unidad 11 Transformaciones geométricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "unidad 11 Transformaciones geométricas"

Transcripción

1 unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso: Así se traza un ángulo de 60 de vértice V y lado l. l l l V V V 60 actividades 1 Dibuja en tu cuaderno, ayudándote del compás, algunos ángulos de 60.

2 unidad 11 Transformaciones geométricas Cómo trazar ángulos rectos sobre papel cuadriculado (con los lados no paralelos a las líneas de la cuadrícula) Página 2 Observa cómo se traza, en cada caso, un ángulo recto de vértice V y lado l : a c l b l l V 90 V V El caso a) es muy fácil. Para los casos b) y c), conviene tener en cuenta la igualdad de los triángulos señalados que, como es natural, en la práctica no hace falta señalar expresamente. actividades 2 Dibuja en tu cuaderno, apoyándote en la cuadrícula, varios ángulos de 90.

3 unidad 11 Transformaciones geométricas Cómo representar puntos y rectas en un sistema de ejes cartesianos Página 3 Las expresiones analíticas de las rectas son ecuaciones de primer grado en x e y. Por ejemplo: y = 2x 3, y = x, y = 5, x = 0, y = 0 Para representar una recta, basta con obtener dos de sus puntos. y = 2x + 3 x = 0 8 y = 3 x = 2 8 y = 7. La recta pasa por (0, 3) y (2, 7) Hay algunas rectas muy sencillas que deberías ser capaz de reconocer de un solo golpe de vista. y = x y = 2 x = 0 es el eje Y y = 0 es el eje X actividades 3 Representa: a) y = x 4 b) y = 5x 10 c) y = 4 d) x = 3 e) y = x

4 unidad 11 Transformaciones geométricas Figuras simétricas. Ejes de simetría Página 4 En la naturaleza, en la técnica, en el arte, en nuestro mundo cotidiano estamos rodeados de figuras simétricas. Su estudio es interesante. E J E D E S I M E T R Í A D E U N A F I G U R A Una figura plana es simétrica respecto a una recta si al doblarla por dicha recta las dos mitades coinciden. e B A A' B' En una simetría respecto a un eje o simetría axial: La recta e se llama eje de simetría. A y A' son simétricos respecto a e, porque e es la mediatriz del segmento AA'. Lo mismo ocurre con B y B'. Cada punto del eje es simétrico de sí mismo: C = C'. C = C' La simetría de las figuras planas se aprecia a simple vista y suele ser sencillo identificar su eje de simetría. No obstante, puede ser de gran ayuda valerse de un espejo para comprobar si una cierta recta es o no eje de simetría de una figura. Las siguientes figuras tienen dos, tres y cinco ejes de simetría, respectivamente: Si una figura tiene n ejes de simetría, estos se cortan en un punto, y cada dos ejes contiguos forman un ángulo de 180 n. actividades 1 Señala todos los ejes de simetría de cada una de las siguientes figuras. a) b) c) d) e)

5 UNIDAD 11 Transformaciones geométricas 2. Iniciación: traslaciones Pág. 1 de 1 1 Aplica a la figura F y a la recta r una traslación de vector t 8 (8, 4). Qué le sucede a r? 2 Aplica a la circunferencia C una traslación de vector t 8 (5, 1). 3 Escribe las coordenadas del vector que corresponde a la traslación que transforma F en F. 8 t (, )

6 UNIDAD 11 Transformaciones geométricas 3. Iniciación: giros Pág. 1 de 1 1 Aplica un giro de centro O y ángulo a = 90 al triángulo ABC. 2 Aplica un giro de centro O y ángulo a = 90 a la circunferencia de centro (3, 0) y radio 2 y a la circunferencia de centro O y radio 5. Qué le ocurre a esta última? 3 Hemos aplicado al triángulo ABC un giro de centro O y ángulo a y hemos obtenido la figura A'B'C'. Cuál es el ángulo de giro? a =

7 UNIDAD 11 Transformaciones geométricas 4. Ampliación: ejes de simetría y centro de giro en las figuras planas Pág. 1 de 3 En la naturaleza, en la técnica, en el arte, en nuestro mundo cotidiano, estamos rodeados de figuras simétricas. Su estudio es interesante. Simetría respecto a un eje (simetría axial) Si se pliega una hoja de papel, se recorta cualquier motivo y se despliega, aparece una figura simétrica respecto a un eje. Cada mitad es como la imagen en un espejo de la otra mitad. En una simetría respecto a un eje o simetría axial: La recta e se llama eje de simetría. A y A' son simétricos respecto a e, porque e es la mediatriz del segmento AA'. Lo mismo ocurre con B y B'. Cada punto del eje es simétrico de sí mismo: C = C'. La simetría de las figuras planas se aprecia a simple vista y suele ser sencillo identificar su eje de simetría. No obstante, puede ser de gran ayuda valerse de un espejo para comprobar si una cierta recta es o no eje de simetría de una figura.

8 UNIDAD 11 Transformaciones geométricas 4. Ampliación: ejes de simetría y centro de giro en las figuras planas Pág. 2 de 3 Simetría respecto a un punto (simetría central) La figura de la derecha es simétrica. Sin embargo, no tiene ningún eje de simetría (se puede comprobar viendo que no es posible reproducir una mitad mirando con un espejo la otra mitad). Se trata de una simetría respecto a un punto o simetría central. En una simetría respecto a un punto o simetría central: O se llama centro de simetría. A y A' son simétricos respecto de O, porque O es el punto medio del segmento AA'. Lo mismo ocurre con B y B'. Una simetría central es un giro de 180. Figuras con varios ejes de simetría Las figuras de la derecha tienen más de un eje de simetría. La primera figura tiene dos ejes de simetría. La segunda tiene tres. La tercera, cuatro. Figuras con centro de giro Si se calca la figura de la derecha (sin colorearla) en papel transparente, se re c o rta, se superpone a esta misma, se pincha con un alfiler en O y se hace girar, se podrían o b s e rvar tres posiciones distintas en las que las dos figuras (la original y la copia) coinciden. Por eso se dice que esta figura tiene un c e n t ro de giro, O, de orden 3. Se comprueba, siguiendo el mismo procedimiento de arriba, que esta otra figura tiene un centro de giro de orden 4. Esta figura se puede construir copiando cuatro veces el m ó d u l o de la dere c h a, girándolo cada vez 90 respecto de la posición anterior. Una figura plana se dice que tiene un centro de giro, O, de orden n cuando, al girarla alrededor de O, coincide consigo misma n veces, contando la posición inicial. En tal caso, la figura puede descomponerse en n trozos idénticos (módulos), cada uno correspondiente a un ángulo de 360 : n.

9 UNIDAD 11 Transformaciones geométricas 4. Ampliación: ejes de simetría y centro de giro en las figuras planas Pág. 3 de 3 Relación de los giros con las simetrías centrales Estas figuras tienen, todas ellas, centro de giro. Sus órdenes son, respectivamente, 2, 3, 4 y 6. La segunda no tiene centro de simetría, las restantes, sí. Se comprueba, reflexionando sobre estas figuras y sobre otras con centro de giro, que las figuras con centro de giro tienen centro de simetría si el orden del giro es par. Relación de los giros con las simetrías axiales Observando estas figuras se razona la siguiente afirmación: 1 eje de simetría 2 ejes de simetría 3 ejes de simetría 4 ejes de simetría 5 ejes de simetría 6 ejes de simetría Las figuras con un único eje de simetría no tienen centro de giro. Si una figura tiene n ejes de simetría, estos se cortan en un punto que es centro de giro de orden n.

10 UNIDAD 11 Transformaciones geométricas 5. Iniciación: simetrías Pág. 1 de 1 1 Aplica al triángulo ABC y a la recta r una simetría cuyo eje sea el eje Y. Qué para con r? 2 Aplica a la figura F una simetría de eje e. 3 Escribe SÍ o NO para indicar si las siguientes figuras permanecen o no invariantes al aplicarles una simetría cuyo eje sea el eje Y. Circunferencia de centro (0, 2) y radio 1. 8 Triángulo de vértices (0, 0), (2, 0) y (1, 2). 8 Triángulo de vértices ( 1, 0), (0, 2) y (1, 0). 8

11 UNIDAD 11 Transformación de movimientos 6. Iniciación: composición de movimientos Pág. 1 de 1 1 Llamamos T a la traslación de vector t 8 (5, 2) y S a la simetría de eje e. Obtén la transformada de la figura F mediante T seguido de S. 2 Llamamos T a la traslación de vector t 8 (2, 3) y G al giro de centro O(0, 0) y ángulo a = 90. Obtén la transformada de la figura F mediante T seguido de G. 3 Llamamos S 1 a la simetría de eje e 1 y S 2 a la simetría de eje e 2. Obtén la transformada de la figura F mediante S 1 seguido de S 2.

12 UNIDAD 11 Transformación de movimientos 7. Ampliación: composición de movimientos Pág. 1 de 3 Se llama composición de dos transformaciones, T 1 y T 2, a una nueva transformación, que se designa T 2 T 1, que transforma cada punto del siguiente modo: T 1 T 2 P Ä Ä8 P' Ä Ä8 P'' T 2 T 1 Es decir, para transformar un punto P o una figura F mediante T 2 T 1, lo transformamos mediante T 1, y el resultado, mediante T 2. (T 2 T 1 )(P) = T 2 (P' ) = P'' Para componer T 1 con T 2 ponemos T 2 T 1. Es decir, T 2 T 1 se lee de derecha a izquierd a. Veamos sobre un ejemplo cómo se componen movimientos. Definimos un giro G de centro O(0, 0) y ángulo a = 90 y una traslación T de vector t 8 (4, 2). Veamos qué resulta al transformar un triángulo F de vértices A(0, 2), B(4, 1) y C(2, 5) mediante la transformación G T. Primeramente se aplica T y, sobre la figura obtenida, se aplica G. Veamos ahora qué resulta al transformar la misma figura F mediante T G. Primeramente se aplica G y, sobre la figura obtenida, se aplica T. Se puede observar que en ambos procesos el triángulo F se transforma en otro triángulo con la misma forma. Sin embargo, los triángulos F'' y F 2 están situados en lugares distintos, es decir, no es lo mismo G T que T G.

13 UNIDAD 11 Transformación de movimientos 7. Ampliación: composición de movimientos Pág. 2 de 3 Resultados interesantes al componer movimientos COMPOSICIÓN DE TRASLACIONES Al componer dos traslaciones de vectores 8 t 1 y 8 t 2, el resultado es otra traslación cuyo vector es la suma 8 t t 2. COMPOSICIÓN DE GIROS DEL MISMO CENTRO COMPOSICIÓN DE SIMETRÍAS AXIALES CON EJES PARALELOS El resultado de componer dos giros con el mismo centro, O, y ángulos a y b, es un nuevo giro de centro O y ángulo a + b. Si a y b son de sentidos opuestos, la amplitud de a + b es la diferencia de sus amplitudes. El resultado de componer dos simetrías, S 1 y S 2, de ejes e 1 y e 2 paralelos, es una traslación T, cuyo vector t 8 es perpendicular a los ejes y cuya longitud es el doble de la distancia que los separa, 2d. (El sentido de 8 t es el que va de e 1 a e 2.) COMPOSICIÓN DE SIMETRÍAS AXIALES CON EJES QUE SE CORTAN El resultado de componer dos simetrías, S 1 y S 2, de ejes e 1 y e 2 que se cortan bajo un ángulo a, es un giro de ángulo 2a y centro el punto de corte de los dos ejes. El ángulo a que forman los ejes es un ángulo orientado. e (a = ` 1 e 2 es el menor de los ángulos que forman los ejes al cortarse y tiene el sentido de e 1 a e 2.) En general, el resultado de componer dos movimientos es otro mov i m i e n t o : Si ambos son deslizamientos, el resultado es un deslizamiento. Si ambos son movimientos inversos, el resultado es un deslizamiento. Si uno es directo y el otro inverso, el resultado es un movimiento inve r s o.

14 UNIDAD 11 Transformación de movimientos 7. Ampliación: composición de movimientos Pág. 3 de 3 Veamos dos ejemplos de composición de movimientos. Ejemplo 1 T 1 y T 2 son traslaciones de vectores respectivos 8 t 1 (6, 4) y 8 t 2 ( 5, 5). F es un triángulo de vértices A(7, 0), B(9, 4) y C(12, 2). Hemos pasado del triángulo ABC al A'B'C' por la traslación T 1. Y del A'B'C' al A''B''C'' mediante la traslación T 2. Pero podríamos haber pasado directamente de ABC a A''B''C'' mediante la traslación T 2 T 1, cuyo vector es 8 t t 2 (1, 9). Ejemplo 2 Se consideran las simetrías S 1 y S 2 cuyos ejes e 1 y e 2 son las rectas e 1 : y = 4 y e 2 : y = x. F es un triángulo de vértices A(8, 0), B(12, 0) y C(11, 2). En la siguiente gráfica se puede observar cómo se transforma F mediante S 2 S 1. El resultado final (paso del triángulo negro al rojo) es un giro de centro O'(4, 4) y ángulo 90 (positivo, pues es contrario al sentido de las agujas del reloj). Y en esta otra cómo se transforma F mediante S 1 S 2. El resultado final, en este otro caso, es un giro de centro O' y ángulo 90.

15 UNIDAD 11 Transformaciones geométricas 8. Ampliación: mosaicos Pág. 1 de 4 1 Este mosaico, formado por hexágonos, cuadrados y triángulos equiláteros, se puede construir uniendo balsodas iguales a la que tienes a la derecha. Complétalo. 2 También puedes construirlo uniendo piezas más pequeñas, como las que aquí tienes. Inténtalo.

16 UNIDAD 11 Transformaciones geométricas 8. Ampliación: mosaicos Pág. 2 de 4 3 Este mismo mosaico puede construirse utilizando piezas rectangulares. Inténtalo con esta. 4 Hay muchas traslaciones que hacen coincidir el mosaico consigo mismo. Aquí te hemos propuesto algunas de ellas. Colorea algunas piezas del mosaico siguiendo las traslaciones indicadas.

17 UNIDAD 11 Transformaciones geométricas 8. Ampliación: mosaicos Pág. 3 de 4 5 También hay muchos giros que hacen coincidir el mosaioco consigo mismo. Por ejemplo: Giros de centro A y ángulos de: 60 ó 120 ó 180 ó 240 ó 300. Giro de centro B y ángulo de 180. Giros de centro C y ángulos de 120 ó 240. Colorea algunas piezas del mosaico siguiendo los giros de centro y ángulos indicados.

18 UNIDAD 11 Transformaciones geométricas 8. Ampliación: mosaicos Pág. 4 de 4 6 Hay muchas simetrías que hacen que el mosaico coincida consigo mismo. Aquí te señalamos tres de ellas y, en el siguiente gráfico, otras tres. Colorea algunas piezas del mosaico según los ejes de simetría marcados.

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3.

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3. Unidad 13. Movimientos en el plano. Frisos y mosaicos a las Enseñanzas plicadas 3 Traslaciones Página 17 1. El mosaico de la derecha se llama multihueso. H 1, H, H 3 y H 4 son huesos. Se pueden estudiar

Más detalles

PÁGINA 217 PARA EMPEZAR. Vamos a mover un mosaico de la Alhambra

PÁGINA 217 PARA EMPEZAR. Vamos a mover un mosaico de la Alhambra 11 Soluciones a las actividades de cada epígrafe PÁGIN 217 PR EMPEZR Vamos a mover un mosaico de la lhambra Imagina que pones encima un papel transparente y lo calcas (si en vez de imaginarlo, lo haces,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SLUINES LS EJERIIS E L UNI Pág. 1 Página 207 PRTI 1 Reproduce sobre papel cuadriculado el paralelogramo (,,, ). a) Somételo a una traslación de vector t 1. b) Traslada la figura obtenida, ', mediante t

Más detalles

Unidad 12. Transformaciones geométricas

Unidad 12. Transformaciones geométricas Unidad 12. Transformaciones geométricas Página 231 Resuelve 1. En el triángulo de la figura, qué ángulo gira cada una de las piezas recortadas para dar lugar a la pieza con forma de pajarita? Cada una

Más detalles

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. ACTIVIDAD Nº 1 1. Recorta 6 triángulos equiláteros de 6 cm de lado. 2. Combina 2 triángulos, para encontrar nuevas formas geométricas, de acuerdo a la siguiente

Más detalles

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO OBJETIVOS MÍNIMOS DE LA UNIDAD 12 1.- Reconocer los diferentes tipos de movimientos 2.- En cuanto a las traslaciones, saber construir la

Más detalles

TEMA 9.- TRANSFORMACIONES EN EL PLANO.

TEMA 9.- TRANSFORMACIONES EN EL PLANO. GEOMETRÍ: 5.- TRNSFORMIONES EN EL PLNO TEM 9.- TRNSFORMIONES EN EL PLNO. Definición 9.1.- Llamaremos transformación geométrica en el plano a una operación u operaciones geométricas que permiten deducir

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 5: Transformaciones geométricas planas. Orientación espacial 1 Transformaciones geométricas 2 ISOMETRÍAS EN LIBROS DE PRIMARIA Cuáles de

Más detalles

6. Mosaicos y movimientos. en el plano

6. Mosaicos y movimientos. en el plano 6. Mosaicos y movimientos en el plano Ámbito científico 1. Mosaicos 2. Módulos planos 3. Diseña mosaicos 4. Ejemplos de mosaicos 5. Ejemplos de tramas 6. Mosaicos semiregulares I 7. Libro de espejos 8.

Más detalles

TEMA 4. TRANSFORMACIONES EN EL PLANO

TEMA 4. TRANSFORMACIONES EN EL PLANO TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,

Más detalles

Movimientos en el plano y mosaicos

Movimientos en el plano y mosaicos Matemáticas de Nivel II de ESPA: Movimientos en el plano - 1 Movimientos en el plano y mosaicos En esta unidad se presenta la utilidad de la geometría para ornamentar objetos y espacios en las actividades

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

Transformaciones Isométricas

Transformaciones Isométricas Capítulo 11 Transformaciones Isométricas E l estudio de los movimientos en el plano y el espacio han sido muy importantes en nuestra historia, ya que gracias a ellos hemos aprendido a comprender como se

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Página 70 PRTI Semejanza de figuras opia en una hoja de papel cuadriculado estas dos figuras. Modifica la de la derecha para que sean semejantes. En un mapa cuya escala es : 500 000, la distancia

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt 1 Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt Introducción: Una transformación de una figura geométrica indica que, de alguna manera, ella es alterada o sometida a algún cambio. En

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

TEMA 4 TRANSFORMACIONES EN EL PLANO

TEMA 4 TRANSFORMACIONES EN EL PLANO TEMA 4 TRANSFORMACIONES EN EL PLANO Introducción. Bloque de herramientas Transformar. Mosaicos. Mosaicos regulares. Mosaicos irregulares. Actividades propuestas. INTRODUCCIÓN En este tema expondremos las

Más detalles

RECURSOS DIDÁCTICOS: MATERIALES EN GENERAL

RECURSOS DIDÁCTICOS: MATERIALES EN GENERAL Pág. 1 Libro de espejos Se pueden utilizar espejos corrientes, o mejor aún, de un material comercializado de las mismas características, pero que no es de cristal, para mirar en lugar de para mirarse.

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

CURSO DE GEOMETRÍA 2º EMT

CURSO DE GEOMETRÍA 2º EMT CURSO DE GEOMETRÍA 2º EMT UNIDAD 0 REPASO 1º CIRCUNFERENCIA Y ANGULOS INSCRIPTOS Ángulos en la circunferencia 1. La circunferencia. 1.1. Elementos de una circunferencia Definición 1. Se llama circunferencia

Más detalles

C onstrucción de triángulos

C onstrucción de triángulos C onstrucción de triángulos Figuras básicas y ángulos Nombre Escuela Edad Fecha Propósito: Distinguir triángulos con características diferentes. Escribe lo que entiendas por triángulo isósceles. Dibuja

Más detalles

12Direcciones de internet

12Direcciones de internet 12Direcciones de internet En la dirección http://www.nucleogestion.8m.com/hall.htm se puede pasear libremente por el museo virtual de Escher. Se puede entrar en la sala que se desee haciendo clic sobre

Más detalles

Título de la lámina 1-

Título de la lámina 1- pellido pellido, Nombre 1- Empleando la escuadra y el cartabón rellena los tres espacios a continuación con paralelas a las direcciones dadas. Procura que la distancia entre las paralelas sea la misma

Más detalles

Polígonos regulares, el triángulo de Sierpinski y teselados

Polígonos regulares, el triángulo de Sierpinski y teselados Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso NIVEL: 3º DE PRIMARIA TEMAS: 5-10

UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso NIVEL: 3º DE PRIMARIA TEMAS: 5-10 UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso 2013-14 NIVEL: 3º DE PRIMARIA TEMAS: 5-10 OBJETIVOS DIDÁCTICOS CONTENIDOS Reconocer líneas rectas, líneas curvas abiertas y cerradas,

Más detalles

Página 1 de 19 EXAMEN A: Ejercicio nº 1.- Traza por cada punto, con regla y escuadra, una recta paralela a la recta r. Ejercicio nº 2.- Traza la mediatriz de estos segmentos y responde: Qué tienen en común

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

11 Movimientos ORGANIZA TUS IDEAS

11 Movimientos ORGANIZA TUS IDEAS 11 Movimientos Los movimientos son transformaciones que conservan las distancias y los ángulos. Se clasifican en directos e inversos según conserven o inviertan la orientación de las figuras. Los directos

Más detalles

9. Utiliza la técnica de la cuadrícula para construir un polígono semejante que cumpla con la razón dada entre los lados.

