GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE."

Transcripción

1 ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA. PROPIEDADES DE LOS ESTIMADORES MCO Bibliografía apartados.1,. y.3: Greene, 6.6.1, y A. Fernández Gallastegui,., 3.5 y 3.7 J.M. Wooldridge. Epígrafes.5, 3.3 (hasta pág. 95), 3.4, 3.5 y Apéndice E..1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE. En el tema 1 obtuvimos el estimador MCO de. En este apartado estudiaremos las propiedades estadísticas del estimador MCO de y en el epígrafe siguiente obtendremos un estimador de y estudiaremos las propiedades estadísticas del estimador MCO de : Propiedades estadísticas de b : b es un estimador lineal, es decir b es una función lineal de Y. Bajo lash hipótesis i básicas 1 a 4, b es un estimador insesgado de ; es decir E b = : b = (X 0 X) 1 X 0 Y = + (X 0 X) 1 X 0 u y por tanto E b = + (X 0 X) 1 X 0 E [u] = puesto que E[u]=0 Nótese que el estimador MCO es insesgado con independencia de que se veri que o no el supuesto 5.

2 Bajo las hipótesis básicas del MRL, V ar b = (X 0 X) 1 : V ar b hb i h i 0 hb i 0 = E E b b E b = E b = E n (X 0 X) 1 X 0 u (X 0 X) 1 X 0 u 0 o = (X 0 X) 1 X 0 E(uu 0 )X(X 0 X) 1 = = (X 0 X) 1 Ya que E(uu 0 )= I T Teorema de Gauss-Markov. Bajo las hipótesis básicas del MRL, el estimador MCO de es óptimo entre la familia de estimadores lineales e insesgados. Es decir, no es posible encontrar otro estimador de que siendo lineal e insesgado tenga una varianza menor que el estimador MCO.. ESTIMACIÓN DE Y PROPIEDADES ESTADÍSTICAS DEL ESTIMADOR. Como ya vimos en el tema anterior, el vector de residuos MCO es la diferencia entre los valores de la variable dependiente y los valores estimados de la misma: e = Y X b = Y b Y. Los residuos pueden interpretarse como la estimación del vector de errores, u. El vector de residuos MCO, e, es una transformación lineal de u E [e] = 0. e = Y X b = MY = ya que MX=0 Mu siendo M = I T X(X 0 X) 1 X 0. M es una matriz singular, simétrica (M = M 0 ) e idempotente (MM = M). E[e] = E[Mu] = ME[u] = ya que E[u]=0 0

3 V ar(e) = M V ar(e) = Ef[Mu] [Mu] 0 g = E[Muu 0 M] = ME[uu 0 ]M = ya que E[uu 0 ]= I T b = e0 e T k es un estimador insesgado de : MM = M Sabemos que e 0 e = (Mu) 0 (Mu) = u 0 Mu Se puede demostrar que E [e 0 e] = E [u 0 Mu] = (T k) Si de nimos b = e0 e T k e E(b 0 e ) = E = E [e0 e] T k T k = (T k) T k = También podemos escribir e 0 e como e 0 e = (Y X b ) 0 (Y X b ) = Y 0 Y b 0 X 0 Y.3 MATRIZ DE VARIANZAS ESTIMADA Y ERRORES ESTÁNDAR Hemos visto que bajo las hipótesis 1 a 5 V ar b = (X 0 X) 1 esta matriz es desconocida ya que es desconocida. Para saber la abilidad b y poder hacer inferencia es importante disponer de un estimador de su varianza. Se de ne la matriz de varianzas estimada de b como \ V ar b = b (X 0 X) 1 3

