DINÁMICA DE UN SISTEMA DE PARTÍCULAS. Guía Nº 5 Del estudiante Modalidad a distancia. Modulo FÍSICA 1 PARA INGENIERÍA DE SISTEMAS II SEMESTRE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DINÁMICA DE UN SISTEMA DE PARTÍCULAS. Guía Nº 5 Del estudiante Modalidad a distancia. Modulo FÍSICA 1 PARA INGENIERÍA DE SISTEMAS II SEMESTRE"

Transcripción

1 DINÁMICA DE UN SISTEMA DE PARTÍCULAS Guía Nº 5 Del estudiante Modalidad a distancia Modulo FÍSICA 1 PARA INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono CEL leav70@gmail.com Lugar Madrid Cundinamarca BIENVENIDA Corporación Universitaria Minuto de Dios Rectoría Cundinamarca Preguntas Generadoras Pregunta esencial Cómo entender la dinámica de un sistema de partículas?

2 Preguntas de unidad En qué se sustenta la dinámica de un sistema de partículas? Cómo entender la rotación, el equilibrio estático y el momento angular de cuerpos rígidos? Preguntas de contenido 1. Qué es el centro de masa de un sistema de partículas?. Cómo se determina el centro de masas de un sistema de partículas? 3. Cómo opera la segunda ley de Newton para un sistema de partículas? 4. Explique en que consiste el momento lineal. Qué es el principio de conservación del momento?, cómo funciona la conservación del momento en; en un sistema de fuerzas externas, en sistemas aislados? 5. Cómo es la energía de un sistema de partículas? 6. Qué es impulso? Cómo se calcula la fuerza media? 7. En que consiste la dinámica de la rotación de un cuerpo rígido? 8. Cómo se calcula el momento de inercia de un solido rígido? 9. Qué es un par de fuerzas? 10. Explique el principio de conservación del momento angular. Contenidos TEMA 4. Dinámica de un sistema de partículas. - Centro de masas. Determinación del centro de masas en un sistema de partículas. Dinámica del centro de masas (segunda ley de Newton para un sistema de partículas). - Conservación del momento lineal. Momento lineal. Variación del momento lineal de un sistema con las fuerzas externas. Conservación del momento lineal en sistemas aislados. Energía de un sistema de partículas. Impulso y fuerza media. - Colisiones. Colisiones perfectamente elásticas e inelásticas. Desintegraciones. TEMA 5. Rotación, equilibrio estático y momento angular. - Dinámica de la rotación de un cuerpo rígido. Momento de inercia de un sólido rígido. Teorema de Steiner. Momento de inercia de un sistema de partículas discretas. Energía cinética de la rotación. Momento de una fuerza. Segunda ley de Newton en la rotación. Par de fuerzas. - Equilibrio estático. Condiciones del equilibrio estático. - Conservación del momento angular. Momento angular de una partícula que se mueve y de un sólido rígido que gira. Variación del momento angular de un sistema con el momento las fuerzas externas. Conservación del momento angular. Marco Teórico Momento lineal e impulso El momento lineal de una partícula de masa m que se mueve con una velocidad v se define como el producto de la masa por la velocidad p = mv

3 Se define el vector fuerza, como la derivada del momento lineal respecto del tiempo La segunda ley de Newton es un caso particular de la definición de fuerza, cuando la masa de la partícula es constante. Despejando dp en la definición de fuerza e integrando A la izquierda, tenemos la variación de momento lineal y a la derecha, la integral que se denomina impulso de la fuerza F en el intervalo que va de t i a t f. Para el movimiento en una dimensión, cuando una partícula se mueve bajo la acción de una fuerza F, la integral es el área sombreada bajo la curva fuerzatiempo. En muchas situaciones físicas se emplea la aproximación del impulso. En esta aproximación, se supone que una de las fuerzas que actúan sobre la partícula es muy grande pero de muy corta duración. Esta aproximación es de gran utilidad cuando se estudian los choques, por ejemplo, de una pelota con una raqueta o una pala. El tiempo de colisión es muy pequeño, del orden de centésimas o milésimas de segundo, y la fuerza promedio que ejerce la pala o la raqueta es de varios cientos o miles de newtons. Esta fuerza es mucho mayor que la gravedad, por lo que se puede utilizar la aproximación del impulso. Cuando se utiliza esta aproximación es importante recordar que los momentos lineales inicial y final se refieren al instante antes y después de la colisión, respectivamente.

4 Dinámica de un sistema de partículas Sea un sistema de partículas. Sobre cada partícula actúan las fuerzas exteriores al sistema y las fuerzas de interacción mutua entre las partículas del sistema. Supongamos un sistema formado por dos partículas. Sobre la partícula 1 actúa la fuerza exterior F 1 y la fuerza que ejerce la partícula, F 1. Sobre la partícula actúa la fuerza exterior F y la fuerza que ejerce la partícula 1, F 1. Por ejemplo, si el sistema de partículas fuese el formado por la Tierra y la Luna: las fuerzas exteriores serían las que ejerce el Sol (y el resto de los planetas) sobre la Tierra y sobre la Luna. Las fuerzas interiores serían la atracción mutua entre estos dos cuerpos celestes. Para cada unas de las partículas se cumple que la razón de la variación del momento lineal con el tiempo es igual la resultante de las fuerzas que actúan sobre la partícula considerada, es decir, el movimiento de cada partícula viene determinado por las fuerzas interiores y exteriores que actúan sobre dicha partícula. Sumando miembro a miembro y teniendo en cuenta la tercera Ley de Newton, F 1 =-F 1, tenemos que Donde P es el momento lineal total del sistema y F ext es la resultante de las fuerzas exteriores que actúan sobre el sistema de partículas. El movimiento del sistema de partículas viene determinado solamente por las fuerzas exteriores. Conservación del momento lineal de un sistema de partículas