9. Utiliza la técnica de la cuadrícula para construir un polígono semejante que cumpla con la razón dada entre los lados. 6. Investiguen si los siguientes pares de cuadriláteros son semejantes. Si los cuadriláteros son semejantes, escriban las razones correspondientes para determinar que los lados son proporcionales. A2 B2

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Geometría Analítica. GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS

Geometría Analítica.  GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS Geometría Analítica GEOMETRÍA ANALÍTICA PLANA René Descartes, matemático francés, en 67 define una ecuación algebraica para cada figura geométrica; es decir, un conjunto de pares ordenados de números reales

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

Apuntes de Dibujo Técnico

Apuntes de Dibujo Técnico APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada

Más detalles

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Nombre:... Tema 4 DIBUJO TÉCNICO: TRAZADOS ESQUEMA DEL TEMA

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Nombre:... Tema 4 DIBUJO TÉCNICO: TRAZADOS ESQUEMA DEL TEMA Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Nombre:... Tema 4 DIBUJO TÉCNICO: TRAZADOS GEOMÉTRICOS ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. 7. 8. Educación Plástica y Visual de 1º de ESO Página

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10)

UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) Utilizar el metro como la unidad principal de medida de longitud. Utilizar el litro y el gramo unidades de principal

Más detalles

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes:

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes: P RCTIC Polígonos: clasificación 1 Di cuáles de estos triángulos son: a) cutángulos. b) Rectángulos. c) Obtusángulos isósceles. B C D G E a) cutángulos: C, F y G. b) Rectángulos: D y E. c) Obtusángulos

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGIN 198 REFLEXION Observa algunas de las herramientas y útiles de medida y trazado. La plomada señala la dirección vertical (perpendicular al suelo). El nivel marca una dirección horizontal (paralela

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

Mosaicos regulares del plano

Mosaicos regulares del plano Mosaicos regulares del plano Máster Universitario de formación de Profesorado Especialidad Matemáticas Begoña Hernández Gómez 1 Begoña Soler de Dios 2 Beatriz Carbonell Pascual 3 1 behego@alumni.uv.es

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

1. El plano cartesiano

1. El plano cartesiano 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de coordenadas rectangulares, que se caracteriza por: Estar

Más detalles

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS. 1. RECTAS PARALELAS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar.

Más detalles

Movimientos en el plano

Movimientos en el plano Movimientos en el plano TEORIA Vectores Concepto de vector. Coordenadas Un vector AB está determinado por dos puntos del plano, A(x1, y1) que es su origen y B(x 2,y 2 ) que es su extremo. Las coordenadas

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

Actividad Reconociendo lo invariante en figuras simétricas

Actividad Reconociendo lo invariante en figuras simétricas Actividad 37.1. Reconociendo lo invariante en figuras simétricas Construir figuras simétricas respecto de un eje y describir las propiedades que se conservan. Recuerda que la simetría axial o simetría

Más detalles

1. Dualidad de poliedros. 2. Prismas y antiprismas. 3. Estructuras espaciales. 4. Secciones y simetrías de poliedros. 5. Macizamiento del espacio

1. Dualidad de poliedros. 2. Prismas y antiprismas. 3. Estructuras espaciales. 4. Secciones y simetrías de poliedros. 5. Macizamiento del espacio 5. Poliedros Matemáticas 2º ESO 1. Dualidad de poliedros 2. Prismas y antiprismas 3. Estructuras espaciales 4. Secciones y simetrías de poliedros 5. Macizamiento del espacio 6. Coordenadas en el espacio

Más detalles

Tutorial MT-m1. Matemática Tutorial Nivel Medio. Transformaciones isométricas

Tutorial MT-m1. Matemática Tutorial Nivel Medio. Transformaciones isométricas 12345678901234567890 M ate m ática Tutorial MT-m1 Matemática 2006 Tutorial Nivel Medio Transformaciones isométricas Matemática 2006 Tutorial Transformaciones isométricas Marco Teórico El proceso de llevar

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Polígono. Superficie plana limitada por una línea poligonal cerrada.

