práctica 3: Programación con subrutinas

Práctica 3: Programación con subrutinas Práctica 3: Programación con subrutinas 3.1 Objetivos El objetivo de esta práctica es estudiar el soporte del ensamblador del ARM para la gestión de subrutinas, para lo que resulta necesario familiarizarse

Más detalles

3.8 Construcción de una ALU básica

3.8 Construcción de una ALU básica 3.8 Construcción de una ALU básica En este punto veremos como por medio de compuertas lógicas y multiplexores, se pueden implementar las operaciones aritméticas básicas de una ALU. Esencialmente en este

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

Trabajo Práctico 1. 1) Convertir los siguientes números enteros escritos en binario a: I) Octal II) Decimal III) Hexadecimal

Trabajo Práctico 1. 1) Convertir los siguientes números enteros escritos en binario a: I) Octal II) Decimal III) Hexadecimal Electrónica igital Ingeniería Informática, Universidad Católica rgentina, 2 Trabajo Práctico ) Convertir los siguientes números enteros escritos en binario a: I) Octal II) ecimal III) Hexadecimal a) b)

Más detalles

Fig. 1: Tipos de datos que puede manejar el procesador

Fig. 1: Tipos de datos que puede manejar el procesador 1. Introducción 2. Registros internos 3. Almacenamiento de datos 4. Modos de direccionamiento 5. Juego de Instrucciones 6. Etiquetas, cometarios y directivas 7. Problemas 1. Introducción El lenguaje ensamblador

Más detalles

Introducción a la Programación 11 O. Humberto Cervantes Maceda

Introducción a la Programación 11 O. Humberto Cervantes Maceda Introducción a la Programación 11 O Humberto Cervantes Maceda Recordando En la sesión anterior vimos que la información almacenada en la memoria, y por lo tanto aquella que procesa la unidad central de

Más detalles

SOLUCION Examen final IC parte B

SOLUCION Examen final IC parte B SOLUCION Examen final IC parte B Duración de esta parte del examen: 2 horas. Presentarse a este examen significa renunciar a la nota de evaluación continua de los objetivos de nivel B. Cada ejercicio se

Más detalles

Lógica Binaria. Arquitectura de Ordenadores. Codificación de la Información. Abelardo Pardo abel@it.uc3m.es. Universidad Carlos III de Madrid

Lógica Binaria. Arquitectura de Ordenadores. Codificación de la Información. Abelardo Pardo abel@it.uc3m.es. Universidad Carlos III de Madrid Arquitectura de Ordenadores Codificación de la Información Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática Lógica Binaria COD-1 Internamente el ordenador

Más detalles

La Unidad Procesadora.

La Unidad Procesadora. La Unidad Procesadora. En un sistema digital complejo, la capa de hardware de la máquina es el nivel más bajo del modelo de capas de un sistema microcomputarizado. La unidad procesadora es una parte del

Más detalles

D.I.I.C.C Arquitectura de Sistemas Computacionales

D.I.I.C.C Arquitectura de Sistemas Computacionales CAPITULO 6.- ÁLGEBRA DE BOOLE INTRODUCCIÓN. En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra

Más detalles

TE.1010 Sistemas Digitales

TE.1010 Sistemas Digitales TE.1010 Sistemas Digitales Dr. Andrés David García García Departamento de Mecatrónica TE 1010 1 TE 1001 Objetivo de la materia: Al finalizar este curso el alumno será capaz de: Diseñar un sistema computacional

Más detalles

1. Arquitectura del sistema; arquitectura del microprocesador.

1. Arquitectura del sistema; arquitectura del microprocesador. 1 1. Arquitectura del sistema; arquitectura del microprocesador. 1.a. EL COMPUTADOR Fig. 1 La Fig. 1 muestra un diagrama de bloques básico de un computador. Entendemos por tal, una máquina de propósito

Más detalles

2.4. Modos de direccionamiento Distintas formas que tiene la arquitectura para especificar la ubicación de los operandos.

2.4. Modos de direccionamiento Distintas formas que tiene la arquitectura para especificar la ubicación de los operandos. 2.4. Modos de direccionamiento Distintas formas que tiene la arquitectura para especificar la ubicación de los operandos. Objetivos: - Reducir el número de bits para especificar un operando en memoria.

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA NOMBRE DEL PROFESOR: Ing. Héctor Manuel Quej Cosgaya NOMBRE DE LA PRÁCTICA: Operadores y Expresiones PRÁCTICA NÚM. [ 3 ] LABORATORIO: MATERIA: UNIDAD: TIEMPO: Centro de Ingeniería Computacional Lenguaje

Más detalles

CAPÍ TULO III. La Pantalla... y más

CAPÍ TULO III. La Pantalla... y más CAPÍ TULO III. La Pantalla... y más Lo que vemos en el monitor de nuestro CPC es reflejo del contenido de una zona de la memoria, llamada memoria de pantalla. Es por ello que antes de meternos de lleno

Más detalles

Arquitectura de Computadores

Arquitectura de Computadores Arquitectura de Computadores 6. CPU Segmentada (Pipeline) 1. Conceptos Básicos 2. Causas de Ralentización Arquitectura de Computadores Segmentación (Pipeline) - 1 En los dos capítulos siguientes vamos

Más detalles

Conmutación de Tareas

Conmutación de Tareas Conmutación de Tareas Conmutación de tareas Expira el tiempo de ejecución asignado por el procesador a la tarea N El procesador almacena en memoria el estado de máquina (contexto) de la tarea N. El procesador

Más detalles

Parámetro de entrada. Un parámetro pasado del procedimiento que hace la llamada al procedimiento invocado.

Parámetro de entrada. Un parámetro pasado del procedimiento que hace la llamada al procedimiento invocado. CAPITULO 12 PROCEDIMIENTOS En el capítulo 6, aprendiste como utilizar un programa con procedimientos, en este capítulo aprenderás a usar las directivas e instrucciones que definen y llamas procedimientos.

Más detalles

EXAMEN ORDINARIO DE ORGANIZACIÓN DE COMPUTADORES

EXAMEN ORDINARIO DE ORGANIZACIÓN DE COMPUTADORES 6 de febrero de 2008. 16 h. Escuela Técnica Superior de Ingeniería Informática Camino del Cementerio s/n. 47011 Valladolid EXAMEN ORDINARIO DE ORGANIZACIÓN DE COMPUTADORES NOTA: Los alumnos con las prácticas

Más detalles

Conceptos básicos: 1,2 puntos

Conceptos básicos: 1,2 puntos Procesadores del Lenguaje 1 Universidad Rey Juan Carlos Departamento de Lenguajes y Sistemas Informáticos I 8 de junio de 2009 Parcial primero. Conceptos básicos y problemas. Entrega en 90 minutos. Lea

Más detalles

LABORATORIO DE ARQUITECTURA DE COMPUTADORES. I. T. I. SISTEMAS / GESTIÓN GUÍA DEL ALUMNO

LABORATORIO DE ARQUITECTURA DE COMPUTADORES. I. T. I. SISTEMAS / GESTIÓN GUÍA DEL ALUMNO LABORATORIO DE ARQUITECTURA DE COMPUTADORES. I. T. I. SISTEMAS / GESTIÓN GUÍA DEL ALUMNO Práctica 2: La Unidad Aritmético - Lógica Objetivos Comprender cómo se realiza un sumador con propagación de acarreo

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

2 FUNCIONES BOOLEANAS Y SU SIMPLIFICACION

2 FUNCIONES BOOLEANAS Y SU SIMPLIFICACION FUNCIONES BOOLENS Y SU SIMPLIFICCION.. Funciones Lógicas.. Simplificación de funciones booleanas: mapas de Karnaugh.3. Ejercicios de síntesis y simplificación de funciones booleanas.4. Decodificadores

Más detalles

1.1 Sistema de numeración binario

1.1 Sistema de numeración binario 1.1 Sistema de numeración binario Un sistema de numeración consta de: Un conjunto ordenado de cifras y un conjunto de operaciones. Llamaremos Base al número de cifras que hay en dicho conjunto. De este

Más detalles

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde

Más detalles

GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES

GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES COMPETENCIA GENERAL Construye circuitos digitales básicos en base a circuitos integrados MSI. COMPETENCIAS PARTICULARES 1. Emplea los sistemas numéricos

Más detalles

UNIDAD 2: ELECTRÓNICA DIGITAL

UNIDAD 2: ELECTRÓNICA DIGITAL UNIDAD 2: ELECTRÓNICA DIGITAL 2.1. Señales analógicas y digitales Señales analógicas son aquellas que pueden variar de una forma progresiva o gradual sobre un intervalo continuo: Ejemplo: luz, temperatura,

Más detalles

1 LA INFORMACION Y SU REPRESENTACION

1 LA INFORMACION Y SU REPRESENTACION 1 LA INFORMACION Y SU REPRESENTACION 1.1 Sistemas de numeración Para empezar a comprender cómo una computadora procesa información, debemos primero entender cómo representar las cantidades. Para poder

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

Tema 2: Arquitectura del repertorio de instrucciones. Visión del computador que tiene el programador en bajo nivel.

Tema 2: Arquitectura del repertorio de instrucciones. Visión del computador que tiene el programador en bajo nivel. Tema 2: Arquitectura del repertorio de instrucciones Visión del computador que tiene el programador en bajo nivel. Lo que el programador en lenguaje ensamblador debe conocer para escribir programas: (1)

Más detalles

Organización del Computador 1. Máquina de von Neumann Jerarquía de Niveles

Organización del Computador 1. Máquina de von Neumann Jerarquía de Niveles Organización del Computador 1 Máquina de von Neumann Jerarquía de Niveles Inicios de la computación Turing y Church sientan las bases teóricas de la computación Máquina de Turing Máquina teórica compuesta

Más detalles

T6. CIRCUITOS ARITMÉTICOS

T6. CIRCUITOS ARITMÉTICOS T6. CIRCUITOS ARITMÉTICOS Circuitos Aritméticos Son dispositivos MSI que pueden realizar operaciones aritméticas (suma, resta, multiplicación y división) con números binarios. De todos los dispositivos,

Más detalles

62/8&,21(6$/(;$0(1'( /$%25$725,2'((6758&785$6'(/26&20387$'25(6 &8562)(%5(52

62/8&,21(6$/(;$0(1'( /$%25$725,2'((6758&785$6'(/26&20387$'25(6 &8562)(%5(52 62/8&,21(6$/(;$0(1'( /$%25$725,2'((6758&785$6'(/26&20387$'25(6 &8562)(%5(52 3DUWHGH(QVDPEODGRU 4º) Escribir un programa en ensamblador que pida un número de una cifra por teclado y saque como resultado

Más detalles

ESTRUCTURA DE COMPUTADORES I (Capítulo 14: DIRECTIVAS) 1/32 14-DIRECTIVAS

ESTRUCTURA DE COMPUTADORES I (Capítulo 14: DIRECTIVAS) 1/32 14-DIRECTIVAS ESTRUCTURA DE COMPUTADORES I (Capítulo 14: DIRECTIVAS) 1/32 14-DIRECTIVAS 14.1 INTRODUCCIÓN: Las directivas o pseudooperaciones se pueden dividir en cuatro grupos funcionales:! Directivas de datos.! Directivas

Más detalles

UNIVERSIDAD DE CASTILLA LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA. CIUDAD REAL

UNIVERSIDAD DE CASTILLA LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA. CIUDAD REAL TECNOLOGÍA DE COMPUTADORES / SISTEMAS DIGITALES EXAMEN FINAL EXTRAORDINARIO. 25 JUNIO 2 TIPO TEST (CORRECTA,6 PUNTOS, ERRÓNEA, -,2 PUNTOS) TIEMPO: 2 HORAS 3 MINUTOS SOLUCIÓN 1. Un ordenador utiliza palabras

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles