Fundamentos de POV-Ray. Computación Geométrica 2010/2011 Jorge Calvo Zaragoza

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fundamentos de POV-Ray. Computación Geométrica 2010/2011 Jorge Calvo Zaragoza"

Transcripción

1 Fundamentos de POV-Ray Computación Geométrica 2010/2011 Jorge Calvo Zaragoza

2 Índice 1. Introducción 2. Fundamentos del trazado de rayos 3. Construcción de escenas con POV-Ray 4. Geometría sólida constructiva 5. Conclusiones 6. Referencias

3 Introducción

4 Introducción POV-Ray, Persistence of Vision Raytracer Software para el desarrollo de escenas foto-realistas Licencia POV-Ray Multiplataforma Lenguaje de definición parecido a C Metodología del trazado de rayos Soporte para animación 4

5 Qué se puede hacer con POV-Ray? POV-Ray Team 5

6 Qué se puede hacer con POV-Ray? 6 Gilles Tran

7 Qué se puede hacer con POV-Ray? Tom Aust 7

8 Fundamentos del trazado de rayos

9 Trazado de rayos Es una técnica de rendering Basado en el funcionamiento real de la visión Tres elementos fundamentales en el trazado de rayos: Cámara Objeto Luces 9

10 Trazado de rayos Un rayo se define como la semirecta r + td r: punto inicial d: dirección t: valor paramétrico [0,+inf] 10

11 Trazado de rayos Funcionamiento natural La luces envían rayos en todas direcciones Al intersectar con un objeto, la luz se refleja en una dirección La luz reflejada en la dirección de la cámara es lo que se ve Problema: muy ineficiente 11

12 Trazado de rayos Funcionamiento inverso Los rayos se lanzan desde la cámara en cada posición posible Desde el objeto se envía un rayo hacia cada fuente de luz Por tanto, dos tipos de rayos: Rayo de visión (cámara-objeto) Rayos de sombra (objeto-luz) 12

13 Trazado de rayos Funcionamiento inverso Rayos de visión Para cada píxel de la ventana de emisión se envía un rayo Se calcula la intersección del rayo con cada objeto de la escena De esta intersección se obtiene un conjunto de valores 13

14 Trazado de rayos Funcionamiento inverso Rayos de visión El trazador de rayos debe resolver todas las intersecciones Al final se queda con el menor valor (más cercano) Desde el punto final obtenido se envían los rayos de sombra 14

15 Trazado de rayos Funcionamiento inverso Rayos de visión Problema: Se calculan demasiadas intersecciones nulas POV-Ray divide la escena en diferentes zonas y agrupa los objetos en primitivas geométricas sencillas (bounding) Se pueden hacer agrupaciones recursivamente Sólo se calculan las intersecciones con un objeto si el bounding que lo contiene intersecta con el rayo 15

16 Trazado de rayos Funcionamiento inverso Rayos de sombra Un rayo hacia cada fuente de luz La luz se emite en todas direcciones Hay que comprobar si el rayo de sombra intersecta con un objeto Se repiten las mejoras aplicadas a los rayos de visión Si el rayo llega a luz, se tiene en cuenta para el cálculo final Al final la iluminación del punto depende del modelo de iluminación y las fuentes de luces que intervienen 16

17 Trazado de rayos Funcionamiento inverso Otro tipo de rayos Rayos de reflexión Para superficies reflectantes Se calcula el ángulo de reflexión y se envía un nuevo rayo Rayos de transmisión Para objetos parcial o totalmente transparentes Se calcula el desvío que se produce y se envía un nuevo rayo 17

18 Trazado de rayos Limitaciones Aliasing Objetos lejanos o pequeños Sombras Composición de la luz Reflexión especular de la luz Reflexión difusa de la luz 18

19 Construcción de escenas en POV-Ray

20 Escenas en POV-Ray Nociones básicas Sistema de coordenadas Regla de la mano izquierda Elementos básicos Cámara Luces Objetos 20

21 Escenas en POV-Ray Definición de la cámara Lugar (location) Dirección (look_at) camera { location <x,y,z> look_at <x,y,z> } 21

22 Escenas en POV-Ray Definición de luces Posición Color light_source { <x,y,z> color <r,g,b> } 22

23 Escenas en POV-Ray Primitivas básicas: esfera Punto central Radio sphere { <x,y,z> radio } // Centro 23

24 Escenas en POV-Ray Primitivas básicas: cubo Vértice inferior izquierdo cercano (V1) Borde superior derecho lejano (V2) box { <x,y,z> <x,y,z> } // V1 // V2 24

25 Escenas en POV-Ray Primitivas básicas: cilindro Centro de la base Centro de la tapa Radio cylinder { <x,y,z> <x,y,z> radio } // Base // Tapa 25

26 Escenas en POV-Ray Primitivas básicas: plano Normal Desplazamiento plane { <x,y,z> // Normal desplazamiento } 26

27 Escenas en POV-Ray Transformaciones Rotación Traslación Escalado objeto { tranlate rotate scale } valor*<x,y,z> valor*<x,y,z> valor*<x,y,z> 27

28 Escenas en POV-Ray Color objeto { pigment { colour <r,g,b> } } Fondo background { colour <r,g,b> } 28

29 Escenas en POV-Ray Escena de ejemplo camera { location <0,5,-10> look_at <0,0,10> } light_source { <0,5,-3> colour <1,1,1> } background { colour <0.2,0.2,0.88> } sphere { <0,2,0> 1 pigment { colour <1,0,0> } } plane { <0,1,0> 0 pigment { colour <0,1,0> } } 29

30 Escenas en POV-Ray Escena de ejemplo 30

31 Escenas en POV-Ray Otras primitivas Triángulos Cuádricas Toroides Conos Isosuperficies Superficies libres 31

32 Geometría Sólida Constructiva

33 Geometría Sólida Constructiva CSG, Constructive Solid Geometry Técnica de modelado de sólidos Puntos interiores y exteriores Crea objetos a partir de la combinación de otros La combinación se produce mediante el uso de operadores del algebra de conjuntos (unión, intersección y diferencia) 33

34 Operadores CSG Unión El conjunto resultante contiene todos los objetos Sólo sirve para tratar varios objetos como si fuera uno Produce el mismo resultado que dibujarlos por separado 34

35 Operadores CSG Unión Sintaxis: union { OBJETO1 OBJETO2... OBJETO N [MODIFICADORES] } 35

36 Operadores CSG Unión Ejemplo 36

37 Operadores CSG Fusión Une objetos de forma homogénea Elimina las aristas interiores Mismo resultado que la unión salvo para objetos transparentes 37

38 Operadores CSG Fusión Sintaxis: merge { OBJETO1 OBJETO2... OBJETO N [MODIFICADORES] } 38

39 Operadores CSG Fusión Ejemplo 39

40 Operadores CSG Intersección Da como resultado los puntos que tienen los objetos en común 40

41 Operadores CSG Intersección Sintaxis: intersection { OBJETO1 OBJETO2... OBJETO N [MODIFICADORES] } 41

42 Operadores CSG Intersección Ejemplo 42

43 Operadores CSG Diferencia Extrae los puntos que tiene en común un objeto con otro Equivalente a la intersección del objeto con el inverso del otro Operación no conmutativa (importa el orden) Si se usa con varios objetos se sustraen todos al primero 43

44 Operadores CSG Diferencia Sintaxis: difference { OBJETO1 OBJETO2... OBJETO N [MODIFICADORES] } 44

45 Operadores CSG Diferencia Ejemplo 45

46 Geometría Sólida Constructiva Ejemplo complejo 46

47 Trazado de rayos en CSG El trazado de rayos se basa en el cálculo de intersecciones Cómo se representa un objeto CSG? Estructura que almacena operaciones y primitivas Árbol binario Hojas: primitivas Nodos interiores: operaciones 47

48 Trazado de rayos en CSG 48

49 Trazado de rayos en CSG El trazado de rayos se basa en el cálculo de intersecciones Cómo se obtienen los valores de las intersecciones? La intersección entre un objeto y un rayo produce un conjunto de valores paramétricos Se obtienen estos conjuntos en las primitivas Se aplican las operaciones del CSG sobre estos conjuntos Recorrido ascendente desde las hojas hasta la raíz 49

50 Trazado de rayos en CSG Posibles casos No solapamiento Solapamiento parcial Solapamiento total 50

51 Trazado de rayos en CSG Eficiencia Calcular la intersección de un CSG tiene una gran complejidad Puede que se calculen muchas intersecciones nulas Mejora Bounding-box que contenga todas las primitivas (hojas) Sólo se recorre el árbol si el bounding-box intersecta con el rayo 51

52 Conclusiones

53 Conclusiones Trazado de rayos Mediante el trazado de rayos se pueden conseguir imágenes fotorealistas. Esta técnica se basa en las intersecciones de semirectas (rayos) con modelos matemáticos (objetos). Construcción de escenas POV-Ray permite definir escenas de forma sencilla. Geometría sólida constructiva Se pueden construir objetos complejos a partir de la combinación de primitivas sencillas y operadores del álgebra booleana. 53

54 Referencias

55 Referencias An introduction to ray tracing. Glassner, Andrew S. Ray tracing II. Young, Chris 55

Tema 3: Transformaciones Geométricas

Tema 3: Transformaciones Geométricas J. Ribelles SIE020: Síntesis de Imagen y Animación Institute of New Imaging Technologies, Universitat Jaume I Contenido Introducción 1 Introducción 2 Traslación Escalado Rotación 3 4 5 6 Introducción Por

Más detalles

Estéreo dinámico. Estéreo dinámico

Estéreo dinámico. Estéreo dinámico Estéreo dinámico 1 Vectores locales de desplazamiento Dada una secuencia de imagenes Tomadas a intervalos Movimiento absoluto: movimiento independiente de la cámara Movimiento relativo: movimiento debido

Más detalles

3ds Max Design Básico 2016

3ds Max Design Básico 2016 DESCRIPCIÓN DEL CURSO Luego de realizar este entrenamiento, los asistentes serán capaces de: Modelar con primitivas Editar geometrías y aplicar modificadores Recrear escenas con materiales y luces Realizar

Más detalles

Colegio Saint Benedict / Departamento de Matemática

Colegio Saint Benedict / Departamento de Matemática Prueba Escrita de matemática / Nivel: Sétimo año 1. Geometría Punto Puntos colineales y no colineales Recta Segmento Semirrecta Rayo Rectas concurrentes Rectas paralelas en el plano Rectas perpendiculares

Más detalles

Guía de Ejercicios Sistemas Gráficos

Guía de Ejercicios Sistemas Gráficos Guía de Ejercicios Sistemas Gráficos - 2016 Ejercicios de Transformaciones ET1 La escena de la figura 2 está compuesta a partir de los 3 modelos de la izquierda (barra, rueda y balde). El sistema gira

Más detalles

Modelación de objetos 3D Parte II: Modelación de sólidos

Modelación de objetos 3D Parte II: Modelación de sólidos Modelación de objetos 3D Parte II: Modelación de sólidos Contenido Conceptos: Qué es un sólido? Propiedades de los modelos de sólidos Geometría sólida constructiva (Constructive solid modeling) Representación

Más detalles

COLEGIO HELVETIA PROGRAMA DE MATEMATICAS GRADO OCTAVO

COLEGIO HELVETIA PROGRAMA DE MATEMATICAS GRADO OCTAVO COLEGIO HELVETIA PROGRAMA DE MATEMATICAS GRADO OCTAVO 014 015 OBJETIVO GENERAL: Identificar y utilizar herramientas propias de la matemática para modelar situaciones de contexto. OBJETIVOS ESPECIFICOS:

Más detalles

diseño asistido por computador Modelado sólido departamento de ingeniería de sistemas y automática

diseño asistido por computador Modelado sólido departamento de ingeniería de sistemas y automática diseño asistido por computador Modelado sólido departamento de ingeniería de sistemas y automática ALÁMBRICOS MODELADORES GEOMÉTRICOS SUPERFICIES SÓLIDOS poliédricas libres barridos instanciación y parametrización

Más detalles

Modelado 3D con OpenSCAD Parte 1

Modelado 3D con OpenSCAD Parte 1 Modelado 3D con OpenSCAD Parte 1 Sebastian Büttrich pitlab, IT University of Copenhagen, Denmark sebastian@itu.dk En la ruta que va desde la idea al objeto impreso en 3D hay una serie de pasos por cumplir.

Más detalles

todos los objetos que nos rodean. Con un solo ojo esto no se puede apreciar.

todos los objetos que nos rodean. Con un solo ojo esto no se puede apreciar. SIMULACION DE LA VISION ESTEREOSCOPICA PARTE II: SIMULACION MEDIANTE UN TRAZADOR DE RAYOS Antonio Fernández Caballero Gabriel Sebastián Rivera Edwin Paredes Calizaya Antonio Fernández Caballero es profesor

Más detalles

TEMA 4. TRANSFORMACIONES EN EL PLANO

TEMA 4. TRANSFORMACIONES EN EL PLANO TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID Principales conceptos que se tendrán en cuenta en la elaboración de las pruebas de Acceso a la Universidad para los estudiantes provenientes del Bachillerato LOGSE de la materia "Matemáticas II" ÁLGEBRA

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito de este temario es proveer información

Más detalles

Curso de 3ds Max 2013

Curso de 3ds Max 2013 Curso de 3ds Max 2013 DISPONIBLE EN LÍNEA O EN FÍSICO. 132 video tutoriales HD (1280 x 720 px) 8 horas, 42 minutos de duración. https://videocursos.co/cursos/3dsmax/curso-de-3ds-max.html Descripción del

Más detalles

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez

Análisis y Complejidad de Algoritmos. Arboles Binarios. Arturo Díaz Pérez Análisis y Complejidad de Algoritmos Arboles Binarios Arturo Díaz Pérez Arboles Definiciones Recorridos Arboles Binarios Profundidad y Número de Nodos Arboles-1 Arbol Un árbol es una colección de elementos,

Más detalles

Elevar a la cuarto potencia. " " raíz Elevar a " " potencia.

Elevar a la cuarto potencia.   raíz Elevar a   potencia. ECUACIONES IRRACIONALES Suponga que su profesor ha dado instrucciones a los miembros de su clase de matemáticas que en parejas, encuentren la longitud de un segmento de línea. Usted recibe unidades de

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Abril 2014

Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Abril 2014 Coloree cada una de las figuras que tienen tres lados y verá algo que le sorprenderá. Jimena, una niña de 4 años, representó su casa y a algunos miembros de su familia. Utilice este dibujo para identificar

Más detalles

CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O.

CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. Matemáticas 2º E.S.O. a) Contenidos comunes. Utilizar estrategias y técnicas sencillas en la resolución de problemas. b) Números. Conocer los conceptos de

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN Coordinación: NOMBRE DE LA MATERIA:

Más detalles

Teorema de Pitágoras Distancia y Puntos Medios

Teorema de Pitágoras Distancia y Puntos Medios Slide 1 / 78 Slide 2 / 78 Tabla de Contenidos Teorema de Pitágoras Distancia y Puntos Medios Teorema de Pitágoras Fórmula de la Distancia Puntos Medios Haga clic en un tema para ir a esa sección Slide

Más detalles

Unidad 3. Álgebra Relacional y Cálculo Relacional

Unidad 3. Álgebra Relacional y Cálculo Relacional Unidad 3 Álgebra Relacional y Cálculo Relacional Álgebra Relacional Definición de Álgebra Álgebra es un sistema matemático que está formado por: Operandos. Valores o variables con los cuáles se pueden

Más detalles

Slide 1 / 78. Teorema de Pitágoras Distancia y Puntos Medios

Slide 1 / 78. Teorema de Pitágoras Distancia y Puntos Medios Slide 1 / 78 Teorema de Pitágoras Distancia y Puntos Medios Slide 2 / 78 Tabla de Contenidos Teorema de Pitágoras Haga clic en un tema para ir a esa sección Fórmula de la Distancia Puntos Medios Slide

Más detalles

Descriptores de Forma

Descriptores de Forma Descriptores de Forma Procesamiento de Imágenes y Bioseñales I Gabriela Villavicencio Andrés Cortés Jorge Mansilla Javier Ortiz Agenda Microscopia y Procesamiento en la migración celular Descriptores de

Más detalles

Dra. Patricia Eugenia Jiménez Gallegos Página 1

Dra. Patricia Eugenia Jiménez Gallegos Página 1 ÁREA ACADÉMICA UNIVERSIDAD AUTÓNOMA DE ZACATECAS PLAN ANALÍTICO Ciencias Básicas UNIDAD ACADÉMICA PROGRAMA ACADÉMICO Matemáticas Licenciatura en Matemáticas CICLO ESCOLAR ENERO-JUNIO UNIDAD DIDÁCTICA GEOMETRIA

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: COMPUTACION V CÓDIGO: 10759 CARRERA: NIVEL: ARQUITECTURA QUINTO NIVEL No. CRÉDITOS: 1 CRÉDITOS TEORÍA: CRÉDITOS PRÁCTICA: 1 SEMESTRE / AÑO ACADÉMICO: SEGUNDO /

Más detalles

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO OBJETIVOS MÍNIMOS DE LA UNIDAD 12 1.- Reconocer los diferentes tipos de movimientos 2.- En cuanto a las traslaciones, saber construir la

Más detalles

INDICE Prefacio 1 Un estudio de las graficas por computadora 2 Panorama general de los sistemas de gráficas 3 Primitivos de salida

INDICE Prefacio 1 Un estudio de las graficas por computadora 2 Panorama general de los sistemas de gráficas 3 Primitivos de salida INDICE Prefacio xvii 1 Un estudio de las graficas por computadora 2 1-1 diseño asistido por computadora 4 1-2 Graficas de presentación 11 1-3 Arte de computadora 13 1-4 Entretenimiento 18 1-5 educación

Más detalles

Mosaicos regulares del plano

Mosaicos regulares del plano Mosaicos regulares del plano Máster Universitario de formación de Profesorado Especialidad Matemáticas Begoña Hernández Gómez 1 Begoña Soler de Dios 2 Beatriz Carbonell Pascual 3 1 behego@alumni.uv.es

Más detalles

Curso ON-LINE FUNDAMENTOS DE LA PRODUCCIÓN 3D

Curso ON-LINE FUNDAMENTOS DE LA PRODUCCIÓN 3D Pág 1 de 7 Curso ON-LINE FUNDAMENTOS DE LA PRODUCCIÓN 3D CON AUTODESK 3D STUDIO MAX Pág 2 de 7 Pág 3 de 7 Curso ON-LINE Fundamentos de la Producción 3D Con Autodesk 3D Studio Max Ya puedes empezar a crear

Más detalles

1. Divisibilidad y números enteros

1. Divisibilidad y números enteros CURSO 2015-2016. ASIGNATURA: MATEMATICAS CURSO-NIVEL: 2º ESO CONTENIDOS MÍNIMOS 1. Divisibilidad y números enteros La relación de divisibilidad. - Múltiplos y divisores: - Los múltiplos de un número. -

Más detalles

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE CIENCIAS AGRARIAS CURSO PROBATORIO DE INGRESO PROGRAMA DE ESTUDIOS. : 15 semanas lectivas

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE CIENCIAS AGRARIAS CURSO PROBATORIO DE INGRESO PROGRAMA DE ESTUDIOS. : 15 semanas lectivas UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE CIENCIAS AGRARIAS CURSO PROBATORIO DE INGRESO PROGRAMA DE ESTUDIOS Asignatura Duración Carga horaria Semanal Global Categoría : MATEMÁTICA : 15 semanas lectivas

Más detalles

TEMARIOS EXAMEN DE ADMISIÓN 2017 EDUCACIÓN BÁSICA Y MEDIA: MATEMÁTICA. Contenido

TEMARIOS EXAMEN DE ADMISIÓN 2017 EDUCACIÓN BÁSICA Y MEDIA: MATEMÁTICA. Contenido TEMARIOS EXAMEN DE ADMISIÓN 2017 1 Básico 1.- Reconocimiento izquierda derecha 2.- Figuras geométricas 3.- Cuerpos geométricos 4.- Establecer patrones 5.- Secuencias temporales 6.- ordinales 7.- Reconocimiento

Más detalles

OBJETIVOS DE MATEMÁTICAS B 4º DE ESO

OBJETIVOS DE MATEMÁTICAS B 4º DE ESO OBJETIVOS DE MATEMÁTICAS B 4º DE ESO UNIDAD 1 1.1. Domina la expresión decimal de un número o una cantidad y calcula o acota los errores absoluto y relativo en una aproximación. 1.2. Realiza operaciones

Más detalles

2 Transformaciones en 3D

2 Transformaciones en 3D 2 Transformaciones en 3D La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.

Más detalles

EL TRAZADO DE RAYOS: DIFERENTES TECNICAS, SUS VENTAJAS E INCONVENIENTES.

EL TRAZADO DE RAYOS: DIFERENTES TECNICAS, SUS VENTAJAS E INCONVENIENTES. EL TRAZADO DE RAYOS: DIFERENTES TECNICAS, SUS VENTAJAS E INCONVENIENTES. EL TRAZADO DE RAYOS: ES EL METODO QUE SE UTILIZA PARA EL CALCULO DE MAGNITUDES OPTICAS DE UNA LENTE OFTALMICA EN POSICION DE USO.

Más detalles

x+3y = 8 4y+z = 10 ; s: x 7 = y a-4 = z+6 5a-6 b) Para el valor del parámetro a = 4, determine, si es posible, el punto de corte de ambas rectas.

x+3y = 8 4y+z = 10 ; s: x 7 = y a-4 = z+6 5a-6 b) Para el valor del parámetro a = 4, determine, si es posible, el punto de corte de ambas rectas. [04] [EXT-A] a) Estudie la posición relativa de las rectas r y s en función del parámetro a: r: x+y = 8 4y+z = 0 ; s: x = y a-4 = z+ 5a- b) Para el valor del parámetro a = 4, determine, si es posible,

Más detalles

Curso ON-LINE FUNDAMENTOS DE LA PRODUCCIÓN 3D

Curso ON-LINE FUNDAMENTOS DE LA PRODUCCIÓN 3D Pág 1 de 8 Curso ON-LINE FUNDAMENTOS DE LA PRODUCCIÓN 3D CON AUTODESK 3D STUDIO MAX Pág 2 de 8 Pág 3 de 8 Curso ON-LINE Fundamentos de la Producción 3D Con Autodesk 3D Studio Max Ya puedes empezar a crear

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

ANALISIS CINEMATICO DIRECTO E INVERSO

ANALISIS CINEMATICO DIRECTO E INVERSO ANALISIS CINEMATICO DIRECTO E INVERSO Cinematica directa x=f(q) [x,y,z] Articulaciones Posicion de la Herramienta Cinematica Inversa q=f -1 (x) El analisis cinematico inverso nos permite calcular la posicion

Más detalles

PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS

PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS IES SAN BENITO PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS MATEMÁTICAS 1º ESO *SISTEMA DE NUMERACIÓN DECIMAL. N OS NATURALES. POTENCIAS Y RAICES Ordenación de los números

Más detalles

Lenguaje de Programación: C++ GLUTIluminación

Lenguaje de Programación: C++ GLUTIluminación UG GLUT Lenguaje de Programación: C++ GLUT Universidad de Guanajuato Noviembre 2010 Lenguaje de Programación: C++ GLUT Mediante la iluminación es como se consigue un mayor efecto de realismo. El modelo

Más detalles

Algebra vectorial y matricial

Algebra vectorial y matricial Capítulo Algebra vectorial y matricial.. Espacio vectorial Los conjuntos de vectores en el plano R yenelespacior cuentan con muchas propiedades interesantes. Es posible sumar un vector en R y obtener un

Más detalles

ESTRUCTURA CONCEPTUAL DEL AREA DE: GRADO:

ESTRUCTURA CONCEPTUAL DEL AREA DE: GRADO: ESTRUCTURA CONCEPTUAL DEL AREA DE: EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS REPÚBLICA DE COLOMBIA DEPARTAMENTO DE CÓRDOBA MUNICIPIO DE VALENCIA INSTITUCIÓN EDUCATIVA CATALINO

Más detalles

Lección 2: Conectividad

Lección 2: Conectividad Lección : Conectividad.Definiciones.Algoritmos de etiquetado Recursivo Secuencial.Análisis de conectividad RLE Algoritmo secuencial 8 - J. Neira Universidad de Zaragoza Conectividad Propósito: separar

Más detalles

Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Básico

Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Básico Cuaderno de Trabajo 3 Básico Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales

Más detalles

TANGENCIAS. Tangencias como aplicación de los conceptos de potencia e inversión TEMAR. Objetivos y orientaciones metodológicas. t.

TANGENCIAS. Tangencias como aplicación de los conceptos de potencia e inversión TEMAR. Objetivos y orientaciones metodológicas. t. TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMAR Objetivos y orientaciones metodológicas El objetivo de este tema es hacer aplicación de los conceptos de "potencia"

Más detalles

JUEGOS. Quién tiene? Yo tengo. febrero 2003, pp Grupo Alquerque* Reglas del juego. Puntualización

JUEGOS. Quién tiene? Yo tengo. febrero 2003, pp Grupo Alquerque* Reglas del juego. Puntualización 42? febrero 2003, pp. 105-110 Grupo Alquerque* ESTE JUEGO consta de 40 tarjetas, que en una de sus caras tienen una pregunta y en la otra una respuesta que no corresponde a la pregunta que le acompaña.

Más detalles

Dado el cubo de la figura siguiente, halla su área y su volumen en función de x. Solución: Solución: a) 5x 3, 9x 3,x 3 b) 7x 2,8x 2 c) 7x, 9x

Dado el cubo de la figura siguiente, halla su área y su volumen en función de x. Solución: Solución: a) 5x 3, 9x 3,x 3 b) 7x 2,8x 2 c) 7x, 9x 7 Polinomios 1. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función de x P I E N S A Y C A L C U L A A(x) = 6x V(x) = x 3 x x x Carné calculista 36 : 0,79 C =

Más detalles

Visión de Alto Nivel

Visión de Alto Nivel Visión de Alto Nivel Dr. Luis Enrique Sucar INAOE esucar@inaoep.mx ccc.inaoep.mx/~esucar Sesión 4 Características 1 Visión de Alto Nivel Obtiene una interpretación consistente de las características obtenidas

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO 1.

Más detalles

Tema 5. Análisis dinámico con dos grados de libertad.

Tema 5. Análisis dinámico con dos grados de libertad. Tema 5. Análisis dinámico con dos grados de libertad. Objetivo Obtener las dos componentes de la posición, velocidad y aceleración de un punto. Representar gráficamente esas magnitudes de diferentes maneras.

Más detalles

Introducción al proceso digital de imagen y visión por computador

Introducción al proceso digital de imagen y visión por computador Introducción al proceso digital de imagen y visión por computador Ilustraciones extraidas de diversas fuentes 1 Libros de referencia Gonzalez & Woods Digital Image Processing Addison-Wesley Klette& Schluns&Koshan

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

ÁREA DE MATEMÁTICAS 2º CURSO DE LA E.S.O.

ÁREA DE MATEMÁTICAS 2º CURSO DE LA E.S.O. 2. Reconocer y plantear situaciones susceptibles de ser formuladas en términos matemáticos, elaborar y utilizar diferentes estrategias para abordarlas y analizar los resultados utilizando los recursos

Más detalles

Matemáticas II, 2º BACH Fecha: 14 de noviembre de 2011 Sistemas de Ecuaciones Global 1ª evaluación Método de Gauss Álgebra de matrices Determinantes

Matemáticas II, 2º BACH Fecha: 14 de noviembre de 2011 Sistemas de Ecuaciones Global 1ª evaluación Método de Gauss Álgebra de matrices Determinantes Fecha: 14 de noviembre de 2011 Global 1ª evaluación Matemáticas II, 2º BACH Sistemas de Ecuaciones Método de Gauss Álgebra de matrices Determinantes El alumno contestará a los ejercicios 1, 2, 3 y 4, o

Más detalles

ESTIMACIÓN N DE LA DISTANCIA RECORRIDA POR UN ROBOT MÓVIL M MEDIANTE LA UTILIZACIÓN N DE DESCRIPTORES SURF

ESTIMACIÓN N DE LA DISTANCIA RECORRIDA POR UN ROBOT MÓVIL M MEDIANTE LA UTILIZACIÓN N DE DESCRIPTORES SURF ESTIMACIÓN N DE LA DISTANCIA RECORRIDA POR UN ROBOT MÓVIL M MEDIANTE LA UTILIZACIÓN N DE DESCRIPTORES SURF Autor: Juan Manuel Peraza Domínguez Tutor: Dr. Luis Moreno Lorente Noviembre de 2009 1 ÍNDICE

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES ÁREA DE PREGRADO EN MATEMÁTICAS

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES ÁREA DE PREGRADO EN MATEMÁTICAS UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES ÁREA DE PREGRADO EN MATEMÁTICAS Código : CNM -511 Nombre : Análisis Tensorial Prerrequisitos : CNM 205 Duración del semestre : 16 semanas

Más detalles

Guía del docente. Guía para el docente Geometría Geometría del espacio

Guía del docente. Guía para el docente Geometría Geometría del espacio Guía del docente Descripción curricular: Nivel: 4. Medio Subsector: Matemática Unidad temática: Palabras clave: traslación, rotación, generados, volumen, esfera, cilindro, cono, prisma, cuerpo redondo

Más detalles

ELEMENTOS DE COMPETENCIAS PRIMER CICLO

ELEMENTOS DE COMPETENCIAS PRIMER CICLO ELEMENTOS DE COMPETENCIAS PRIMER CICLO CB razonamiento matemático IES Las Viñas. Mollina ELEMENTOS DE COMPETENCIA EN CB RAZONAMIENTO MATEMÁTICO Y DESARROLLO PARA PRIMER CICLO 1º ESO 2º ESO DIM Elemento

Más detalles

, -4, 5'123, 5. Representa en la recta racional y por el procedimiento visto en clase, los siguientes números: Usa regla, compás, escuadra, cartabón

, -4, 5'123, 5. Representa en la recta racional y por el procedimiento visto en clase, los siguientes números: Usa regla, compás, escuadra, cartabón Matemáticas. 4º ESO (Opción A) Curso 009/0 Centro Concertado Privado Colegio Sta. María del Carmen Calle Madre Elisea Oliver, 0005 Alicante Ejercicios de repaso Tema : Números. Efectúa las siguientes operaciones

Más detalles

ANEXO I GRADUACIÓN DE CRITERIOS DE EVALUACIÓN DEL ÁREA DE MATEMÁTICAS. BLOQUE 1: Procesos, métodos y actitudes en matemáticas CRITERIOS DE EVALUACIÓN

ANEXO I GRADUACIÓN DE CRITERIOS DE EVALUACIÓN DEL ÁREA DE MATEMÁTICAS. BLOQUE 1: Procesos, métodos y actitudes en matemáticas CRITERIOS DE EVALUACIÓN ANEXO I GRADUACIÓN DE DEL ÁREA DE MATEMÁTICAS BLOQUE 1: Procesos, métodos y actitudes en matemáticas CRITERIOS 6º CRITERIOS 5º CRITERIOS 4º CRITERIOS 3º CRITERIOS 2º CRITERIOS 1º, estableciendo conexiones

Más detalles

WEBS RECOMENDADAS. s1.htm

WEBS RECOMENDADAS.  s1.htm WEBS RECOMENDADAS NÚMEROS RACIONALES E IRRACIONALES http://descartes.cnice.mec.es/3_eso/numeros_reales_aproximaciones/numero s1. Presenta los números racionales http://descartes.cnice.mec.es/3_eso/numeros_reales_aproximaciones/numero

Más detalles

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones DESIGUALDADES 4.1.- AXIOMAS DE ORDEN. Cualquier conjunto o Campo de números que satisface los siguientes 4 Axiomas se dice que es un conjunto de números ORDENADO. El conjunto o Campo de los números reales

Más detalles

Triángulo agudo - Es un triángulo que tiene todos los ángulos agudos. Ángulo agudo es aquél cuyo grado de medida es menor de 90.

Triángulo agudo - Es un triángulo que tiene todos los ángulos agudos. Ángulo agudo es aquél cuyo grado de medida es menor de 90. Triángulo agudo - Es un triángulo que tiene todos los ángulos agudos. Ángulo agudo es aquél cuyo grado de medida es menor de 90. Ángulos adyacentes - Son dos ángulos en el mismo plano con un lado y un

Más detalles

Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Básico

Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Básico Cuaderno de Trabajo 5 Básico Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales

Más detalles

Matemáticas Currículum Universal

Matemáticas Currículum Universal Matemáticas Currículum Universal Índice de contenidos 12-16 años 2013-2014 Matemáticas 12-16 años NÚMEROS NATURALES Historia de los números Sistemas de numeración Base de un sistema de numeración Números

Más detalles

Distribución de ítems para la prueba nacional Matemática Modalidad Colegios Técnicos Convocatorias 2014

Distribución de ítems para la prueba nacional Matemática Modalidad Colegios Técnicos Convocatorias 2014 ESTIMADO DOCENTE: Distribución de ítems para la prueba nacional Matemática Modalidad Colegios Técnicos Convocatorias 201 En la modalidad de colegios técnicos, la Prueba de Bachillerato 201 considerará

Más detalles

PROGRAMA DE MATEMÁTICAS TABLA DE ESPECIFICACIONES PRE Y POST PRUEBA TRIGONOMETRÍA: MATE TRIGONOMETRÍA AVANZADA: MATE

PROGRAMA DE MATEMÁTICAS TABLA DE ESPECIFICACIONES PRE Y POST PRUEBA TRIGONOMETRÍA: MATE TRIGONOMETRÍA AVANZADA: MATE PROGRAMA DE MATEMÁTICAS TABLA DE ESPECIFICACIONES PRE Y POST PRUEBA TRIGONOMETRÍA: MATE 11-166 TRIGONOMETRÍA AVANZADA: MATE 11-167 Estándar % de ejercicios asignados Cantidad de ejercicios Punto de Ejecución

Más detalles

Departamento de Matemática Aplicada II. Universidad de Sevilla. Solución de la Primera Prueba Alternativa ( )

Departamento de Matemática Aplicada II. Universidad de Sevilla. Solución de la Primera Prueba Alternativa ( ) MATEMÁTICAS I ( o de GIE y GIERM (Curso - Departamento de Matemática Aplicada II. Universidad de Sevilla Solución de la Primera Prueba Alternativa (-- Ejercicio.. Calcule las raíces cúbicas del número

Más detalles

a) Los vectores base de V 2? Razonar la respuesta. b) Expresar u como combinación lineal de x e y c) Comprobar gráficamente lo anterior.

a) Los vectores base de V 2? Razonar la respuesta. b) Expresar u como combinación lineal de x e y c) Comprobar gráficamente lo anterior. PARCIAL 2ª EVALUACIÓN MATEMÁTICAS I 1º BACH. A+B CURSO 2008-2009 1. u a) Los vectores x e y de la figura pueden ser base de V 2? Razonar la respuesta. y b) Expresar u como combinación lineal de x e y c)

Más detalles

Objetivos y Temario CURSO AUTOCAD 2015_2D Y 3D

Objetivos y Temario CURSO AUTOCAD 2015_2D Y 3D Objetivos y Temario CURSO AUTOCAD 2015_2D Y 3D OBJETIVOS AutoCAD sigue siendo el protagonista indiscutible entre las aplicaciones de dibujo técnico para trabajar en sus proyectos CAD y diseños. Este curso

Más detalles

PRÁCTICA DEMOSTRATIVA N

PRÁCTICA DEMOSTRATIVA N PRÁCTICA DEMOSTRATIVA N 1 (VECTORES) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M. Ingeniería

Más detalles

TAREA DE VERANO MATEMÁTICAS 3º ESO

TAREA DE VERANO MATEMÁTICAS 3º ESO TAREA DE VERANO MATEMÁTICAS º ESO Realiza las siguientes operaciones 7 7 a) 0 0 0 b) Un embalse está lleno en / de su capacidad. Gracias a las lluvias la cantidad de agua aumenta / de lo que faltaba por

Más detalles

MATEMÁTICAS II (2º BACHILLERATO)

MATEMÁTICAS II (2º BACHILLERATO) MATEMÁTICAS II (2º BACHILLERATO) 1.1.1 Contenidos y temporalización. Matemáticas II 1.1.1.1 Bloque 1. Análisis (Total : 56 sesiones) Límite de una función en un punto. Límites laterales. Cálculo de límites.

Más detalles

Grafismo Electrónico Tema 3. fi Analizar los elementos disponibles para la configuración de una escena tridimensional

Grafismo Electrónico Tema 3. fi Analizar los elementos disponibles para la configuración de una escena tridimensional Animación 3D Grafismo Electrónico Tema 3 Objetivos fi Analizar los elementos disponibles para la configuración de una escena tridimensional fi Aplicar las técnicas relacionadas con el movimiento de objetos

Más detalles

Desplazamiento. Distancia en línea recta entre la posición inicial y final de un punto que se ha movido en un marco de referencia.

Desplazamiento. Distancia en línea recta entre la posición inicial y final de un punto que se ha movido en un marco de referencia. Tipos de Movimiento Conceptos Básicos Desplazamiento. Distancia en línea recta entre la posición inicial y final de un punto que se ha movido en un marco de referencia. Ciclo, periodo, fase y transmisión

Más detalles

OPTATIVA DE REFUERZO DE MATEMÁTICAS SELECCIÓN Y SECUENCIACIÓN DE CONTENIDOS PARA REFUERZO DE 1º DE ESO BLOQUE 1: NÚMEROS Y ÁLGEBRA

OPTATIVA DE REFUERZO DE MATEMÁTICAS SELECCIÓN Y SECUENCIACIÓN DE CONTENIDOS PARA REFUERZO DE 1º DE ESO BLOQUE 1: NÚMEROS Y ÁLGEBRA OPTATIVA DE REFUERZO DE MATEMÁTICAS SELECCIÓN Y SECUENCIACIÓN DE CONTENIDOS PARA REFUERZO DE 1º DE ESO BLOQUE 1: NÚMEROS Y ÁLGEBRA Unidad 1: Números naturales. Potencias Unidad 2: Divisibilidad Unidad

Más detalles

CURSO CONTENIDOS MÍNIMOS U1: NÚMEROS NATURALES. U2: POTENCIA Y RAÍCES.

CURSO CONTENIDOS MÍNIMOS U1: NÚMEROS NATURALES. U2: POTENCIA Y RAÍCES. CURSO 2015-2016. ASIGNATURA: MATEMATICAS CURSO-NIVEL: 1º ESO CONTENIDOS MÍNIMOS U1: NÚMEROS NATURALES. Origen y evolución de los números. Sistemas de numeración aditivos y posicionales. El conjunto de

Más detalles

PROGRAMA DE ASIGNATURA

PROGRAMA DE ASIGNATURA PROGRAMA DE ASIGNATURA ASIGNATURA : PENSAMIENTO GEOMÉTRICO Clave : EBA 215 Créditos :3 Horas: 4 Pre- requisitos : EBA 150 I. COMPETENCIAS QUE PROMUEVE En esta asignatura se promueve(n) la(s) siguiente(s)

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016

Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016 ESTIMADO DOCENTE: Ministerio de Educación Pública Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016 En la modalidad de colegios técnicos, la Prueba de Bachillerato

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Página 70 PRTI Semejanza de figuras opia en una hoja de papel cuadriculado estas dos figuras. Modifica la de la derecha para que sean semejantes. En un mapa cuya escala es : 500 000, la distancia

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

UNIDAD 8.- Funciones racionales (tema 8 del libro)

UNIDAD 8.- Funciones racionales (tema 8 del libro) (tema 8 del libro). FUNCIÓNES DE PROPORCIONALIDAD INVERSA k Las funciones de proporcionalidad inversa son funciones cuya epresión es de la forma f ( ) Las gráficas de estas funciones son o se llaman hipérbolas

Más detalles

001. Identifica, en un conjunto de números, los que son enteros.

001. Identifica, en un conjunto de números, los que son enteros. 2.6 Criterios específicos de evaluación. 001. Identifica, en un conjunto de números, los que son enteros. 002. Coloca distintos números naturales y enteros en un diagrama que representa a los conjuntos

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE COMPUTACION

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE COMPUTACION UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE COMPUTACION CICLO: 01/ 2013 Nombre de la Practica: Lugar de Ejecución: Tiempo Estimado: MATERIA: GUIA DE LABORATORIO #13 Programación

Más detalles

Bases de Datos Espaciales.. Univ. Carlos III

Bases de Datos Espaciales.. Univ. Carlos III Bases de Datos Espaciales Bases de datos espaciales 1. Porqué surgen? 2. Características de las bases de datos espaciales 3. Sistemas de Información Geográfica 4. Modelos de datos espaciales 5. Operadores

Más detalles

Maquetación con estilos

Maquetación con estilos Objetivos específicos Maquetación con estilos Aplicar estilos relacionados con tamaños, bordes y márgenes. Aplicar estilos relacionados con el posicionamiento de los objetos. Contenidos Estilos de caja.

Más detalles

TEMA 4 TRANSFORMACIONES EN EL PLANO

TEMA 4 TRANSFORMACIONES EN EL PLANO TEMA 4 TRANSFORMACIONES EN EL PLANO Introducción. Bloque de herramientas Transformar. Mosaicos. Mosaicos regulares. Mosaicos irregulares. Actividades propuestas. INTRODUCCIÓN En este tema expondremos las

Más detalles

Geometría Analítica. GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS

Geometría Analítica.  GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS Geometría Analítica GEOMETRÍA ANALÍTICA PLANA René Descartes, matemático francés, en 67 define una ecuación algebraica para cada figura geométrica; es decir, un conjunto de pares ordenados de números reales

Más detalles

Tema 2 2 Geometría métrica en el pla no

Tema 2 2 Geometría métrica en el pla no Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el

Más detalles

Óptica Eddie L. Segura C. ÓPTICA GEOMÉTRICA

Óptica Eddie L. Segura C. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA 1. INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA Las leyes sobre las que se estructuró la óptica geométrica son: Ley de propagación rectilínea de la luz Ley de independencia de los rayos luminosos.

Más detalles

Tolerancias geométricas. Referencias

Tolerancias geométricas. Referencias Referencia: Forma geométrica teóricamente exacta (tal como un eje, un plano, una línea recta, etc.) a la que se refieren los elementos objeto de tolerancia. Las referencias pueden estar basadas en uno

Más detalles

DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES

DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES Tema 2.- DETERMINANTES DETERMINANTES MATRICES EQUIVALENTES POR FILAS RANGO DE UNA MATRIZ. APLICACIONES 1 Un poco de historia Los determinantes es uno de los temas más útiles del Álgebra Lineal, con muchas

Más detalles

DISEÑO CURRICULAR GEOMETRÍA

DISEÑO CURRICULAR GEOMETRÍA DISEÑO CURRICULAR GEOMETRÍA FACULTAD (ES) CARRERA (S) Ingeniería Computación, Sistemas. CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 121243 02 02 03 I PRE-REQUISITO ELABORADO POR:

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EPERIMENTAL RAFAEL MARÍA BARALT COSTA ORIENTAL DEL LAGO DE MARACAIBO PROGRAMA EDUCACIÓN PROYECTO MATEMÁTICA Y FÍSICA PROGRAMA INSTRUCCIONAL CODIGO

Más detalles

Introducción. Objetivos de aprendizaje. Actividad 1

Introducción. Objetivos de aprendizaje. Actividad 1 EL TRIÁNGULO: UN POLÍGONO CON PROPIEDADES ESPECIALES Caracterización de ángulo en su entorno Introducción Sabías que las manecillas del reloj en su trayectoria describen diferentes ángulos? Después de

Más detalles

COMPARATIVA CICLOS TEÓRICOS TERMODINÁMICOS MEP, MEC Y MEC LENTO. Capítulo 1. Ciclo Termodinámico Teórico de un MEP

COMPARATIVA CICLOS TEÓRICOS TERMODINÁMICOS MEP, MEC Y MEC LENTO. Capítulo 1. Ciclo Termodinámico Teórico de un MEP COMARATIVA CICLOS TEÓRICOS TERMODINÁMICOS ME, MEC Y MEC LENTO Capítulo. Ciclo Termodinámico Teórico de un ME En el presente trabajo, se pone de manifiesto el estudio de los ciclos termodinámicos, de los

Más detalles