5 Considérese dos partículas que pueden interactuar entre sí pero que están aisladas de los alrededores. Las partículas se mueven bajo su interacción mutua pero no hay fuerzas exteriores al sistema. La partícula 1 se mueve bajo la acción de la fuerza F 1 que ejerce la partícula. La partícula se mueve bajo la acción de la fuerza F 1 que ejerce la partícula 1. La tercera ley de Newton o Principio de Acción y Reacción establece que ambas fuerzas tendrán que ser iguales y de signo contrario. F 1 +F 1 =0 Aplicando la segunda ley de Newton a cada una de las partículas El principio de conservación del momento lineal afirma que el momento lineal total del sistema de partículas permanece constante, si el sistema es aislado, es decir, si no actúan fuerzas exteriores sobre las partículas del sistema. El principio de conservación del momento lineal es independiente de la naturaleza de las fuerzas de interacción entre las partículas del sistema aislado m 1 u 1 +m u =m 1 v 1 +m v Donde u 1 y u son las velocidades iniciales de las partículas 1 y y v 1 y v las velocidades finales de dichas partículas. Colisiones Se emplea el término de colisión para representar la situación en la que dos o más partículas interaccionan durante un tiempo muy corto. Se supone que las fuerzas impulsivas debidas a la colisión son mucho más grandes que cualquier otra fuerza externa presente. El momento lineal total se conserva en las colisiones. Sin embargo, la energía cinética no se conserva debido a que parte de la energía cinética se transforma en energía térmica y en energía potencial elástica interna cuando los cuerpos se deforman durante la colisión.

6 Se define colisión inelástica como la colisión en la cual no se conserva la energía cinética. Cuando dos objetos que chocan se quedan juntos después del choque se dice que la colisión es perfectamente inelástica. Por ejemplo, un meteorito que choca con la Tierra. En una colisión elástica la energía cinética se conserva. Por ejemplo, las colisiones entre bolas de billar son aproximadamente elásticas. A nivel atómico las colisiones pueden ser perfectamente elásticas. La magnitud Q es la diferencia entre las energías cinéticas después y antes de la colisión. Q toma el valor de cero en las colisiones perfectamente elásticas, pero puede ser menor que cero si en el choque se pierde energía cinética como resultado de la deformación, o puede ser mayor que cero, si la energía cinética de las partículas después de la colisión es mayor que la inicial, por ejemplo, en la explosión de una granada o en la desintegración radiactiva, parte de la energía química o energía nuclear se convierte en energía cinética de los productos. Coeficiente de restitución Se ha encontrado experimentalmente que en una colisión frontal de dos esferas sólidas como las que experimentan las bolas de billar, las velocidades después del choque están relacionadas con las velocidades antes del choque, por la expresión donde e es el coeficiente de restitución y tiene un valor entre 0 y 1. Esta relación fue propuesta por Newton y tiene validez solamente aproximada. El valor de uno es para un choque perfectamente elástico y el valor de cero para un choque perfectamente inelástico. El coeficiente de restitución es la razón entre la velocidad relativa de alejamiento, y la velocidad relativa de acercamiento de las partículas.

7 El centro de masa. El Sistema de Referencia del Centro de Masa (sistema-c) es especialmente útil para describir las colisiones comparado con el Sistema de Referencia del Laboratorio (sistema-l) tal como veremos en próximas páginas. Movimiento del Centro de Masas En la figura, tenemos dos partículas de masas m 1 y m, como m 1 es mayor que m, la posición del centro de masas del sistema de dos partículas estará cerca de la masa mayor. En general, la posición r cm del centro de masa de un sistema de N partículas es La velocidad del centro de masas v cm se obtiene derivando con respecto del tiempo En el numerador figura el momento lineal total y en el denominador la masa total del sistema de partículas. De la dinámica de un sistema de partículas tenemos que

8 El centro de masas de un sistema de partículas se mueve como si fuera una partícula de masa igual a la masa total del sistema bajo la acción de la fuerza externa aplicada al sistema. En un sistema aislado F ext =0 el centro de masas se mueve con velocidad constante v cm =cte. El Sistema de Referencia del Centro de Masas Para un sistema de dos partículas La velocidad de la partícula 1 respecto del centro de masas es La velocidad de la partícula respecto del centro de masas es En el sistema-c, las dos partículas se mueven en direcciones opuestas. Momento lineal Podemos comprobar fácilmente que el momento lineal de la partícula 1 respecto al sistema-c es igual y opuesto al momento lineal de la partícula respecto del sistema-c p 1cm =m 1 v 1cm p cm =m v cm p 1cm =-p cm Energía cinética La relación entre las energías cinéticas medidas en el sistema-l y en el sistema-c es fácil de obtener

9 El primer término, es la energía cinética relativa al centro de masas. El segundo término, es la energía cinética de una partícula cuya masa sea igual a la del sistema moviéndose con la velocidad del centro de masa. A este último término, se le denomina energía cinética de traslación del sistema. En un sistema de partículas podemos separar el movimiento del sistema en dos partes: el movimiento de traslación con la velocidad del centro de masa el movimiento interno relativo al centro de masas. En las siguientes páginas, mostraremos la importancia de centro de masas en la descripción del movimiento de un sistema de dos partículas que interactúan a través de un muelle elástico. Energía de un sistema de partículas Supongamos que la partícula de masa m 1 se desplaza dr 1, y que la partícula de masa m se desplaza dr, como consecuencia de las fuerzas que actúan sobre cada una de las partículas. El trabajo realizado por la resultante de las fuerzas que actúan sobre la primera partícula es igual al producto escalar (F 1 +F 1 ) dr 1 Del mismo modo, el trabajo realizado por la resultante de las fuerzas que actúan sobre la partícula de masa m será (F +F 1 ) dr Teniendo en cuenta que el trabajo de la resultante de las fuerzas que actúan sobre una partícula modifica la energía cinética de la partícula, es decir, la diferencia entre la energía cinética final y la inicial.

10 Sumando miembro a miembro, podemos escribir el trabajo como suma del trabajo de las fuerzas exteriores más el trabajo de las fuerza interiores o de interacción mutua. Se tiene en cuenta que las fuerzas interiores F 1 =-F 1 son iguales y de sentido contrario Las fuerzas interiores F 1 y F 1 realizan trabajo siempre que haya un desplazamiento relativo de la partícula 1 respecto de la, ya que dr 1 -dr =d(r 1 -r )=dr 1 Normalmente, la fuerza F 1 es conservativa (es de tipo gravitatorio, eléctrico, muelle elástico, etc.) El trabajo de una fuerza conservativa es igual a la diferencia entre la energía potencial inicial y final. Denominando trabajo de las fuerzas exteriores a la suma Tendremos Entre paréntesis tenemos una cantidad que es la suma de la energía cinética de las dos partículas que forman el sistema y de la energía potencial que describe la interacción entre las dos partículas. A esta cantidad la denominamos energía U del sistema de partículas. W ext =U f -U i El trabajo de las fuerzas exteriores es igual a la diferencia entre la energía del sistema de partículas en el estado final y la energía del sistema de partículas en el estado inicial. Para un sistema de dos partículas, hay una sola interacción de la partícula 1 con la descrita por la fuerza interna conservativa F 1 o por la energía potencial E p1. La energía del sistema U se escribe

11 Para un sistema formado por tres partículas hay tres interacciones, de la partícula 1 con la, la 1 con la 3 y la con la 3, descritas por las fuerzas internas conservativas F 1, F 3, F 13 o por sus correspondientes energías potenciales. La energía del sistema es Sistema aislado Para un sistema aislado, F ext =0, el trabajo W ext de las fuerzas exteriores es cero, la energía U del sistema de partículas se mantiene constante. Para un sistema de dos partículas cuya interacción mutua está descrita por la energía potencial E p1. La fuerza exterior F ext es conservativa El trabajo de la fuerza exterior es igual a la diferencia entre de energía potencial inicial y la final W ext =E pi -E pf Tenemos por tanto que U i + E pi =U f +E pf = cte Para un sistema de dos partículas bajo la acción de la fuerza conservativa peso, la conservación de la energía se escribirá

12 MOMENTO ANGULAR Y EQUILIBRIO ESTÁTICO DE RÍGIDOS 1. Movimiento de rotación y traslación combinados- Consideramos un movimiento compuesto por una traslación y una rotación en la que: 1) el eje de rotación pasa por el centro de masa (CM), y ) el eje tiene siempre la misma dirección en el espacio (el eje se mueve paralelamente, como el eje de una rueda). Con estas consideraciones sigue siendo válida la ecuación IO α τ (1) O En estas condiciones, la energía cinética de un cuerpo arbitrario de masa M, puede expresarse como la suma de dos términos independientes de traslación y rotación 1 1 K = K T + K rot = Mv CM I CM (). Rodamiento sin deslizamiento (rodamiento puro)- El objeto rueda por una superficie de modo tal que no existe movimiento relativo entre el objeto y la superficie en el punto instantáneo de contacto (centro instantáneo de rotación). Si un cilindro de radio R gira un ángulo, su centro de masa se mueve una distancia s =, por tanto ds v CM = = dt d R = R v CM = R (3) dt a CM = dv CM = dt d R = R a CM = R (4) dt Estos resultados se aplican sólo al caso de rodamiento sin deslizamiento. La fricción entre la superficie y el objeto es la que permite el rodar sin deslizar. En este caso, la fuerza de

13 fricción (estática) no realiza trabajo y por lo tanto no disipa energía (se llaman fuerzas de potencia nula). Se puede visualizar como la superposición de una traslación (todos los puntos se mueven a la misma v = v CM ) y una rotación de velocidad angular = v/r. Sigue siendo válida la expresión para la energía cinética (aunque ahora y v CM no son independientes), y B es el centro instantáneo de rotación (hay sólo rotación pura, y además I B = I CM + MR ). 1 1 K = K T + K rot = Mv CM I CM (5) Si consideramos el punto de contacto B, que es un eje instantáneo de rotación por lo que el movimiento sólo es una rotación en torno a este punto: K = 1 I B = 1 I vcm CM MR = R 1 I vcm vcm 1 1 CM MR = Mv CM I CM R R (igual que (5)) 3. Momento angular o ímpetu angular (L)- Dada una partícula de masa m y cantidad de movimiento p en una posición r respecto al origen O de un marco de referencia inercial, se define el momento angular o ímpetu angular (L) de la partícula respecto al origen O a: L = r p = m r v (6) El módulo de L es L = r p sen Derivando la (6) respecto al tiempo, se llega a: dl dt τ (8)

14 es decir que la torca neta que actúa sobre una partícula es igual a la derivada respecto al tiempo del momento angular. Esta expresión (8) se puede extender para un sistema de partículas, teniendo en cuenta que L del sistema es igual a la suma de los momentos angulares de cada una de las partículas y que el torque a considerar es el torque externo neto: dl dt τ ext = I (9) Esta ecuación es válida cuando se toma con respecto a un punto fijo en un marco de referencia inercial o con respecto al centro de masa. Si consideramos un cuerpo rígido, simétrico respecto al eje de rotación (cada elemento de masa del cuerpo tiene un elemento de masa idéntico diametralmente opuesto al primer elemento y a la misma distancia del eje de rotación), entonces L y son paralelos y se relacionan: L = I (10) Si L representa a la componente del vector del momento angular a lo largo del eje de rotación (por ejemplo L z ), la ec. 10 se cumple para cualquier cuerpo rígido, sea simétrico o no. La ecuación 10 no siempre es válida, pues si el rígido gira alrededor de un eje arbitrario, L y pueden apuntar en direcciones diferentes, y en este caso el momento de inercia I no puede tratarse como un simple escalar. Estrictamente esta ecuación se aplica a cuerpos rígidos de cualquier forma que giran en torno de uno de los tres ejes mutuamente perpendiculares (ejes principales de inercia) que pasan por el centro de masa. Si no actúa ningún torque externo neto sobre el sistema, entonces a partir de (9) el momento angular no cambia con el tiempo: dl dt 0 L inicial = L final (11) Esta última ecuación representa la formulación matemática del principio de conservación del momento angular: cuando el torque externo neto que actúa sobre un sistema es cero, el momento angular L total del sistema permanece constante.

15 Si el sistema es un cuerpo que gira alrededor de un eje fijo, como el eje z, podemos escribir L z =, donde L z es la componente de L a lo largo del eje de rotación e I es el momento de inercia en torno a este eje. En este caso podemos expresar la conservación del momento angular como I i i = I f f (1) Expresión que es válida para rotaciones ya sea alrededor de un eje fijo o de un eje que pasa por el centro de masa del sistema, siempre y cuando el eje permanezca paralelo a sí mismo. 4.- Equilibrio de rígidos- Las condiciones necesarias y suficientes para que un rígido esté en equilibrio son: 1) F ext = 0 (13) (equilibrio traslacional) ) τ ext = 0 (respecto a cualquier punto) (14) (equilibrio rotacional) o+estatico+y+momento+angular&aq=f&aqi=&aql=&oq=&gs_rfai= Notas: [1]Más adelante, en termodinámica, el concepto de partícula libre se tratará como equivalente a sistema aislado. []A la magnitud del momentum se la denomina 'cantidad de movimiento'. [3]Suponiendo que conocemos la fuerza que actúa sobre la partícula en función de la posición. [4]O cuando experimentamos el deseo de ver a alguien, de comprar un objeto, de realizar una tarea, de huir de una situación, etc. En general, desde la perspectiva de la experiencia humana, las fuerzas a las que estamos sometidos son experimentadas como emociones, deseos, sentimientos, etc. [5]Un ser vivo puede considerarse como un sistema material que interactúa mecánica y electromagnéticamente con su entorno, bajo un campo de interacción gravitatorio. Dichas interacciones mecánicas y electromagnéticas son enormemente complejas, hasta el punto que no tiene ningún sentido tratar de determinarlas. Pero, en ningún caso, deberíamos olvidar la naturaleza estrictamente física de todo nuestro

16 comportamiento. METODOLOGÍA El estudiante consulta la guía, extrae las ideas y ecuaciones necesarias para resolver los problemas planteados en el taller, dedicándole unas 8 horas por lo menos en auto aprendizaje pues el modelo de educación a distancia lo exige, en la tutoría del 8 de agosto de 010 se socializará la guía, se aclararán las dudas e inquietudes y finalmente se le dará importancia primordial a la autonomía para desarrollar e ir preparando un portafolio que será socializado al final del modulo. EVALUACIÓN Como queda consignado en el acuerdo esta guía será evaluada mediante una prueba escrita personal el 4 de septiembre junto con la guía Nº, y 3 tendrán un valor parcial de 30%, a la nota final se les adicionara entre 1 y 5 puntos que los estudiantes hayan podido acumular, en la eventualidad de que un estudiante o un grupo de ellos desarrolle un proyecto de investigación esta nota parcial puede reemplazarse por la calificación obtenida en el proyecto. Los estudiantes resolverán las preguntas temáticas, las de unidad y la pregunta esencial, plantearán ejemplos y consignaran los resultados en el portafolio. Bibliografía Las Páginas relacionadas a continuación fueron consultadas y de ellas se extrajeron el marco teórico y los problemas prepuestos en el taller. Se recomienda visitar estas y profundizar en los contenidos. Dinámica de la rotación de un cuerpo rígido P.A. TIPLER, Física (Volumen 1 y ). Editorial Reverté, Barcelona. (Cualquier edición) R.A. SERWAY y J. W. JEWETT, Jr, Física (Volumen 1 y ). Editorial Thomson, Madrid. (Cualquier edición) W.E. GETTYS, F.J. KELLER y M.J. SKOVE, Física para ciencias e ingeniería (Segunda Edición, Tomo I y II). Editorial McGraw-Hill, México, 005. (Cualquier otra edición es perfectamente válida) Atención: las cuestiones, ejercicios y

17 problemas planteados al final de cada capítulo no tienen solución dada. W.E. GETTYS, F.J. KELLER y M.J. SKOVE, Física clásica y moderna (Tomo I y II). Editorial McGraw-Hill, México. (Cualquier edición)

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-08 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS 8 CONSERVACIÓN

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Impulso y cantidad de movimiento. Principio de conservación de la cantidad de movimiento

Impulso y cantidad de movimiento. Principio de conservación de la cantidad de movimiento Impulso y cantidad de movimiento. Principio de conservación de la cantidad de movimiento Cantidad de Movimiento lineal de una partícula La cantidad de movimiento se define como el producto de la masa por

Más detalles

Los vagones A y B se mueven juntos hacia la derecha, con una rapidez de:

Los vagones A y B se mueven juntos hacia la derecha, con una rapidez de: UNIDAD 5: CANTIDAD DE MOVIMIENTO LINEAL: COLISIONES CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL 1 PROBLEMA 5.2: COLISIÓN INELÁSTICA Dos vagones idénticos A de y B del metro de masa 10.000 kg colisionan

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión.

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión. UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Olga P. Rivera y el material de la coordinación [Escriba aquí el nombre] Fecha de Elaboración Fecha

Más detalles

IMPULSO Y MOMENTUM. NOMBRE...Curso: I. La dirección y sentido de la fuerza neta coincide con la dirección y sentido del Impulso.

IMPULSO Y MOMENTUM. NOMBRE...Curso: I. La dirección y sentido de la fuerza neta coincide con la dirección y sentido del Impulso. 1 IMPULSO Y MOMENTUM NOMBRE...Curso: CONCEPTO DE IMPULSO Consideremos una fuerza neta constante ( F ) que se aplica a un cuerpo durante un intervalo de tiempo, entonces diremos que se ha efectuado un impulso

Más detalles

Antecedentes históricos

Antecedentes históricos Mecánica Antecedentes históricos Aristóteles (384-322 AC) formuló una teoría del movimiento de los cuerpos que fue adoptada durante 2 000 años. Explicaba que había dos clases de movimiento: Movimiento

Más detalles

Leyes del movimiento de Newton

Leyes del movimiento de Newton Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos

Más detalles

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES FUERZA Fuerza es la interacción de dos o más cuerpos que puede causar el cambio de su movimiento. Fuerzas constantes dan origen a cambios progresivos del movimiento de un cuerpo o partícula en el tiempo.

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas Física General I Curso 2014 - Primer semestre Turno Tarde Contenidos de las clases dictadas 14/3 - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto,

Más detalles

GUÍA PRACTICA DE FÍSICA I CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO ANGULAR

GUÍA PRACTICA DE FÍSICA I CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO ANGULAR PRÁCTICA No. 7 REPÚBLICA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA NÚCLEO ARAGUA SEDE MARACAY DEPARTAMENTO DE ESTUDIOS BASICOS CATEDRA DE FÍSICA GUÍA PRACTICA

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A AGOSTO 26 DE 2013 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas 2.ESTÁTICA La palabra estática se deriva del griego statikós que significa inmóvil. En virtud de que la dinámica estudia la causa que originan la causa del reposo o movimiento de los cuerpos, tenemos que

Más detalles

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

1. Dinámica. Fuerza (relación entre aceleración y fuerza) Dinámica 1. Notas para el curso Física Universitaria 1 ı 7

1. Dinámica. Fuerza (relación entre aceleración y fuerza) Dinámica 1. Notas para el curso Física Universitaria 1 ı 7 1. Dinámica Desde la antigüedad se estimó la ciencia de la mecánica como la de mayor importancia para la investigación de los fenómenos naturales, y los modernos despreciando la forma sustancial y cualidades

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Dinámica de la partícula: Leyes de Newton

Dinámica de la partícula: Leyes de Newton Dinámica de la partícula: Leyes de Newton Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice

Más detalles

Guía Nº3. Aplicaciones de las Leyes de Newton I

Guía Nº3. Aplicaciones de las Leyes de Newton I Liceo Nº1 Javiera Carrera Departamento de Física L. Lastra, M. Ramos. 2ºM P.C. Guía Nº3. Aplicaciones de las Leyes de Newton I Hasta ahora se han aplicado las leyes de Newton a situaciones idealizadas

Más detalles

A) FÍSICA I (CURSO DE LA FACULTAD DE CIENCIAS, CLAVE: T91F1) B) DATOS BÁSICOS DEL CURSO C) OBJETIVOS DEL CURSO

A) FÍSICA I (CURSO DE LA FACULTAD DE CIENCIAS, CLAVE: T91F1) B) DATOS BÁSICOS DEL CURSO C) OBJETIVOS DEL CURSO UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSI Facultad de Ciencias Programas Analíticos de los primeros dos semestres de la licenciatura en Biofísica. 1) NOMBRE DE CADA CURSO O ACTIVIDAD CURRICULAR A) FÍSICA

Más detalles

CANTIDAD DE MOVIMIENTO

CANTIDAD DE MOVIMIENTO CANTIDAD DE MOVIMIENTO La cantidad de movimiento, o momentum o momento lineal, de una partícula de masa m que se mueve con una velocidad v es un vector con la dirección y sentido de la velocidad y se define

Más detalles

Tema 10: Introducción a la Dinámica del Sólido Rígido

Tema 10: Introducción a la Dinámica del Sólido Rígido Tema 10: Introducción a la Dinámica del Sólido Rígido FISICA I, 1º, Grado en Ingeniería Energética, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

Guía de Ejercicios en Aula: N 3

Guía de Ejercicios en Aula: N 3 Guía de Ejercicios en Aula: N 3 Tema: LEYES DE NEWTON Aprendizajes Esperados Opera con los Principios de Newton y da explicación de las fuerzas a las cuales están sometidos los cuerpos de un sistema proponiendo

Más detalles

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA. TEM: TEOREM DEL TRJO Y L ENERGÍ. PRINCIPIO DE CONSERVCIÓN DE L ENERGÍ. Problema experimento #10: Trabajo y Conservación de la energía con plano inclinado. Medir el espesor de un pequeño bloque de madera

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

Javier Junquera. Dinámica del sólido rígido

Javier Junquera. Dinámica del sólido rígido Javier Junquera Dinámica del sólido rígido ibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 omento angular de un cuerpo que rota

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

La energía y sus formas

La energía y sus formas TRABAJO Y ENERGÍA La energía y sus formas En nuestro lenguaje habitual se utiliza con mucha frecuencia el término energía y aproximadamente sabemos lo que significa. Sabemos que necesitamos energía para

Más detalles

CURSO CERO DE FÍSICA TRABAJO Y ENERGÍA

CURSO CERO DE FÍSICA TRABAJO Y ENERGÍA CURSO CERO DE FÍSICA Departamento de Física CONTENIDO Concepto de trabajo Teorema trabajo-energía cinética Fuerzas conservativas Energía potencial Conservación de la energía mecánica Ejemplo CONCEPTO DE

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Chocando con la realidad.

Chocando con la realidad. Chocando con la realidad. María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En el presente trabajo aplicamos el principio

Más detalles

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo.

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo. ENERGIA La energía se define como la capacidad que tiene un sistema para producir trabajo. Tipos de energía almacenada: son aquellos que se encuentran dentro del sistema 1. Energía potencial: es debida

Más detalles

Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure

Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure LABORATORIO: CONSERVACION DE LA CANTIDAD DE MOVIMIENTO LINEAL DESPUES DE UNA COLISION.

Más detalles

Sobre La Mecánica Clásica de los Cuerpos Puntuales III

Sobre La Mecánica Clásica de los Cuerpos Puntuales III Sobre La Mecánica Clásica de los Cuerpos Puntuales III Alejandro A. Torassa Buenos Aires, Argentina, E-mail: atorassa@gmail.com Licencia Creative Commons Atribución 3.0 (11 de febrero de 2008) Resumen.

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

DINÁMICA DE LA ROTACIÓN

DINÁMICA DE LA ROTACIÓN DINÁMICA DE LA ROTACIÓN 1. La polea de la figura tiene radio R y momento de inercia, respecto a un eje que pasa por su centro de masa perpendicular al plano del papel. La cuerda no resbala sobre la polea

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

Módulo 1: Mecánica Rotación

Módulo 1: Mecánica Rotación Módulo 1: Mecánica Rotación 1 Movimiento de rotación En Física distinguimos entre dos tipos de movimiento de objetos: Movimiento de traslación (desplazamiento) Movimiento de rotación (cambio de orientación

Más detalles

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S2991D2023 RIF: J-09009977-8 GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS Asignatura: Física Año Escolar: 2014-2015 Lapso:

Más detalles

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS.

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. 1. FUERZAS Y SUS EFECTOS. La Dinámica es una parte de la Física que estudia el movimiento de los cuerpos, atendiendo a las causas que lo producen. Son las

Más detalles

F d l W = ( ) ; d l = dx,dy,dz ( ) ( ) ò F dx + ò F dy + F dz. x f. z f ò z i. y f. y i. x i

F d l W = ( ) ; d l = dx,dy,dz ( ) ( ) ò F dx + ò F dy + F dz. x f. z f ò z i. y f. y i. x i El trabajo W hecho sobre un objeto, por un agente externo ejerciendo una fuerza constante en el objeto, es el producto de la fuerza y de la magnitud del desplazamiento: W = F * l A F B F = F,F.F x y z

Más detalles

Fuerzas no conservativas y balance energético

Fuerzas no conservativas y balance energético Fuerzas no conservativas y balance energético Módulo 2 Física Mecánica I-2016 Antonella Cid M. Departamento de Física Universidad del Bío-Bío Conservación de la energía mecánica La energía mecánica se

Más detalles

Cinética de partículas Leyes de Newton. Primera Ley de Newton o Ley de Inercia

Cinética de partículas Leyes de Newton. Primera Ley de Newton o Ley de Inercia Cinética de partículas Leyes de Newton Primera Ley de Newton o Ley de Inercia Segunda ley de Newton: Fuerza, Masa y Aceleración Momentum o Cantidad de Movimiento Principios de Conservación Tercera ley

Más detalles

FUNDACIÓN UNIVERSITARIA TECNOLÓGICO COMFENALCO

FUNDACIÓN UNIVERSITARIA TECNOLÓGICO COMFENALCO RELEVANCIA DEL CONCEPTO DE POTENCIA Y ENERGIA Los tres descubrimientos más importantes de la ciencia son: la materia es atómica, todos los sistemas (físicos, químicos y biológicos) son productos de procesos

Más detalles

EL H. CONSEJO DIRECTIVO DE LA FACULTAD DE INGENIERIA (en su sesión ordinaria del 12 de Setiembre de 2.001) R E S U E L V E

EL H. CONSEJO DIRECTIVO DE LA FACULTAD DE INGENIERIA (en su sesión ordinaria del 12 de Setiembre de 2.001) R E S U E L V E Salta, 2 de Octubre de 2.001 382/01 Expte. Nº 14.111/99 Nº 14.112/99 Nº 14.093/99 VISTO: La presentación efectuada por la Dra. Graciela Gladis Romero, Profesora a cargo de la asignatura Fisica I mediante

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. Trabajo mecánico. 2. Teorema de la energía cinética. 3. Fuerzas conservativas y energía potencial. 4. Conservación de la energía mecánica. 5. Consejos

Más detalles

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre

Más detalles

Autoevaluación unidad uno

Autoevaluación unidad uno Autoevaluación unidad uno I.- Instrucciones: Para tener un resumen esquemático de lo que has aprendido, completa el siguiente mapa conceptual. Coloca en los espacios en blanco el concepto o término correcto.

Más detalles

v m 2 d 4 m d 4 FA FCP m k

v m 2 d 4 m d 4 FA FCP m k Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

Módulo 1: Mecánica Sólido rígido. Rotación (II)

Módulo 1: Mecánica Sólido rígido. Rotación (II) Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto

Más detalles

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características

Más detalles

Fluidos. Presión. Principio de Pascal.

Fluidos. Presión. Principio de Pascal. Fluidos. Presión. Principio de Pascal. CHOQUES ELASTICOS E INELASTICOS Se debe tener en cuenta que tanto la cantidad de movimiento como la energía cinética deben conservarse en los choques. Durante una

Más detalles

Licenciatura en Química PROGRAMA DE ESTUDIO

Licenciatura en Química PROGRAMA DE ESTUDIO PROGRAMA DE ESTUDIO Física Elemental Programa Educativo: Área de Formación: Licenciatura en Química General Horas teóricas: 2 Horas prácticas: 2 Total de horas: 4 Total de créditos: 6 Clave: F1401 Tipo:

Más detalles

Se define Momento lineal al producto de la masa por la velocidad. p = mv

Se define Momento lineal al producto de la masa por la velocidad. p = mv Momento Lineal Se define Momento lineal al producto de la masa por la velocidad p = mv Se define el vector fuerza como la derivada del momento lineal respecto del tiempo La segunda ley de Newton es un

Más detalles

4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler

4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler 4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler Fuerza central Momento de torsión respecto un punto Momento angular de una partícula Relación Momento angular y Momento de torsión Conservación

Más detalles

5 Aplicaciones de las leyes

5 Aplicaciones de las leyes 5 Aplicaciones de las leyes de la dinámica ACIVIDADES Actividades DELdel DESARROLLO interiorde de LAla UIDAD unidad 1. Indica con qué interacciona cada uno de los siguientes cuerpos y dibuja las fuerzas

Más detalles

Choques Elásticos Apuntes de Clases

Choques Elásticos Apuntes de Clases COLEGIO JOSEFINO SANTÍSIMA TRINIDAD DEPARTAMENTE DE FÍSICA Profesor Jaier E. Jiménez C. Choques Elásticos Apuntes de Clases Se produce un choque elástico cuando los cuerpos chocan y no se pierde energía

Más detalles

5. APLICACIONES DE LAS LEYES DE NEWTON

5. APLICACIONES DE LAS LEYES DE NEWTON 5. APLICACIONES DE LAS LEYES DE NEWTON En este capítulo extenderemos las leyes de Newton al estudio del movimiento en trayectorias curvas e incluiremos los efectos cuantitativos del rozamiento Rozamiento

Más detalles

Licenciatura en Ing. Ambiental Área de Formación : General Horas teóricas: 1 Horas prácticas: 4 Total de Horas: 5 Total de créditos: 6

Licenciatura en Ing. Ambiental Área de Formación : General Horas teóricas: 1 Horas prácticas: 4 Total de Horas: 5 Total de créditos: 6 PROGRAMA DE ESTUDIO MECANICA Programa elaborado por: Fecha de elaboración: Fecha de última actualización: Programa Educativo: Licenciatura en Ing. Ambiental Área de Formación : General Horas teóricas:

Más detalles

MOMENTO LINEAL, ENERGIA CINETICA Y SU CONSERVACION. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

MOMENTO LINEAL, ENERGIA CINETICA Y SU CONSERVACION. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física MOMENTO LINEAL, ENERGIA CINETICA Y SU CONSERVACION BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física 2016 Índice general 1. Momento lineal, energía cinética y su conservación 1 1.1.

Más detalles

CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS.

CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS. CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS. E4A.S2013 Un satélite artificial de 1200 kg se eleva a una distancia de 500 km de la superficie de la Tierra y se le da un impulso mediante cohetes propulsores

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Estática. Equilibrio de una Partícula

Estática. Equilibrio de una Partícula Estática 3 Equilibrio de una Partícula Objetivos Concepto de diagrama de cuerpo libre para una partícula. Solución de problemas de equilibrio de una partícula usando las ecuaciones de equilibrio. Índice

Más detalles

Resumen de Cinemática

Resumen de Cinemática Resumen de Cinemática En este apartado haremos un resumen de cinemática del curso de biofísica con el objetivo que sirva como una base para repasar los conceptos de del tema con vista al examen oral. CINEMÁTICA

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DE LA PARTICULA MOVIMIENTO CIRCULAR. AUTORES Santiago Prieto, Maximiliano Rodríguez, Ismael

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 9 CHOQUES

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 9 CHOQUES Impulso y cantidad de movimiento. APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 9 CHOQUES Como se señaló en el tema anterior, la segunda ley de Newton dice que la fuerza resultante que

Más detalles

Tema 5. Propiedades de transporte

Tema 5. Propiedades de transporte Tema 5 Propiedades de transporte 1 TEMA 5 PROPIEDADES DE TRANSPORTE 1. TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES INTERPRETACIÓN CINÉTICO MOLECULAR DE LA PRESIÓN Y LA TEMPERATURA

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

Tema 6: Cinética de la partícula

Tema 6: Cinética de la partícula Tema 6: Cinética de la partícula FISICA I, 1º Grado en Ingeniería Civil Departamento Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Trabajo mecánico

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo 1. El módulo de la intensidad del campo gravitatorio en la superficie de un planeta de masa M y de radio R es g. Cuál será

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

TEMA 5: Dinámica. T_m[ 5: Dinámi][ 1

TEMA 5: Dinámica. T_m[ 5: Dinámi][ 1 TEMA 5: Dinámica T_m[ 5: Dinámi][ 1 ESQUEMA DE LA UNIDAD 1.- Fuerzas. 2.- Fuerzas y deformaciones. Ley de Hooke. 3.- Fuerzas de interés. 4.- Las leyes de Newton. 5.- Cantidad de movimiento. 6.- Principio

Más detalles

Universidad de San Carlos de Guatemala, Facultad de Ingeniería PROGRAMA FISICA 1, Primer Semestre 2013

Universidad de San Carlos de Guatemala, Facultad de Ingeniería PROGRAMA FISICA 1, Primer Semestre 2013 Universidad de San Carlos de Guatemala, Facultad de Ingeniería PROGRAMA FISICA 1, Primer Semestre 2013 Código: 150 Créditos: 6 Escuela: Escuela de Ciencias Área: Depto. de Física Pre-Requisito: Física

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

Dinámica de los sistemas de partículas. Javier Junquera

Dinámica de los sistemas de partículas. Javier Junquera Dinámica de los sistemas de partículas Javier Junquera Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 8 Definiciones básicas Supongamos

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

Dinámica de los sistemas de partículas. Javier Junquera

Dinámica de los sistemas de partículas. Javier Junquera Dinámica de los sistemas de partículas Javier Junquera Bibliografía FUENTE PRINCIPAL Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 8 Física

Más detalles

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS HOJA: 11 DE 20. 4.4.1 4.4.1.1 4.4.1.1.1 4.4.1.1.2 4.4.1.2 4412.1 T E M A S INSTRUMENTACION DIDACTICA T P EC CLAVE BIBLIOGRAFIA Fuerzas conservativas y no conservativas. Propiedades de una fuerza conservativa.

Más detalles

Dinámica de una partícula

Dinámica de una partícula Dinámica de una partícula 1. Introducción. Conceptos generales. 2. Leyes de Newton. 3. Fuerzas de rozamiento: rozamiento por deslizamiento. 4. Dinámica del movimiento curvilíneo. Fuerza centrípeta. 5.

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN UNIVERSIDAD NACIONAL AUTÓNOMA MÉXICO FACULTAD ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA EN QUÍMICA FARMACEUTICA BIOLÓGICA Primer semestre ASIGNATURA: FISICA HORAS / SEMANA 6 / SEMESTRE 96 CARÁCTER: OBLIG.

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

Antes de entrar en la comprensión de la biomecánica del cuerpo humano, se deben conocer los principios en los que se basa.

Antes de entrar en la comprensión de la biomecánica del cuerpo humano, se deben conocer los principios en los que se basa. 39 A P J N T S. M E r) I C 1 N A DE L ' E S P O l< 1 2 O C 6 : I '1 8 : 3 9-13 Antes de entrar en la comprensión de la biomecánica del cuerpo humano, se deben conocer los principios en los que se basa.

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO ESTATICO Y ELASTICIDAD CAPITULO 12 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

PROBLEMAS RESUELTOS EQUILIBRIO ESTATICO Y ELASTICIDAD CAPITULO 12 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBEMAS RESUETOS EQUIIBRIO ESTATICO Y EASTICIDAD CAPITUO 12 ISICA TOMO 1 Cuarta, quinta y sexta edición Raymond A. Serway EQUIIBRIO ESTATICO Y EASTICIDAD 12.1 Condiciones de equilibrio 12.2 Mas sobre

Más detalles