4 En el tema 3 veremos cómo contrastar hipótesis sobre el vector de parámetros utilizando b y V \ ar b : Nótese que si no se veri ca la hipótesis 5, V ar b 6= (X 0 X) 1 y por tanto b (X 0 X) 1 no sería un estimador apropiado de la varianza de b : Se de nen los errores estándar como las raices cuadradas de los elementos \ de la diagonal principal de la matriz V ar b : Es decir SE( b j ) = q b (X 0 X) 1 jj j = 1; ::; k donde b j es el elemento j del vector b y (X 0 X) 1 jj es el elemento (j; j) de la matrix (X 0 X) 1 : SE( b j ) es un estimador de la desviación típica de b j. Nota: Si cambiamos las unidades de medida de alguna o algunas de las variables explicativas y/o de la variable dependiente cada uno de los errores estándar variará en la misma proporción que el valor estimado del parámetro correspondiente..4. DISTRIBUCIÓN DE FORMAS CUADRÁTI- CAS ASOCIADAS A LA DISTRIBUCIÓN NOR- MAL. En este apartado estudiaremos algunos resultados básicos que serán de utilidad para obtener la distribución de los estimadores ^ y ^ y para realizar contrastes de hipótesis sobre los parámetros bajo la hipótesis de normalidad de los errores (Hipótesis 6 del Tema 1). Bibliografía apartado.4: Greene, 3.4.1, 3.4., y 3.10 A. Gallastegui.: apéndice 4.A. J.M. Wooldridge: apéndice B.5 Propiedad de la distribución normal multivariante Si X es un vector n 1, X N [; ] ; A es una matriz r n (r n) no aleatoria y b es un vector r 1 no aleatorio, entonces: (i) AX + b N [A + b; AA 0 ] 4

5 (ii) En particular 1= (X ) N [0; I n ] De nición 1 (chi-cuadrado con 1 grado de libertad): Si Z N [0; 1] ; entonces Z 1 De nición (chi-cuadrado con n grados de libertad): Si Z 1 ; Z ; :::; Z n son n variables aleatorias independientes e idénticamente distribuidas (i.i.d) como P N [0; 1], entonces n Zi n. i=1 De nición 3 (t de Student con n grados de libertad): Si Z y X son variables aleatorias independientes Z N [0; 1] y X n entonces Z q X n t n De nición 4 (F de Snedecor con n y m grados de libertad): Si X 1 y X son variables aleatorias independientes X 1 n y X m entonces X 1 n X m F n;m Teorema 1. (Suma de chi-cuadrados): Sean X 1 y X dos variables aleatorias independientes con distribución X 1 n 1 y X n ; entonces X 1 + X n 1 +n Teorema. Si Z 1 ; Z ; :::; Z n son n variables aleatorias independientes e idénticamente distribuidas (i.i.d) como N [0; ], entonces n P n Teorema 3: Distribución de formas cuadráticas de matrices idempotentes en vectores normales estandarizados. Sea X un vector aleatorio de dimensión n tal que X N(0; I n ); A una matriz n n simétrica e idempotente, entonces i=1 Z i X 0 AX J donde J = rg(a) = tr(a) Teorema 4: Independencia de dos formas cuadráticas con matrices idempotentes en un mismo vector normal estandarizado Sea X N(0; I n ) y A y B dos matrices n n idempotentes tales que AB = 0, entonces, las dos formas cuadráticas X 0 AX y X 0 BX son independientes. 5