Polígono. Superficie plana limitada por una línea poligonal cerrada. POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Pero además de ésta existen otras unidades de medida. Para poder dibujar es necesario que conozcas muy bien las relaciones que existen entre ellas.

Pero además de ésta existen otras unidades de medida. Para poder dibujar es necesario que conozcas muy bien las relaciones que existen entre ellas. TEMA 1:TRAZADOS BÁSICOS. APRENDEMOS A MEDIR! El Sistema que utilizamos en nuestro país para medir es el Sistema Métrico Decimal. Seguro que ya lo conoces, pero sabes cual es su unidad fundamental? Pero

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

TEMA 5. VECTORES. Dados dos puntos del plano y.

TEMA 5. VECTORES. Dados dos puntos del plano y. TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

Manejo de las herramientas de Dibujo

Manejo de las herramientas de Dibujo Manejo de las herramientas de Dibujo Una vez aprendidos los instrumentos de dibujo más básicos, en la siguiente ficha, vas a descubrir para que sirven en la práctica, y vas a poder adquirir soltura en

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido.

Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido. TEMA 9: GEOMETRIA ANALÍTICA VECTORES EN EL PLANO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Si las coordenadas de A son (x1, y1) y las de B, (X, y), las

Más detalles

El punto de unión de cada par de segmentos se denomina ángulo. El numero de lados, ( y por tanto de ángulos) ha de ser mayor o igual a tres.

El punto de unión de cada par de segmentos se denomina ángulo. El numero de lados, ( y por tanto de ángulos) ha de ser mayor o igual a tres. POLÍGONOS: POLÍGONOS REGULARES y POLÍGONOS REGULARES ESTRELLADOS. Polígono es la superficie plana encerrada dentro de un contorno formado por segmentos rectos unidos en sus extremos. Cada uno de los segmentos

Más detalles

Trazados geométricos con escuadra, cartabón y compás. 1. Traza la mediatriz del segmento dado AB.

Trazados geométricos con escuadra, cartabón y compás. 1. Traza la mediatriz del segmento dado AB. 1. Traza la mediatriz del segmento dado AB. 2. A la semirrecta s trázale una perpendicular en su extremo.. ª.2. Construye un triángulo sabiendo A= 30º, B= 45º Y se A B x s 3. Dada la recta r, trázale desde

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras.

ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras. ISOMETRÍAS EN EL PLANO ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras. Hay dos tipos de isometrías: Isometría directa: mantiene el sentido de giro de las agujas

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO 8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un

Más detalles

TEMA Nombre IES ALFONSO X EL SABIO

TEMA Nombre IES ALFONSO X EL SABIO 1. Trazar la mediatriz del segmento AB 2. Trazar la perpendicular a la semirrecta s en su extremo A sin prolongar ésta 3. Dividir el arco de circunferencia en dos partes iguales. 4. Dividir gráficamente

Más detalles

Tema 5 Proporcionalidad y escalas

Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas...1 Proporcionalidad... 2 Razón...2 Proporción...2 Proporcionalidad directa...2 Proporcionalidad inversa...3 Construcción de la media

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

Seminario de problemas-eso. Curso Hoja 10

Seminario de problemas-eso. Curso Hoja 10 Seminario de problemas-eso. Curso 011-1. Hoja 10 5. Dado un triángulo cualquiera, demuestra que es posible recubrir el plano con infinitos triángulos iguales al dado, de forma que estos triángulos no se

Más detalles

Equilátero Isósceles Escaleno

Equilátero Isósceles Escaleno 3. Escribe la letra de cada uno de los triángulos dados en la primera página de esta guía en el cuadro que le corresponde. Clasificación de los triángulos según igualdad de la longitud de sus lados Equilátero

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Mosaicos y frisos. Adela Salvador

Mosaicos y frisos. Adela Salvador Mosaicos y frisos Adela Salvador Isometrías en el plano Traslación Giro Simetría Simetría con deslizamiento Traslaciones La traslación queda definida al conocer el vector de traslación Busca dos vectores

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles