TUTORIAL DE MATLAB TUTORIAL DE MATLAB QUÉ ES MATLAB? Uso de Matrices Origen de MatLab Plataformas 5 1.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TUTORIAL DE MATLAB TUTORIAL DE MATLAB 1. 1. QUÉ ES MATLAB? 4 1.1 Uso de Matrices 5 1.2 Origen de MatLab 5 1.3 Plataformas 5 1."

Transcripción

1 TUTORIAL DE MATLAB TUTORIAL DE MATLAB 1 1. QUÉ ES MATLAB? Uso de Matrices Origen de MatLab Plataformas Productos 5 2. LIBRERÍA DE APLICACIONES DE MATLAB SIGNAL PROCESSING TOOLBOX THE MATLAB C MATH LIBRARY Desarrollo de aplicaciones utilizando la MATLAB C Math Library Utilización de MATLAB y de su compilador Velocidad y Precisión Lista parcial de funciones 9 Funciones matemáticas 9 Funcionales especiales y elementales 9 Algebra lineal numérica 9 Polinomios e interpolación 9 Métodos numéricos no lineales 10 Estadística y análisis de Fourier 10 Operaciones algebráicas y lógicas Utilidades Requerimientos THE MATLAB COMPILER TOOLBOX Generación Automática de ficheros MEX Rendimiento del compilador Opciones de ajuste del rendimiento Requerimientos del sistema Limitaciones del código compilado SYMBOLIC MATH TOOLBOX OPTIMIZATION TOOLBOX IMAGE PROCESSING TOOLBOX Neural Network Toolbox NON LINEAR CONTROL DESIGN TOOLBOX NAG FOUNDATION TOOLBOX INICIANDO MATLAB 20 1

2 4. USO DE COMANDOS Instrucciones de MATLAB y Variables Obteniendo Información del Espacio de Trabajo Variables Permanentes Saliendo y Guardando el Espacio de Trabajo Manipulación de Vectores y Matrices Operaciones de Matrices Operaciones de Arreglos Ejemplos: Operaciones Aritméticas PROGRAMANDO CON MATLAB Generalidades Archivos-M: Comandos y Funciones Otras funciones Declaración function Operadores relacionales Operadores lógicos Caracteres especiales Control de flujo Declaración FOR simple Declaración FOR anidada Declaración WHILE Declaraciones IF, ELSE, ELSEIF y BREAK Creación de una matriz Cambio del orden de una matriz: reshape Modificación individual de elementos Modificaciones adicionales de una matriz Declaración fopen 57 Ejemplo Declaración fclose Declaración fread Declaración fwrite Declaración fprintf Variables globales Vectorización de algoritmos y estructuras (for, while) Gráficas en Dos Dimensiones 60 COMANDO PLOT 60 Símbolo Color 60 Símbolo Estilo de línea Comandos gráficos Gráficos en 3 dimensiones Archivos de disco Manipulación de Archivos de Disco Ejecutando Programas Externos Importando y Exportando Datos INDICE ALFABETICO SIMULINK Acelerador de Simulink Generador de código- C en Simulink COMANDOS DE MATLAB General purpose commands: 78 Control System Toolbox Commands: 81 2

3 8. APLICANDO MATLAB AL CONTROL DE PROCESOS Respuesta en el dominio del tiempo Respuesta en el dominio de la frecuencia Lugar de las raíces Controladores PID TRUCOS EN MATLAB 99 Paper semilogarítmico gratis: papelbod.m 99 3

4 1. QUÉ ES MATLAB? MatLab es un programa interactivo para computación numérica y visualización de datos. Es ampliamente usado por Ingenieros de Control en el análisis y diseño, posee además una extraordinaria versatilidad y capacidad para resolver problemas en matemática aplicada, física, química, ingeniería, finanzas y muchas otras aplicaciones. Está basado en un sofisticado software de matrices para el análisis de sistemas de ecuaciones. Permite resolver complicados problemas numéricos sin necesidad de escribir un programa. MATLAB es un entorno de computación y desarrollo de aplicaciones totalmente integrado orientado para llevar a cabo proyectos en donde se encuentren implicados elevados cálculos matemáticos y la visualización gráfica de los mismos. MATLAB integra análisis numérico, cálculo matricial, proceso de señal y visualización gráfica en un entorno completo donde los problemas y sus soluciones son expresados del mismo modo en que se escribirían tradicionalmente, sin necesidad de hacer uso de la programación tradicional. El nombre de MATLAB proviene de la contracción de los términos MATrix LABoratory y fue inicialmente concebido para proporcionar fácil acceso a las librerías LINPACK y EISPACK, las cuales representan hoy en dia dos de las librerías más importantes en computación y cálculo matricial. MATLAB es un sistema de trabajo interactivo cuyo elemento básico de trabajo son las matrices. El programa permite realizar de un modo rápido la resolución numérica de problemas en un tiempo mucho menor que si se quisiesen resolver estos mismos problemas con lenguajes de programación tradicionales como pueden ser los lenguajes Fortran, Basic o C. MATLAB goza en la actualidad de un alto nivel de implantación en escuelas y centros universitarios, así como en departamentos de investigación y desarrollo de muchas compañías industriales nacionales e internacionales. En entornos universitarios, por ejemplo, MATLAB se ha convertido en una herramienta básica, tanto para los profesionales e investigadores de centros docentes, como una importante herramienta para la impartición de cursos universitarios, tales como sistemas e ingenieria de control, álgebra lineal, proceso digital de imagen, señal, etc. En el mundo industrial, MATLAB está siendo utilizado como herramienta de investigación para la resolución de complejos problemas planteados en la realización y aplicación de modelos matemáticos en ingeniería. Los usos más característicos de la herramienta los encontramos en áreas de computación y cálculo numérico tradicional, prototipaje algorítmico, teoría de control automático, estadística, análisis de series temporales para el proceso digital de señal. 4

5 MATLAB dispone también en la actualidad de un amplio abanico de programas de apoyo especializados, denominados Toolboxes, que extienden significativamente el número de funciones incorporadas en el programa principal. Estos Toolboxes cubren en la actualidad prácticamente casi todas las áreas principales en el mundo de la ingeniería y la simulación, destacando entre ellos el 'toolbox' de proceso de imágenes, señal, control robusto, estadística, análisis financiero, matemáticas simbólicas, redes neurales, lógica difusa, identificación de sistemas, simulación de sistemas dinámicos, etc. Además también se dispone del programa Simulink que es un entorno gráfico interactivo con el que se puede analizar, modelizar y simular la dinámica de sistemas no lineales. 1.1 Uso de Matrices MatLab emplea matrices porque con ellas se puede describir infinidad de cosas de una forma altamente flexible y matemáticamente eficiente. Una matriz de pixeles puede ser una imagen o una película. Una matriz de fluctuaciones de una señal puede ser un sonido o una voz humana. Y tal vez más significativamente, una matriz puede describir una relación lineal entre los componentes de un modelo matemático. En este último sentido, una matriz puede describir el comportamiento de un sistema extremadamente complejo. Por ejemplo una matriz puede representar el vuelo de una avión a pies de altura, o un filtro digital de procesamiento de señales. 1.2 Origen de MatLab MatLab fue originalmente desarrollado en lenguaje FORTRAN para ser usado en computadoras mainframe. Fue el resultado de los proyectos Linpack y Eispack desarrollados en el Argonne National Laboratory. Su nombre proviene de MATrix LABoratory. Al pasar de los años fue complementado y reimplementado en lenguaje C. Actualmente la licencia de MatLab es propiedad de MathWorks Inc. 1.3 Plataformas MatLab está disponible para una amplio número de plataformas: estaciones de trabajo SUN, Apollo, VAXstation y HP, VAX, MicroVAX, Gould, Apple Macintosh y PC AT compatibles o superiores. Opera bajo sistemas operativos UNIX, Macintosh y Windows. 1.4 Productos La empresa MathWorks ofrece MatLab como su principal producto para computación numérica, análisis y visualización de datos. También ofrece Simulink 5

6 como un anexo a MatLab y que interactua con él en lenguaje de MatLab y lenguaje de bajo nivel C. Simulink es usado para simulación modelado no lineal avanzado. Se ofrecen además numerosas herramientas especiales en "Toolboxes" para resolver problemas de aplicaciones específicas, por ejemplo control, procesamiento de señales, redes neurales, etc. Estas herramientas son colecciones de rutinas escritas en MatLab. 6

7 2. Librería de Aplicaciones de MATLAB 2.1 SIGNAL PROCESSING TOOLBOX MATLAB tiene una gran colección de funciones para el procesamiento de señal en el Signal Processing Toolbox. Este incluye funciones para: Análisis de filtros digitales incluyendo respuesta en frecuencia, retardo de grupo, retardo de fase. Implementación de filtros, tanto directo como usando técnicas en el dominio de la frecuencia basadas en la FFT. Diseño de filtros IIR, incluyendo Butterworth, Chebyschev tipo I, Chebyshebv tipo II y elíptico. Diseño de filtros FIR mediante el algorítmo óptimo de Parks-McClellan. Procesamiento de la transformada rápida de Fourier FFT, incluyendo la transformación para potencias de dos y su inversa, y transformada para no potencias de dos. 2.2 THE MATLAB C MATH LIBRARY La MATLAB C Math Library proporciona al usuario la capacidad computacional de MATLAB en una libreria en formato objeto enlazable. El objetivo principal de la C Math Library es soportar el desarrollo de aplicaciones 'stand alone' utilizando MATLAB y su compilador. Puede ser utilizada independientemente de MATLAB por programadores avezados en lenguaje C que necesiten prestaciones computacionales robustas y de alto rendimiento. Junto con el compilador de MATLAB, la C Math Library permitirá a los programadores de aplicaciones utilizar MATLAB para la creación de aplicaciones 'stand alone'. Para los usuarios clásicos de MATLAB, se elimina así cualquier necesidad de volver a reescribir algoritmos en lenguaje C para ser utilizada por programas externos. Para aquellos usuarios que sean nuevos en la tecnología MATLAB, esta tecnología ofrece una nueva vía para la reducción del tiempo de desarrollo y puesta a punto de aplicaciones. La MATLAB C Math Library proporciona una amplia gama de funciones clásicas del programa MATLAB, proporcionadas como librerias objeto, incluyendo básicamente las siguientes categorías de funciones presentes en MATLAB y ficheros M compilados: Algebra lineal. Funciones matemáticas elementales y especializadas. Operadores lógicos y aritméticos. 7

8 Matrices elementales y manipulación de vectores. Matrices especiales. Estadística básica y análisis de datos. Polinomios e interpolación. Gestión de cadenas de caracteres. Entradas y Salidas. Gestión de memoria y errores. (Nota: Las funciones del tipo Handle Graphics no están incluidas en la C Math Library) Desarrollo de aplicaciones utilizando la MATLAB C Math Library La construcción y desarrollo de aplicaciones utilizando esta librería es un proceso de amplias perspectivas una vez se tiene un dominio adecuado de su operativa. El producto está dividido en dos categorías (como librerías objeto): la librería (built-in library) contiene versiones de las funciones de MATLAB en lenguaje C del tipo numérico, lógico y utilidades. Por otra parte la librería de toolboxes (toolbox library) contiene versiones compiladas de la mayoría de ficheros M de MATLAB para cálculo numérico, análisis de datos y funciones de acceso a ficheros y matrices. En equipos UNIX estas librerias pueden ser igualmente obtenidas como librerías de tipo estático (static libraries) o bien como librerías compartidas (shared libraries). Respecto al mundo PC, estas librerías pueden obtenerse como DLL's en el entorno Microsoft Windows o como librerias compartidas en equipos Apple MacIntosh Utilización de MATLAB y de su compilador Para construir una aplicación del tipo 'stand alone' que incorpore código originalmente desarrollado como ficheros M de MATLAB, deberán seguirse los pasos siguientes: 1. Utilizar el compilador de MATLAB para convertir ficheros M en C mediante la utilización de la instrucción mcc -e (la cual es externa a MATLAB). 2. Compilar el código C fuente en código objeto utilizando un compilador ANSI C. 3. Enlazar el código resultante con la MATLAB C Math Library y con cualquier tipo de ficheros y programas específicos que hayan sido previamente definidos por el usuario. 8

9 2.2.3 Velocidad y Precisión Los algoritmos utilizados en la MATLAB C Math Library han sido desarrollados por un grupo de renombrados expertos en programación algorítmica de funciones de tipo matemático (algebra lineal y cálculo numérico). Las funciones de álgebra lineal han sido obtenidas de las librerias mundialmente reconocidas LINPACK y EISPACK. La MATLAB C Math Library contiene más de 300 funciones numéricas, lógicas y de utilidad. Todas estas funciones le permitirán operar en datos de tipo escalar, vectorial o matricial con la misma facilidad sintáctica Lista parcial de funciones Funciones matemáticas Funcionales especiales y elementales Funciones gamma, beta y elípticas. Transformación de sistemas de coordenadas. Matriz identidad y otras matrices elementales. Matrices de Hilbert, Toeplitz, Vandermonde, Hadamard, etc. Partes reales, imaginarias y complejas conjugadas. Funciones trigonométricas y de potencias. Algebra lineal numérica Valores propios y descomposición de matrices. Funciones generales de evaluación de matrices. Determinantes, normas, rangos, etc. Matrices inversas y factorización de matrices. Ma triz exponencial, logarítmica y raíces cuadradas. Polinomios e interpolación Interpolación 1-D y 2-D. Construcción polinomial. Interpolación por splines cúbicos. Diferenciación de polinomios. Evaluación de polinomios. Multiplicación y división de polinomios. Residuos de polinomios y residuos. 9

10 Métodos numéricos no lineales Búsqueda de ceros en funciones de una única variable. Minimización de funciones de una o más variables. Resolución numérica de integrales. Solución numérica de ecuaciones diferenciales ordinarias. Estadística y análisis de Fourier Convolución 1-D y 2-D. Filtros digitales 1-D y 2-D. Transformadas de Fourier 1-D y 2-D y su inversa. Coeficientes de correlación y matrices de covarianza. Deconvolución. Magnitudes y ángulos de fase. Funciones max, min, sum, mean y otras funciones de estadística básica. Operaciones algebráicas y lógicas Suma, resta, multiplicación, división y potencias de matrices. Matrix traspuesta. Operadores lógicos AND, OR, NOT y XOR Utilidades Gestión y mantenimiento de errores. Conversión de tipos de datos Fortran. Funciones de fecha y hora. Clasificación de matrices. Conversión de números a cadenas y viceversa Requerimientos La libreria MATLAB C Math Library cumple con la normativa estándar ANSI para compiladores C. Finalmente, la librería trabajará con aquellos enlazadores que vienen suministrados con la mayoría de compiladores ANSI C. 10

11 2.3 THE MATLAB COMPILER TOOLBOX El nuevo compilador de MATLAB -The MATLAB Compiler- permite crear código C optimizado procedente de ficheros M -M files- de MATLAB. Este compilador puede ser utilizado de dos modos: 1. Como un generador MEX automático. Pueden convertirse ficheros M en funciones C ejecutables que se ejecutaran desde dentro de MATLAB. Como un generador de código C fuente. 2. Pueden construirse aplicaciones que se ejecutaran independientemente de MATLAB. Estas aplicaciones externas requieren de la MATLAB C Math Library, que está disponible separadamente. Mediante la conversión automática de ficheros M en código C fuente, el compilador MATLAB elimina consumo de tiempo y la conversión manual de código. Todo el proceso de conversión, compilación y enlazado se inicia a través de una simple instrucción de MATLAB Generación Automática de ficheros MEX. El compilador de MATLAB automatiza la creación de ficheros MEX de C (MATLAB Ejecutables). Los ficheros MEX contienen código objeto que es dinámicamente enlazado como 'runtime' en el entorno MATLAB por el intérprete del programa. El proceso en cuestión se realiza en tres pasos: 1. El compilador de MATLAB traduce las funciones MATLAB en sus funciones equivalente en lenguaje C. 2. La instrucción MATLAB cmex llama al compilador y al enlazador del sistema para construir un fichero MEX objeto. 3. El intérprete de MATLAB enlaza automáticamente la función de MATLAB como 'runtime'. Mientras se efectúa una conversión de los ficheros M en ficheros MEX, el compilador realiza llamadas a las rutinas de la libreria C para muchas de las instrucciones contenidas en el propio núcleo de MATLAB. Existen algunas funciones, incluyendo las rutinas 'Handle Graphics', para las cuales se generan de nuevo llamadas 'callbacks' a MATLAB. Pueden convertirse convenientemente ficheros M en código fuente C para incorporarlos posteriormente en los ficheros externos desarrollados en lenguaje C, si ese es el caso. Esta opción es ideal para usuarios que quieren sacar la máxima ventaja de MATLAB desde cualquier otra aplicación o producir código C eficiente a partir de los algoritmos desarrollados con MATLAB. Los desarrollos 11

12 del tipo 'stand-alone' requieren para ello de la MATLAB C Math Library. Obsérvese que las funciones gráficas de MATLAB no están incluidas. Para construir aplicaciones 'stand-alone' se debería seguir los siguientes pasos: 1. Utilizar el compilador de MATLAB para convertir ficheros M en C con la instrucción externa mcc -e. 2. Compilar el código C fuente en código objeto utilizando un compilador C. 3. Enlazar el código resultante con las librerías matemáticas C de MATLAB y los ficheros específicos que dispongamos Rendimiento del compilador Mediante la compilación de los ficheros M se puede obtener un rendimiento significativo. La velocidad de mejora de este rendimiento, depende fuertemente de cada aplicación. En algunos casos el rendimiento puede mejorar hasta en 200 veces la ejecución si la comparamos con el modo de trabajo interpretado del programa. Las operaciones matriciales y vectoriales ejecutadas desde MATLAB ya están fuertemente optimizadas en su diseño. Sin embargo, mediante la utilización del compilador se obtendrán significativas mejoras Opciones de ajuste del rendimiento El compilador de MATLAB ofrece varias opciones que permiten generar el programa final de la forma más eficiente. Por ejemplo, Ud. puede directamente: Tratar todas las variables en ficheros como datos enteros y/o reales. Utilizar una variable concreta como variable escalar, vectorial, entera, real o una combinación de estas. Desactivar el control de parámetros de entrada y el redimensionamiento dinámico de vectores Requerimientos del sistema Para utilizar el compilador de MATLAB para crear ficheros MEX se necesita la versión de MATLAB 4.2c y tener instalado uno de los siguientes compiladores de lenguaje C: PC/Microsoft Windows Metaware High C/C++ V.3.0 o superior. Watcom C V.10.0 o superior Power MacIntosh MetroWerks CodeWarrior C V.7 12

13 MPW MrC V.1.0b2 o PPCC version x0 MacIntosh MPW C Versión 3.4 UNIX y VMS Cualquier compilador ANSI C (Nota: El compilador de SunOS 4.1.X no es un compilador ANSI C). Cualquiera que sea el equipo informático que vaya a utilizarse para desarrollar aplicaciones 'stand alone' se requiere, además del compilador de MATLAB, que se tengan las MATLAB C Math Library y un compilador ANSI C Limitaciones del código compilado Ciertas instrucciones, como load y eval, no están soportadas por el compilador de MATLAB. Este no puede generar código de los diagramas de bloques de SIMULINK. Los toolboxes de MATLAB pueden incluir ficheros MEX y otros componentes que no son compilables. 2.4 SYMBOLIC MATH TOOLBOX El Toolbox de Matemática Simbólica, añade a MATLAB la capacidad de realizar cálculos simbólicos basados en MAPLE V soportando además (The Extended Symbolic Math Toolbox) las librerías especializadas, y los programas realizados para este último. Entre otros, los principales tipos de operaciones soportados son los siguientes: Algebra simbólica: Derivación, integración y simplificación de expresiones matemáticas. Algebra lineal exacta: Inversas, determinantes, autovalores y formas canónicas de matrices simbólicas. Aritmética de precisión variable: Evaluación de expresiones matemáticas con diversos grados de precisión. Resolución de ecuaciones: Resolución numérica y simbólica de ecuaciones algebraicas y diferenciales. Funciones matemáticas especiales: Evaluación de la mayoría de las funciones utilizadas en matemáticas aplicadas. Existen dos versiones del mismo Toolbox. The Basic Symbolic Math Toolbox es una colección de más de 50 funciones MATLAB las cuales permiten acceder al 13

14 kernel de MAPLE utilizando la Sintaxis y el estilo del lenguaje MATLAB. The Extended Symbolic Math Toolbox aumenta esta funcionalidad incluyendo todas las características de programación de MAPLE, y el acceso a los paquetes de funciones de más de veinte campos de las matemáticas especiales aplicadas. Es posible utilizar este Toolbox sin conocimiento previos de MAPLE, ya que los ficheros contenidos en él son totalmente autónomos. Sin embargo, si lo que se desea es obtener toda la potencia de cálculo del entorno, será necesario un amplio conocimiento del manejo y la programación de MAPLE 2.5 OPTIMIZATION TOOLBOX El toolbox de optimización consta de un conjunto de funciones que resuelven problemas de extremos, con o sin condiciones, de funciones reales las cuales son generalmente multivariables y no lineales. Asimismo, posee funciones para la resolución de algunos tipos de problemas matriciales en extremos. Resulta conveniente para una comprensión y mejor manejo de la toolbox poseer conocimientos básicos previos de análisis de funciones reales, matrices y teoría de extremos. Algunas de las áreas básicas que cubre este toolbox para MATLAB son las siguientes: Cálculo de un extremo local (máximo o mínimo) de una función real f(x), en general multivariable y no lineal, sin imponer ninguna restricción o condición a la solución. Como caso particular, se incluye una rutina especial para problemas de mínimos cuadrados no lineales. Cálculo de un extremo local (máximo o mínimo) de una función real f(x), en general multivariable y no lineal, condicionado a que la solución satisfaga ciertas condiciones de desigualdad (g(x)<=0) y/o igualdad (g(x)=0). Problemas de aproximación a un conjunto de objetivos. Cálculo de soluciones de un sistema de ecuaciones continuas y, en general, no lineales. Solución de problemas minimax. Programación lineal. Programación cuadrática. Problemas de mínimos cuadrados no negativos. 14

15 2.6 IMAGE PROCESSING TOOLBOX Este Toolbox proporciona a MATLAB de un conjunto de funciones que amplia las capacidades del producto para realizar desarrollo de aplicaciones y de nuevos algoritmos en el campo del proceso y análisis de imagenes. El entorno matemático y de creación de MATLAB es ideal para el procesado de imágenes, ya que estas imágenes son, al fin y al cabo, matrices. Este toolbox incorpora funciones para: Diseño de filtros. Mejora y retocado de imágenes. Análisis y estadística de imágenes. Operaciones morfológicas, geométricas y de color. Transformaciones 2D. El proceso de imágenes es un campo de trabajo absolutamente crucial para aquellos colectivos e industrias que estén trabajando en áreas como diagnóstico médico, astronomía, geofísica, ciencia medioambientales, análisis de datos en laboratorios, inspección industrial, etc. Los programas actuales de procesado y análisis de imágenes se clasifican actualmente en dos categorías: librerías de bajo nivel para programadores profesionales y paquetes de aplicación con capacidades limitadas de personalización. Ambos tipos de aplicaciones están, generalmente, pensados para ta reas básicas de visualización de datos y 'rendering'. Sin embargo, muchos de ellos adolecen de la posibilidad de efectuar análisis numéricos de los mismos. El Image Processing Toolbox entra dentro de la categoría de familias de funciones que, desde el ento rno de trabajo de MATLAB, permitirá al profesional efectuar una exploración exhaustiva y desde un punto de vista matemático de las imágenes y gráficos que se deseen tratar o analizar. Algunas de las funciones más importantes incluidas dentro de este toolbox son las siguientes: Análisis de imágenes y estadística. Diseño de filtros y recuperación de imágenes. Mejora de imágenes. Operaciones morfológicas. Definición de mapas de colores y modificación gráfica. Operaciones geométricas. Transformación de imágenes. Proceso de bloques 15

16 2.7 Neural Network Toolbox Este toolbox proporciona funciones para el diseño, inicialización, simulación y entrenamiento de los modelos neuronales de uso más extendido en la actualidad: Perceptrón, redes lineales, redes de retropropagación, redes de base radial, aprendizaje asociativo y competitivo, aplicaciones autoorganizativas, aprendizaje de cuantización vectorial, redes de Elman y redes de Hopfield. Mediante la inclusión de un amplio abanico de funciones y procedimientos escritos para MATLAB, el usuario puede mediante el Neural Network Toolbox efectuar el diseño de arquitecturas complejas, combinando los modelos que ya estan proporcionados por defecto en el toolbox. Asimismo, el usuario puede definir sus propias funciones de transferencia e inicialización, reglas de aprendizaje, funciones de entrenamiento y estimación de error para usarlas posteriormente con las funciones básicas. El toolbox, aporta las facilidades y prestaciones gráficas de MATLAB para el estudio del comportamiento de las redes: visualización gráfica de la matriz de pesos y vector de desplazamiento mediante diagramas de Hinton, representación de errores a lo largo del entrenamiento, mapas de superficie de error en función de pesos y vector de desplazamiento, etc. Estos gráficos resultan muy útiles en el estudio de la convergencia y estabilidad de los algoritmos de aprendizaje. Este toolbox incluye un manual de introducción al campo de las redes neuronales junto con una colección de demostraciones y aplicaciones muy didácticas, útiles para el estudio y la profundización en las cuestiones fundamentales de los paradigmas de redes neuronales básicos. Asimismo, se proporcionan las referencias bibliográficas más significativas referidas a los distintos modelos que aparecen en la aplicación. A pesar de que el estudio de las redes neuronales se inició ya hace algunas decadas, las primeras aplicaciones sólidas dentro de este campo no han tenido lugar hasta hace unos doce años y aun ahora constituyen un área de investigación en rápido desarrollo. Este toolbox tiene por tanto una orientación diferente a aquellos destinados a campos como el de sistemas de control u optimización donde la terminología, fundamentos matemáticos y procedimientos de diseño estan ya firmemente establecidos y se han aplicado durante años. Este toolbox pretende que sea utilizado para la valoración y diseño de diseños neuronales en la industria y sobre todo en educación e investigación. Esta herramienta tiene el soporte de MATLAB 4.2c y SIMULINK. La librería de SIMULINK contiene modelos de capas de redes neuronales de cada tipo de neurona implementada en el toolbox de redes neuronales. Es posible por tanto diseñar sistemas SIMULINK para simular redes neuronales creadas usando esta herramienta. Simplemente, las capas se conectan de acuerdo con la arquitectura de la red y se proporcionan como entrada a la caja de diálogo de cada capa la matriz de pesos apropiada y el vector de desplazamiento. Usando el generador de código C de SIMULINK es posible generar automáticamente el código correspondiente a un diseño neuronal. 16

17 Dentro de las aplicaciones básicas de este toolbox, cabe destacar aquellas que están orientadas a aquellas que se enmarcan dentro del campo de la industria aeroespacial y automoción (simulación, sistemas de control, autopilotaje), banca, defensa (reconocimiento de patrones, procesamiento de señales, identificación de imágenes, extracción de características, compresión de datos), electrónica (control de procesos, análisis de errores, modelado no lineal, síntesis de voz, visión por ordenador), economía (análisis financiero, análisis predictivo), industria (control de procesos, identificación en tiempo real, sistemas de inspección), medicina, robótica (control de trayectorias, sistemas de visión), reconocimiento y síntesis del habla, telecomunicaciones (control de datos e imágenes, servicios de información automatizada, traducción del lenguaje hablado en tiempo real, diagnosis, sistemas de enrutamiento), etc. El toolbox contiene muchos ejemplos de algunas de estas aplicaciones. 2.8 NON LINEAR CONTROL DESIGN TOOLBOX Se trata del primer producto comercialmente disponible en la actualidad para el diseño de controladores automáticos en entornos de sistemas no lineales. Este nuevo toolbox está pensado para ser utilizado exhaustivamente por ingenieros que diseñan controladores para industrias avanzadas, destacando el sector del automóvil, ingenieria aeroespacial, control de procesos y empresas petroquímicas. Según indica Jim Tung, Vicepresidente del área de desarrollo de The MathWorks Group, Inc. "El proceso de aproximación tradicional en el diseño de controladores en sistemas no lineales ha sido hasta la fecha linealizarlos de algún modo para aplicar posteriomente un método de diseño lineal que requiere de importantes ajustes manuales. El toolbox NCD permite por primera vez a los ingenieros de control diseñar directamente sus controladores en un ambiente no lineal, obviando la aproximación lineal y otros procedimientos auxiliares que antes se necesitaban de modo imperativo. Los resultados ahora son de elevada calidad, controladores más robustos y un ciclo de diseño mucho más rápido. El toolbox NCD extiende, además, las prestaciones que incorpora SIMULINK, el entorno de desarrollo de diagramas de bloques para la modelación y análisis de sistemas dinámicos de The MathWorks, Inc. El usuario puede incluir uno o más bloques NCD en el sistema y describir posteriormente de modo totalmente gráfico las restricciones, tolerancias y límites de permisividad de cada uno de estos bloques. Los métodos avanzados de optimización y la simulación del proceso son posteriormente analizados y ajustados mediante la inclusión de unas ciertas variables de contorno para poder obtener los tiempos de respuesta deseados. Este toolbox puede ser utilizado para ajustar una amplia variedad de controladores que se utilicen en un sistema, destacando los controladores PID, LQR, LQG y estructuras H infinito. El diseñador de sistemas puede utilizar el método de Montecarlo para el diseño y análisis de controladores robustos, 17

18 siempre que se detecten determinadas variaciones en los componentes del sistema. El toolbox NCD es un componente avanzado del entorno integrado de desarrollo que ofrecen a los especialistas los programas MATLAB y SIMULINK. Por ello, los diseñadores podrán beneficiarse de muchos de los toolboxes desarrollados para este entorno en materia de diseño de sistemas lineales. Por ejemplo, podrán utilizarse toolboxes para el análisis de sistemas lineales para el diseño inicial; posteriormente, podrán utilizarse modelos no lineales más sofisticados utilizando SIMULINK. Además, puede invocarse NCD para un mejor ajuste paramétrico y para la optimización de los controladores. Este toolbox se encuentra actualmente disponible para una amplia variedad de plataformas informáticas, destacando ordenadores personales tipo PC o Apple MacIntosh, numerosas estaciones UNIX y ordenadores Digital VAX VMS. 2.9 NAG FOUNDATION TOOLBOX Este toolbox proporciona un acceso interactivo, desde dentro de MATLAB, a un amplio conjunto de funciones matemáticas y estadísticas contenidas en las clásicas NAG Fortran Libraries de la empresa The Numerical Algorithms Group Incorpora más de 200 ficheros M, los cuales cubren un amplio espectro de áreas de interés, entre las que cabe destacar optimización, ecuaciones diferenciales ordinarias y en derivadas parciales, cuadratura, estadística, etc. La NAG Foundation Toolbox añade también rutinas concretas para campos específicos tales como la resolución de problemas con condiciones de contorno, problemas de cuadratura adaptativa multidimensional, ajuste de curvas y superficies y el acceso a los algoritmos LAPACK para la resolución de ecuaciones lineales. Los nombre de las funciones han sido directamente tomados de las especificaciones de función clásica que añade The Numerical Algorithms Group para sus librerías. Como resultado de esto, aquellos usuarios de las librerías Fortran de NAG que a la vez sean usuarios de MATLAB, encontraran bastante cómodo acceder a las rutinas NAG utilizando la nomenclatura original. La NAG Foundation Toolbox es resultado de la colaboración corporativa que actualmente están llevando a cabo The MathWorks Group y The Numerical Algoriths Group para proporcionar un rápido acceso desde MATLAB a un importante de rutinas matemáticas contenidas en la NAG Foundation Library. Actualmente, este toolbox incorpora 250 rutinas matemáticas. Algunas de las áreas de cobertura de la NAG Foundation Toolbox son las siguientes: Ceros de polinomios Raíces de una o más ecuaciones de tipo trascendental. 18