6 Ejemplo: Sea X N(0; I n ) y A y B dos matrices n n idempotentes de rango n A y n B ; respectivamente. Utilizando el Teorema 3 X 0 AX n A X 0 BX n B Si AB = 0; utilizando el Teorema 4, X 0 AX y X 0 BX son independientes y por tanto (X 0 AX) =n A (X 0 BX) =n B F na ;n B Teorema 5: Independencia de una función lineal y una forma cuadrática idempotente de un vector normal estandarizado Sea X N(0; I n ) y sea L una matriz r n y A una matriz n n idempotente tales que LA = 0; entonces la función lineal LX y la forma cuadrática X 0 AX son independientes. Ejemplo: Sea X N(0; I n ); A una matriz n n idempotente de rango n A y L un vector n 1 tal que L 0 L = 1. Como X N(0; I n ) ) L 0 X N(0; L 0 L) = N(0; 1) y X 0 AX n A : Si L 0 A = 0; utilizando el Teorema 5, L 0 X y X 0 AX son independientes y por tanto L 0 X p (X0 AX) =n A t na Teorema 6: Distribución de formas cuadráticas de matrices de rango completo en vectores normales Sea X un vector n 1, X N [; ] ; entonces (X ) 0 1 (X ) n.5. PROPIEDADES DE LOS ESTIMADORES MCO CON ERRORES NORMALES Bibliografía apartado.5: Greene, 3.10., 6.6.3, A. Gallastegui.: 4.. J.M. Wooldridge, 4.1 Bajo la hipótesis adicional 6 de normalidad de los errores, se puede calcular la distribución exacta de los estimadores ^ y ^ : Nótese que la media y la varianza de ^ MCO se obtuvieron en el tema sin necesidad de imponer la hipótesis adicional 6, aunque obviamente la distribución de ^ sin esta hipótesis adicional es desconocida. Si el modelo satisface las hipótesis básicas 1 a 6: 6

7 b sigue una distribución normal ya que b es una función lineal de u ( b = + (X 0 X) 1 X 0 u). En concreto b N ; (X 0 X) 1 (0.1) k1 k1 kk La distribución marginal de cada elemento del vector b es también normal: b j N j ; (X 0 X) 1 jj para j = 1; :::; k donde b j es el elemento j del vector b ; j es el elemento j del vector y (X 0 X) 1 jj es el elemento (j; j) de la matriz (X 0 X) 1 : Y = X + u N(X; I T ); ya que Y es la suma de un vector no aleatorio X y un vector normal u. ^Y = X b N(X; X(X 0 X) 1 X 0 ); ya que b Y es una transformación lineal de b y b se distribuye como una normal como se ha visto en la expresión (0.1) tración b (T k) (T k) Dado que b = e0 e (T k) ) b (T k) y lo que tenemos que demostrar es que e 0 e (T k) = e0 e Sabemos que e 0 e = u0 Mu u 0 u = M Puesto que u N(0; IT ) y M es una matriz idempotente de rango T k, utilizando el Teorema 3, e 0 e (T k) 7

8 ^ y b son independientes entre sí. tración Nótese que ^ u = (X 0 X) 1 X 0! función lineal del vector normal estandarizado b (T k) u 0 u = M! forma cuadrática con matriz idempotente M u en el vector normal estandarizado u Entonces, puesto que (X 0 X) 1 X 0 M = 0; utilizando el Teorema 5 b (T k) ^ y son independientes () b y ^ son independientes 8

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1 MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Tema 4. El Modelo de Regresión Lineal con Series Temporales.

Tema 4. El Modelo de Regresión Lineal con Series Temporales. Tema 4. El Modelo de Regresión Lineal con Series Temporales. En este tema, estudiaremos en detalle la estimación e inferencia del modelo de regresión con datos de series temporales. Dadas las diferencias

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Vectores Autorregresivos (VAR)

Vectores Autorregresivos (VAR) Vectores Autorregresivos (VAR) 1 Procesos estocasticos multivariados Y t = [Y 1t, Y 2t,, Y Nt ], t = 1, 2,..., T Estamos interesados en el comportamiento temporal de N variables simultaneamente. E(Y t

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7 EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Traza de una Matriz Cuadrada

Traza de una Matriz Cuadrada Traza de una Matriz Cuadrada Departamento de Matemáticas, CSI/ITESM 10 de septiembre de 2008 Índice 7.1. Definiciones y propiedades básicas.................................. 1 7.2. La traza de un producto........................................

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

GUIÓN TEMA 4. VARIABLES BINARIAS 4.1. Variables binarias

GUIÓN TEMA 4. VARIABLES BINARIAS 4.1. Variables binarias ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 2011/12 GUIÓN TEMA 4. VARIABLES BINARIAS 4.1. Variables binarias Bibliografía apartados : Greene, 8.2 A.F.Gallastegui:

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Regresión con autocorrelación Introducción: Consideramos la regresión y t = β 0 + β 1 x 1t + + β k x kt + + β K x Kt + u t = β x t + u t con las hipótesis

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E.

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E. OPTIMIZACIÓN EXPERIMENTAL Ing. José Luis Zamorano E. Introducción n a la metodología de superficies de respuesta EXPERIMENTACIÓN: Significa variar deliberadamente las condiciones habituales de trabajo

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

MATEMÁTICAS 2º DE BACHILLERATO

MATEMÁTICAS 2º DE BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.

Más detalles

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara Descripción: Los temas de estadística propuestos corresponden con los conocimientos mínimos que un

Más detalles

INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez

INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez INFERENCIA ESTADÍSTICA Notas de clase Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez TEMA III ESTIMACIÓN DE PARÁMETROS POR INTERVALOS DE CONFIANZA La estimación puntual es útil pues proporciona

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

TEMARIO EXAMEN DIAGNÓSTICO INICIAL ADMISIÓN MATEMÁTICA

TEMARIO EXAMEN DIAGNÓSTICO INICIAL ADMISIÓN MATEMÁTICA POSTULACIÓN A PRIMER AÑO MEDIO N 1.- Resolver operaciones con números, ecuaciones y potencias. N 2.- Aplicar transformaciones isométricas y teselaciones. N 3.- Evaluar problemas de cálculo de perímetro

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Capitulo 6. Matrices y determinantes

Capitulo 6. Matrices y determinantes Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido.

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

x^new = x^old + K(b new A new x^old )

x^new = x^old + K(b new A new x^old ) El Filtro de Kalman: La idea fundamental del filtro de Kalman es la actualización La llegada de una nueva observación supone un cambio en la mejor estimación mínimo cuatrática del parámetro x Se desea

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Funciones de Regresión No Lineales (SW Cap. 6)

Funciones de Regresión No Lineales (SW Cap. 6) Funciones de Regresión No Lineales (SW Cap. 6) Todo anteriormente ha sido lineal en las X s La aproximación de que la función de regresión es lineal puede ser satisfactoria para algunas variables pero

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Introducción al Algebra Matricial

Introducción al Algebra Matricial Introducción al Algebra Matricial Alvaro G. Parra Versión preliminar y bajo revisión. Marzo 00 Alumno de Magíster en Economía Financiera de la Ponti cia Universidad Católica de Chile. Todos los errores

Más detalles

GRADO EN ECONOMIA SEGUNDO CURSO

GRADO EN ECONOMIA SEGUNDO CURSO GRADO EN ECONOMIA SEGUNDO CURSO Asignatura Estadística II Código 802354 Módulo Métodos cuantitativos Materia Carácter Obligatorio Presenciales 2,7 Créditos 6 No presenciales 3,3 Curso 2 Semestre 3 Estadística

Más detalles

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

PROGRAMA DE CURSO. Resultados de Aprendizaje

PROGRAMA DE CURSO. Resultados de Aprendizaje PROGRAMA DE CURSO Código Nombre MA1102 Algebra Lineal Nombre en Inglés Linear Algebra SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0 5,0 Requisitos MA1101

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El método de mínimos cuadrados Curso de Estadística TAE, 005 J.J. Gómez-Cadenas Mínimos cuadrados y máxima verosimilitud Teorema del límite central Una medida y, puede considerarse como un variable aleatoria,

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

Construcción de bases en la suma y la intersección de subespacios (ejemplo)

Construcción de bases en la suma y la intersección de subespacios (ejemplo) Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores

Más detalles