19 Suma de series. Cuadraturas. Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales en derivadas parciales. Estadística no paramétrica. Análisis de series temporales. Rutinas de clasificación. Aproximación de funciones especiales. Aproximación de curvas y superficies. Maximización y minimización de funciones. Factorización de matrices. Valores y vectores propios. Resolución de ecuaciones lineales simultáneas. Ecuaciones lineales (LAPACK). Estadística básica. Análisis de correlación y regresiones. Métodos multivariantes. Generación de números aleatorios. 19

20 3. INICIANDO MATLAB Después de ejecutar el programa MatLab desde el sistema operativo empleado, por ejemplo haciendo doble click sobre el icono de MatLab en ambientes Windows, aparece el indicador de comandos el cual está listo para recibir instrucciones en lenguaje MatLab. Este indicador es de la siguiente forma: >> Al iniciar el uso de MatLab están disponibles dos comandos de ayuda y demostración. Para ejecutarlos se escribe el comando en la línea de comandos después del símbolo >> y se presiona la tecla Enter. Por ejemplo: >>help permite obtener una ayuda sobre los diferentes comandos de MatLab. >>demo hace una demostración de las diferentes aplicaciones de MatLab. Para cerrar o finalizar el uso de MatLab se usa el comando quit. >>quit 4. USO DE COMANDOS La primera forma de interactuar con MatLab es a través de la línea de comandos. Puede ejecutarse un comando si este está escrito después del símbolo >> y se presiona la tecla Enter. MATLAB trabaja esencialmente con matrices numéricas rectangulares. La manera más fácil de entrar matrices pequeñas es enumerando los elementos de ésta de tal manera que: los elementos estén separados por blancos ó comas. los elementos estén cerrados entre corchetes, [ ]. muestre el final de cada fila con ; (punto y coma). Ejemplo: A = [ 1 2 3; 4 5 6; ] resultaría en la matriz A = MATLAB guarda esta matriz para utilizarla luego bajo el nombre de A. Si la matriz a introducir es muy grande se puede utilizar el siguiente formato: 20

TUTORIAL DE MATLAB TUTORIAL DE MATLAB 1. 1. QUÉ ES MATLAB? 4 1.1 Uso de Matrices 5 1.2 Origen de MatLab 5 1.3 Plataformas 5 1.

TUTORIAL DE MATLAB TUTORIAL DE MATLAB 1. 1. QUÉ ES MATLAB? 4 1.1 Uso de Matrices 5 1.2 Origen de MatLab 5 1.3 Plataformas 5 1. TUTORIAL DE MATLAB TUTORIAL DE MATLAB 1 1. QUÉ ES MATLAB? 4 1.1 Uso de Matrices 5 1.2 Origen de MatLab 5 1.3 Plataformas 5 1.4 Productos 5 2. LIBRERÍA DE APLIC ACIONES DE MATLAB 7 2.1 SIGNAL PROCESSING

Más detalles

Práctica 1: Introducción al entorno de trabajo de MATLAB *

Práctica 1: Introducción al entorno de trabajo de MATLAB * Práctica 1: Introducción al entorno de trabajo de MATLAB * 1. Introducción MATLAB constituye actualmente un estándar dentro de las herramientas del análisis numérico, tanto por su gran capacidad y sencillez

Más detalles

2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL

2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL 2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 2: INTRODUCCIÓN A MATLAB. CARACTERÍSTICAS BÁSICAS DE MATLAB Funcionalidades

Más detalles

Álgebra Lineal Tutorial básico de MATLAB

Álgebra Lineal Tutorial básico de MATLAB Escuela de Matemáticas. Universidad Nacional de Colombia, Sede Medellín. 1 VECTORES Álgebra Lineal Tutorial básico de MATLAB MATLAB es un programa interactivo para cómputos numéricos y visualización de

Más detalles

Introducción a Matlab.

Introducción a Matlab. Introducción a Matlab. Ejercicios básicos de manipulación de imágenes. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Iniciación

Más detalles

Guía de uso de MATLAB

Guía de uso de MATLAB Guía de uso de MATLAB Se necesitan unos pocos comandos básicos para empezar a utilizar MATLAB. Esta pequeña guía explica dichos comandos fundamentales. Habrá que definir vectores y matrices para poder

Más detalles

Una introducción a MATLAB

Una introducción a MATLAB Universidad de Castilla-La Mancha ETSI Industriales Una introducción a MATLAB Curso 04/05 1. Introducción. MATLAB es un programa de cálculo científico de gran versatilidad y facilidad de uso con un gran

Más detalles

Introducción a MATLAB

Introducción a MATLAB Introducción a MATLAB Juan-Antonio Infante Rey José María En estas breves notas, desarrolladas por Juan-Antonio Infante y José María Rey, profesores del Departamento de Matemática Aplicada de la Universidad

Más detalles

ESCALARES, VECTORES Y MATRICES

ESCALARES, VECTORES Y MATRICES ESCALARES, VECTORES Y MATRICES MATRIZ Al resolver problemas de ingeniería, es importante poder visualizar los datos relacionados con el problema. A veces los datos consisten en un solo número, como el

Más detalles

Introducción al Cálculo Simbólico a través de Maple

Introducción al Cálculo Simbólico a través de Maple 1 inn-edu.com ricardo.villafana@gmail.com Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos

Más detalles

Procesado de datos con MATLAB

Procesado de datos con MATLAB Procesado de datos con MATLAB 1. Introducción En este tutorial 1 pretendemos cubrir los comandos básicos de MATLAB necesarios para introducirnos en el manejo de datos. Para más información sobre los comandos

Más detalles

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control 1er curso de Ingeniería Industrial: Ingeniería de Control Práctica 1ª: Introducción a Matlab Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática

Más detalles

Comenzando con MATLAB

Comenzando con MATLAB ÁLGEBRA LINEAL INGENIERÍA INFORMÁTICA Curso 08/09 PRÁCTICA 1 Comenzando con MATLAB 1 Funcionamiento de Matlab MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería.

Más detalles

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico. 1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla

Más detalles

facilidades para cálculo matemático y Dispone de toolboxes especializados: Control Systems, Neural Netword, Optimization, etc.

facilidades para cálculo matemático y Dispone de toolboxes especializados: Control Systems, Neural Netword, Optimization, etc. MATLAB Introducción al MATLAB MATLAB = MATrix LABoratory Es un entorno de computación que presenta facilidades para cálculo matemático y visualización gráfica Dispone de toolboxes especializados: Control

Más detalles

Práctica 0: Introducción a Matlab. Series Temporales. Diplomatura en Estadística. 2009/2010

Práctica 0: Introducción a Matlab. Series Temporales. Diplomatura en Estadística. 2009/2010 Práctica 0: Introducción a Matlab. Series Temporales. Diplomatura en Estadística. 2009/200 Matlab es un programa inicialmente diseñado para realizar operaciones matriciales (MATrix LABoratory) que ha ido

Más detalles

Introducción a Matlab

Introducción a Matlab Introducción a Matlab Visión en Robótica 1er cuatrimestre de 2013 En este apunte veremos las operaciones más comunes del entorno de programación Matlab. Se aprerán a manejar los aspectos básicos como saltos

Más detalles

Práctica 1. Introducción al matlab

Práctica 1. Introducción al matlab Práctica 1. Introducción al matlab Estadística Facultad de Física Objetivos Puesta en marcha de matlab Entrada y salida de datos Manejo de matrices Representaciones gráficas sencillas 1 matlab matlab es

Más detalles

Sistemas de Control U.T.N. Facultad Regional San Nicolás

Sistemas de Control U.T.N. Facultad Regional San Nicolás Introducción al uso de MATLAB y SIMULINK Introducción El nombre MatLab proviene de la contracción de los términos MATrix LABoratory, actualmente la licencia de MatLab es propiedad de Math Works Inc. www.mathworks.com.

Más detalles

1. MANUAL - INTRODUCCIÓN AL USO DE DERIVE.

1. MANUAL - INTRODUCCIÓN AL USO DE DERIVE. 1. MANUAL - INTRODUCCIÓN AL USO DE DERIVE. 1.1. QUÉ ES UN PROGRAMA DE CÁLCULO SIMBÓLICO? Los programas de cálculo simbólico, como DERIVE son lenguajes de programación muy cercanos al usuario, es decir,

Más detalles

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada MANEJO DE DATOS Analizar gráficos o diagramas de situaciones dadas para identificar información específica Recoger datos, dibujar los datos usando escalas apropiadas y demostrar una comprensión de las

Más detalles

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Cálculo Numérico (521230) Laboratorio 1: Introducción al Matlab Matlab es una abreviatura para

Más detalles

Tema 4: Empezando a trabajar con ficheros.m

Tema 4: Empezando a trabajar con ficheros.m Tema 4: Empezando a trabajar con ficheros.m 1. Introducción Como ya se comentó en el punto 3 del tema1, en Matlab tienen especial importancia los ficheros M de extensión.m. Contienen conjuntos de comandos

Más detalles

Introducción. Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre.

Introducción. Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre. Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre Primavera, 2011 Universidad de Concepción Contenidos 1 Panorámica de Cálculo Numérico 2 3 4 Super calculadoras?

Más detalles

Características básicas de Matlab

Características básicas de Matlab Práctica 1: Introducción a Matlab Objetivo: Conocer las herramientas básicas que ofrece Matlab: Matrices y vectores. Programación básica en Matlab: funciones y guiones (scripts). Representación bidimensional

Más detalles

Formato de salida : 1er Laboratorio de MN II. Comando format 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB

Formato de salida : 1er Laboratorio de MN II. Comando format 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB 1er Laboratorio de MN II 1. GRABACION DE CONTENIDOS EN UNA SESION DE MATLAB Para salir de MATLAB se escribe quit ó exit. Al terminar una sesión de MATLAB, las variables en el espacio de trabajo se borran.

Más detalles

Introducción bloques intro Control+Intro mayúsculas y minúsculas

Introducción bloques intro Control+Intro mayúsculas y minúsculas Wiris Wiris... 1 Introducción... 2 Aritmética... 3 Álgebra... 4 Ecuaciones y Sistemas... 4 Análisis... 5 Objetos matemáticos, definición de identificadores y funciones... 7 Funciones predefinidas:... 10

Más detalles

LENGUAJE DE PROGRAMACIÓN SCILAB

LENGUAJE DE PROGRAMACIÓN SCILAB LENGUAJE DE PROGRAMACIÓN SCILAB CONTENIDO 1. Operaciones básicas. Suma. Resta. Producto. División. Potencia. Raíz cuadrada. Números complejos 2. Funciones. Exponencial. Logarítmica. Trigonométricas. Evaluación

Más detalles

Introducción a la programación en R

Introducción a la programación en R Programación en R 1 Introducción a la programación en R Qué es un programa de ordenador? Un programa de ordenador consiste en una secuencia de instrucciones que un ordenador pueda entender. El procesador

Más detalles

Practica 1. Introducción a MATLAB

Practica 1. Introducción a MATLAB Practica 1. Introducción a MATLAB David Rozado Fernández Informática Aplicada - Grado en Ingeniería Química, UAM, 2009/2010 1 Fecha en la que se debería haber completado la practica Grupo A: 19 de Febrero

Más detalles

Métodos Numéricos utilizando Scilab

Métodos Numéricos utilizando Scilab UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología Departamento de Electricidad, Electrónica y Computación Carrera de Ingeniería en Computación Métodos Numéricos () Métodos Numéricos

Más detalles

Algorítmica y Lenguajes de Programación. MATLAB (i)

Algorítmica y Lenguajes de Programación. MATLAB (i) Algorítmica y Lenguajes de Programación MATLAB (i) MATLAB. Introducción MATLAB es un entorno interactivo que utiliza como tipos de datos básicos vectores y matrices de flotantes que no requieren ser dimensionados.

Más detalles

Señales y Sistemas (66.74) Práctica 0 : Introducción a MATLAB/OCTAVE

Señales y Sistemas (66.74) Práctica 0 : Introducción a MATLAB/OCTAVE Last modified: Tue Mar 13 09:42:53 ART 2007 Señales y Sistemas (66.74) Práctica 0 : Introducción a MATLAB/OCTAVE El objetivo de esta práctica es proveer al alumno con una breve guía sobre la utilización

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Complemento Microsoft Mathematics

Complemento Microsoft Mathematics Complemento Microsoft Mathematics El complemento Microsoft Mathematics es un conjunto de herramientas que se pueden usar para realizar operaciones matemáticas y trazado de gráficas con expresiones o ecuaciones

Más detalles

Práctica 0. Introducción al Mathematica

Práctica 0. Introducción al Mathematica Práctica 0. Introducción al Mathematica El programa Mathematica constituye una herramienta muy potente para la realización de todo tipo de cálculos matemáticos: operaciones aritméticas, cálculo simbólico,

Más detalles

Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería en Ingeniería Química Curso 2010/2011

Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería en Ingeniería Química Curso 2010/2011 Módulo 1. Fundamentos de Computadores Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería en Ingeniería Química Curso 2010/2011 1 CONTENIDO Tema 1. Introducción

Más detalles

Práctica 0 Cálculo con Mathematica

Práctica 0 Cálculo con Mathematica Práctica 0 Cálculo con Mathematica 1.- Introducción al Mathematica El programa Mathematica constituye una herramienta muy potente para la realización de todo tipo de cálculos matemáticos: operaciones aritméticas,

Más detalles

MATLAB en 30 minutos

MATLAB en 30 minutos MATLAB en 30 minutos Rafael Collantes. Octubre 200. Introducción MATLAB nació como un programa para cálculo matricial, pero en la actualidad MATLAB es un sistema que permite no solamente realizar todo

Más detalles

Clase 2: Operaciones con matrices en Matlab

Clase 2: Operaciones con matrices en Matlab Clase 2: Operaciones con matrices en Matlab Hamilton Galindo UP Hamilton Galindo (UP) Clase 2: Operaciones con matrices en Matlab Marzo 2014 1 / 37 Outline 1 Definición de matrices desde teclado 2 Operaciones

Más detalles

En esta sección se explica cómo usar Matlab a modo de calculadora. Empecemos con algo sencillo: las operaciones matemáticas elementales.

En esta sección se explica cómo usar Matlab a modo de calculadora. Empecemos con algo sencillo: las operaciones matemáticas elementales. Comandos básicos En esta sección se explica cómo usar Matlab a modo de calculadora. Empecemos con algo sencillo: las operaciones matemáticas elementales.» x=2+3 x = 5 Si no se asigna el resultado a ninguna

Más detalles

ETIQUETA DISEÑO DE PÁGINA

ETIQUETA DISEÑO DE PÁGINA ETIQUETA DISEÑO DE PÁGINA Es la tercera etiqueta de Excel 2007, agrupa las herramientas de temas 10, configuración de pagina, ajustes del área de impresión, opciones de la hoja (cuadriculas y encabezados),

Más detalles

Lenguaje C. Tipos de Datos Simples y Estructuras de Control

Lenguaje C. Tipos de Datos Simples y Estructuras de Control Lenguaje C Tipos de Datos Simples y Estructuras de Control Lenguaje C C es un lenguaje de programación creado en 1972 por Dennis M. Ritchie en los Laboratorios Bell como evolución del anterior lenguaje

Más detalles

Tutorial de MATLAB Curso Intensivo sobre Asimilación de Datos

Tutorial de MATLAB Curso Intensivo sobre Asimilación de Datos Tutorial de MATLAB Curso Intensivo sobre Asimilación de Datos Buenos Aires 2008 WIKIPEDIA: MATLAB es la abreviatura de MATrix LABoratory (laboratorio de matrices). Se trata de un software matemático muy

Más detalles

U i n d id d a 3. El Element os á bá i s cos de un programa

U i n d id d a 3. El Element os á bá i s cos de un programa Programación Digital U id d 3 El t bá i Unidad 3. Elementos básicos de un programa 1. Concepto de Programa Es un conjunto de instrucciones (órdenes dadas a la computadora), que producirán la ejecución

Más detalles

Tema 7: Programación con Matlab

Tema 7: Programación con Matlab Tema 7: Programación con Matlab 1. Introducción Matlab puede utilizarse como un lenguaje de programación que incluye todos los elementos necesarios. Añade la gran ventaja de poder incorporar a los programas

Más detalles

Fundamentos de Informática Parte II Análisis y Visualización de Datos mediante Matlab

Fundamentos de Informática Parte II Análisis y Visualización de Datos mediante Matlab Fundamentos de Informática Parte II Análisis y Visualización de Datos mediante Matlab Titulación: Ingeniería Técnica Industrial Química Industrial Profesor: José Luis Esteban Escuela Superior de Ciencias

Más detalles

Tema 2 Representación de la información. Fundamentos de Computadores

Tema 2 Representación de la información. Fundamentos de Computadores Tema 2 Representación de la información Fundamentos de Computadores septiembre de 2010 Índice Índice 2.1 Introducción 2.2 Representación de enteros 2.2.1 Representación posicional de los números. 2.2.2

Más detalles

Introducción a MATLAB/ OCTAVE. Fundamentos Físicos de la Informática, 2006

Introducción a MATLAB/ OCTAVE. Fundamentos Físicos de la Informática, 2006 Introducción a MATLAB/ OCTAVE Fundamentos Físicos de la Informática, 006 Matlab/ Octave Matlab es un lenguaje de programación orientado al cálculo numérico, principalmente matricial Octave es un programa

Más detalles

Ahora suponga que quiere sumar dos vectores. Si los mismos tienen igual longitud, es sencillo. Simplemente súmelos como se muestra abajo

Ahora suponga que quiere sumar dos vectores. Si los mismos tienen igual longitud, es sencillo. Simplemente súmelos como se muestra abajo Página 1 de 8 Vectores Funciones Ploteo Polinomios Matrices Impresión Uso de archivos.m en Matlab Obtención de Ayuda en Matlab Tutorial: Lo Básico de Matlab En esta parte del Tutorial se usarán los siguientes

Más detalles

Herramientas computacionales para la matemática MATLAB: Funciones definidas por el usuario (parte II)

Herramientas computacionales para la matemática MATLAB: Funciones definidas por el usuario (parte II) Herramientas computacionales para la matemática MATLAB: Funciones definidas por el usuario (parte II) Verónica Borja Macías Mayo 2012 1 La línea H1 y las líneas de texto de ayuda La línea H1 y las líneas

Más detalles

2.1.- EJEMPLO DE UN PROGRAMA FORTRAN

2.1.- EJEMPLO DE UN PROGRAMA FORTRAN 2.1.- EJEMPLO DE UN PROGRAMA FORTRAN Con el presente apartado comenzaremos a conocer cómo se escribe un programa en lenguaje FORTRAN bajo el entorno de programación FORTRAN. En primer lugar conozcamos

Más detalles

Herramientas computacionales para la matemática MATLAB: Scripts

Herramientas computacionales para la matemática MATLAB: Scripts Herramientas computacionales para la matemática MATLAB: Scripts Verónica Borja Macías Marzo 2012 1 Scripts Hasta ahora los comandos MATLAB que hemos visto se ejecutaban en Ia Ventana de Comandos. Aunque

Más detalles

De aquí sale el proyecto MACsyma (MAC s SYmbolic MAnipulator)

De aquí sale el proyecto MACsyma (MAC s SYmbolic MAnipulator) El proyecto Matemáticas y Computación (MAC) se inicia en la década de los años 60 en el MIT (con el apoyo financiero de los Departamentos de Defensa y Energía de los EE.UU.) para atender sus necesidades

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Prácticas de Análisis Matricial con MATLAB

Prácticas de Análisis Matricial con MATLAB Prácticas de Análisis Matricial con MATLAB Ion Zaballa. Trabajando con matrices y vectores Ejercicio.- Dados los vectores a = 3 4 a) Calcula el vector 3a a + 4a 3., a = 3, a 3 = b) Si A = [a a a 3 ] es

Más detalles

Estructura de Datos. Unidad I Tipos de Datos

Estructura de Datos. Unidad I Tipos de Datos Estructura de Datos Unidad I Tipos de Datos Conceptos Básicos Algoritmo: es una secuencia finita de pasos o instrucciones ordenadas crono-lógicamente que describen un método para resolver un problema específico.

Más detalles

Operaciones Matriciales. Usos y Aplicaciones

Operaciones Matriciales. Usos y Aplicaciones Operaciones Matriciales. Usos y Aplicaciones Héctor L. Mata Las siguientes notas tienen por finalidad reforzar el conocimiento de los cursantes del Seminario de Economía Aplicada en lo referente a la forma

Más detalles

SAGE (ENTORNO DE CÁLCULOS MATEMÁTICOS)

SAGE (ENTORNO DE CÁLCULOS MATEMÁTICOS) SAGE (ENTORNO DE CÁLCULOS MATEMÁTICOS) PRESENTACIÓN El siguiente texto forma parte de una guía acerca del Programa SAGE que tiene por finalidad actuar como un material de asesoramiento en la instalación

Más detalles

Para comenzar, abra el programa Inmediatamente aparecerá una ventana llamada editor de datos que tiene la siguiente forma:

Para comenzar, abra el programa Inmediatamente aparecerá una ventana llamada editor de datos que tiene la siguiente forma: 1. Descripción Generales del Paquete Estadístico SPSS. SPSS es un paquete estadístico orientado -en principio- al ámbito de aplicación de las Ciencias Sociales y que lleva en el mercado alrededor de 25

Más detalles

Formatos y Operadores

Formatos y Operadores Formatos y Operadores Formatos numéricos format short long hex bank short e short g long e long g rational coma fija con 4 decimales (defecto) coma fija con 15 decimales cifras hexadecimales números con

Más detalles

Trabajando en la ventana de comandos en el programa gretl.

Trabajando en la ventana de comandos en el programa gretl. Trabajando con comandos. Prof. Jorge Chica Olmo. Univ. Granada. 1 Trabajando en la ventana de comandos en el programa gretl. Gretl permite trabajar mediante comandos y funciones, es decir mediante un conjunto

Más detalles

Introducción a la Programación en MATLAB

Introducción a la Programación en MATLAB Introducción a la Programación en MATLAB La programación en MATLAB se realiza básicamente sobre archivos M, o M-Files. Se los denomina de esta forma debido a su extensión.m. Estos archivos son simple archivos

Más detalles

Introducción al Scilab.

Introducción al Scilab. Introducción al Scilab. No cualquier cosa que escribamos en una computadora puede ser interpretado. Probablemente no nos responda nada si le preguntamos cuánto es 1+1. Sin embargo, con un intérprete podemos

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Prácticas: Introducción a la programación en Java. Informática (1º Ingeniería Civil) Curso 2011/2012

Prácticas: Introducción a la programación en Java. Informática (1º Ingeniería Civil) Curso 2011/2012 Prácticas: Introducción a la programación en Java Informática (1º Ingeniería Civil) Índice Introducción a Java y al entorno de desarrollo NetBeans Estructura de un programa Tipos de datos Operadores Sentencias

Más detalles

TEMA 3 Representación de la información

TEMA 3 Representación de la información TEMA 3 Representación de la información Álvarez, S., Bravo, S., Departamento de Informática y automática Universidad de Salamanca Introducción Para que el ordenador ejecute programas necesita dos tipos

Más detalles

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia...

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia... Page 1 of 7 Departamento: Dpto Matematica Nombre del curso: ALGEBRA LINEAL Clave: 003866 Academia a la que pertenece: Algebra Lineal Requisitos: Requisito de Algebra Lineal: Calculo I, Fundamentos de Matem

Más detalles

ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD

ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD MODALIDAD CIENTÍFICO-TÉCNICO 1. NOMBRE DE LA MATERIA: Matemáticas II 2. NOMBRE DEL COORDINADOR: Miguel Delgado Pineda (mdelgado@mat.uned.es,

Más detalles

DISEÑO DE DIAGRAMAS DE FLUJO MEDIANTE LA HERRAMIENTA SOFTWARE DFD

DISEÑO DE DIAGRAMAS DE FLUJO MEDIANTE LA HERRAMIENTA SOFTWARE DFD DISEÑO DE DIAGRAMAS DE FLUJO MEDIANTE LA HERRAMIENTA SOFTWARE DFD Tomado de Internet por: Wilder Eduardo Castellanos 1. CONCEPTOS BASICOS PARA TRABAJAR CON DFD a) Que es Dfd? Dfd es un software diseñado

Más detalles

CAPITULO I INTRODUCCION. Conforme la informática avanza, las imágenes se han convertido en un área muy

CAPITULO I INTRODUCCION. Conforme la informática avanza, las imágenes se han convertido en un área muy Introducción 4 CAPITULO I INTRODUCCION 1.1 Compresión de Imágenes. Conforme la informática avanza, las imágenes se han convertido en un área muy importante de esta. Hoy en día surgen más entornos gráficos

Más detalles

CONTENIDOS. 2. Entidades primitivas para el desarrollo de algoritmos.

CONTENIDOS. 2. Entidades primitivas para el desarrollo de algoritmos. Introducción a la ciencia de la computación y a la programación 1. La computadora CONTENIDOS 2. Entidades primitivas para el desarrollo de algoritmos. 3. Metodología a seguir para la resolución de problemas

Más detalles

Preliminares. Tipos de variables y Expresiones

Preliminares. Tipos de variables y Expresiones Preliminares. Tipos de variables y Expresiones Felipe Osorio Instituto de Estadística Pontificia Universidad Católica de Valparaíso Marzo 5, 2015 1 / 20 Preliminares Computadoras desarrollan tareas a un

Más detalles

4 o Ingeniería Informática

4 o Ingeniería Informática Esquema del tema 1. Introducción 4 o Ingeniería Informática II26 Procesadores de lenguaje Estructura de los compiladores e intérpretes 2. Etapas del proceso de traducción 3. La interpretación 4. La arquitectura

Más detalles

SUMILLAS DE ASIGNATURAS DE ESPECIALIDAD INFORMÁTICA I

SUMILLAS DE ASIGNATURAS DE ESPECIALIDAD INFORMÁTICA I SUMILLAS DE ASIGNATURAS DE ESPECIALIDAD INFORMÁTICA (Reestructurado a partir del 2006) PRIMER CICLO INFORMÁTICA I Esta asignatura tiene por objeto en conocer los elementos básicos de la informática. Unidades

Más detalles

ESCUELA SUPERIOR DE INFORMATICA Prácticas de Estadística UNA SESIÓN EN SPSS

ESCUELA SUPERIOR DE INFORMATICA Prácticas de Estadística UNA SESIÓN EN SPSS UNA SESIÓN EN SPSS INTRODUCCIÓN. SPSS (Statistical Product and Service Solutions) es un paquete estadístico orientado, en principio, al ámbito de aplicación de las Ciencias sociales, es uno de las herramientas

Más detalles

El Sistema Operativo Linux

El Sistema Operativo Linux Introducción El Sistema Operativo Linux La mayor parte de los ordenadores que existen en la actualidad están diseñados de forma que puedan ejecutar diversas tareas o programas. Es evidente, que si cada

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Introducción a Excel 2013

Introducción a Excel 2013 Introducción a Excel 2013 Comenzaremos haciendo un repaso por los temas básicos de Excel. Para qué sirven las funciones y las fórmulas? Qué son las tablas? Con qué tipos de datos se trabaja? Cómo aplicamos

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

Capítulo 9 Primeros pasos con Math

Capítulo 9 Primeros pasos con Math Guía de primeros pasos Capítulo 9 Primeros pasos con Math Editor de ecuaciones de LibreOffice Derechos de autor Este documento tiene derechos de autor 2011 2012 por sus colaboradores, tal como aparecen

Más detalles

Conociendo ILWIS. 1.- Ventana principal. Objetivo Conocer las características generales del software ILWIS.

Conociendo ILWIS. 1.- Ventana principal. Objetivo Conocer las características generales del software ILWIS. Conociendo ILWIS Introducción ILWIS o Sistema de Información Integral de Tierra y Agua (Integrated Land and Water Information System en inglés) es un Sistema de Información Geográfica (SIG) y software

Más detalles

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4

Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 F-TF.4 Primeras Nueve Semanas Extienda el dominio de funciones trigonométricas usando la unidad circulo F-TF.3 (+) Use triángulos especiales para determinar geométricamente los valores de seno, coseno, tangente

Más detalles

SISTEMA OPERATIVO WINDOWS

SISTEMA OPERATIVO WINDOWS SISTEMA OPERATIVO WINDOWS QUÉ ES WINDOWS? Es un Sistema Operativo, que cuenta con un Ambiente Gráfico (GUI) que permite ejecutar programas (aplicaciones) de forma más fácil y cómoda para el usuario. Viene

Más detalles

Aprendiendo LINGO INTRODUCCIÓN A LINGO - 1

Aprendiendo LINGO INTRODUCCIÓN A LINGO - 1 Aprendiendo LINGO INTRODUCCIÓN A LINGO - 1 Introducción a LINGO LINGO (LINear Generalize Optimizer) es una versátil herramienta para la formulación, resolución y análisis de problemas de programación lineal

Más detalles

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN.

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. INDICE. CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. TÉRMINOS BÁSICOS DE LA INFORMÁTICA. REPRESENTACIÓN INTERNA DE LA INFORMACIÓN. El SISTEMA BINARIO DE NUMERACION. El sistema decimal

Más detalles

MANUAL BÁSICO DE OCTAVE Y QTOCTAVE

MANUAL BÁSICO DE OCTAVE Y QTOCTAVE MANUAL BÁSICO DE OCTAVE Y QTOCTAVE - 1 - El programa OCTAVE Octave o GNU Octave es un programa libre para realizar cálculos numéricos. Como indica su nombre es parte del proyecto GNU. Apoyado en una amplia

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Departamento de Matemática Aplicada Universidad Granada Introducción El Cálculo o Análisis Numérico es

Más detalles

Laboratorio 1 Procesamiento Digital de Imágenes

Laboratorio 1 Procesamiento Digital de Imágenes Laboratorio 1 Procesamiento Digital de Imágenes 7 de febrero de 2013 Hernán Darío Benítez Restrepo Departamento de Electrónica y Computación Pontificia Universidad Javeriana-Cali. Temas Niveles de intensidad

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Manual de usuario del simulador BIRD. 1 Instalación del simulador BIRD 2 Manual de usuario

Manual de usuario del simulador BIRD. 1 Instalación del simulador BIRD 2 Manual de usuario Manual de usuario del simulador BIRD 1 Instalación del simulador BIRD 2 Manual de usuario 2 MANUAL DE USUARIO DEL SIMULADOR BIRD La arquitectura y el lenguaje máquina de los procesadores comerciales son,

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO 2012-2013. Práctica 1

PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO 2012-2013. Práctica 1 PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO 2012-2013 Prácticas Matlab Práctica 1 Objetivos Iniciarse en el uso de Matlab. Conocer comandos básicos de Matlab para realizar cálculos con números reales y números

Más detalles

Comprender y utilizar la notación de dos puntos para la creación de listas.

Comprender y utilizar la notación de dos puntos para la creación de listas. Tema 2 Vectores y matrices. Objetivos Cuando finalice este tema, el alumno deberá ser capaz de: Definir vectores y matrices con Octave. Comprender y utilizar la notación de dos puntos para la creación

Más detalles

UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM

UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM UNIDAD EDUCATIVA INTERNACIONAL SEK-ECUADOR PROGRAMA DE MATEMÁTICAS NM I. DATOS INFORMATIVOS: NIVEL DE EDUCACIÓN: Bachillerato. ÁREA: Matemáticas CURSO: Segundo de bachillerato (1º año de Diploma) PARALELO:

Más detalles

Computación 1-2008 - archivos

Computación 1-2008 - archivos Computación 1-2008 - Manipulación de archivos Necesidades Guardar en archivos datos del espacio de trabajo. Recuperar datos guardados previamente. Computación 1, 2008 - Facultad de Ingeniería 2 Guardar

Más detalles

Operación Microsoft Windows XP

Operación Microsoft Windows XP El ambiente de trabajo Descripción del ambiente de trabajo Luego de encendida la computadora, la pantalla se presenta de la forma que lo muestra la figura. El ambiente de trabajo que proporciona el sistema

Más detalles

Práctica 1: Introducción a matlab

Práctica 1: Introducción a matlab Modelado matemático de los sistemas ecológicos Facultad de Biología Universidad de Oviedo Curso 2007-2008 1. Qué es Matlab? Práctica 1: Introducción a matlab La primera versión de matlab data de los años

Más detalles