INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión"

Transcripción

1 INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = F( 1, 568) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = SALARIO Coef. Std. Err. t P> t [95% Conf. Interval] S _cons Esta es una salida de ordenador de un programa econométrico típico.

2 Interpretación de la regresión ^ Salario = S Qué significan los coeficientes? 3 Interpretación de la regresión $11.49 $10.41 Un año $1.07 Qué mide la pendiente? 4

3 Interpretación de la regresión ^ Salario = S Qué significa el término constante? 5 Interpretación de la regresión ^ Salario = S 6

4 Interpretación de la regresión Ajuste cuadrático 7 BONDAD DE AJUSTE Tres resultados relevantes: 8

5 Bondad de ajuste Tres resultados relevantes: 9 Bondad de ajuste Tres resultados relevantes: 10

6 Bondad de ajuste Tres resultados relevantes: Demostrad que es igual a 0 11 Bondad de ajuste Para analizar la bondad del ajuste, descomponemos el valor observado en el valor ajustado y el residuo. 1

7 Bondad de ajuste SCT = SCE + SCR R = SCE SCT =!! ( Y ˆ i ( Y i Y ) Y ) = 1!!( Y i e i Y ) 13 Bondad de ajuste Otro criterio de bondad de ajuste es la correlacion entre el valor observado y ajustado de la variable Y. 14

8 ESTIMADORES DE LOS COEFICIENTES DE REGRESIÓN: VARIABLES ALEATORIAS Los estimadores de los coeficientes de regresión son un tipo particular de variable aleatoria: recordar la definición de un estimador. Para analizarlo, visualizaremos cómo se obtienen los estimadores en el caso de una regresión simple 15 Estimadores de los Coeficientes de Regresión: variables aleatorias Por tanto, hemos descompuesto b en dos componentes: el verdadero valor del parámetro,!, y el término de error. 16

9 Estimadores de los Coeficientes de Regresión: variables aleatorias Construir un modelo donde Y se determina por X, el valor de los parametros y u Elegir los datos, X Elegir parámetros Modelo Generar los valores de Y Elegir una distribución para u Un experimento Monte Carlo es un ejercicio de laboratorio, basado en la utilización de ordenadores, cuyo objetivo es evaluar las propiedades de un estimador en situaciones controladas. 17 Estimadores de los Coeficientes de Regresión: variables aleatorias Construir un modelo donde Y se determina por X, el valor de los parametros y u Elegir los datos, X Elegir parámetros Modelo Generar valores de Y Estimador Estimación Elegir una distribución para u El experimento empieza eligiendo los valores de X, los parámetros y la distribución de la perturbación. A partir de aquí se genera el valor de Y. Una vez que tengo (X,Y), aplica el método de MCO y se obtiene una estimación. Este proceso se repite varias veces. 18

10 Estimadores de los Coeficientes de Regresión: variables aleatorias Construir un modelo donde Y se determina por X, el valor de los parametros y u Y =! 1 +! X + u Elegir los datos, X Elegir parámetros Elegir una distribución para u X = 1,,..., 0! 1 =.0! = 0.5 u es i.i.d. N (0,1) Modelo Generar valores de Y Estimador Y = X + u Generar valores de Y b = Cov(X, Y)/Var(X); Estimación Estimar el valor de los parámetros Se regresará Y sobre X usando MCO y, a partir de los estimadores b 1 y b, se obtendrán estimaciones para los verdaderos valores de! 1 y!. 19 Estimadores de los Coeficientes de Regresión: variables aleatorias Observad lo que es el componente no estocástico. 0

11 Estimadores de los Coeficientes de Regresión: variables aleatorias Y = X + u X.0+0.5X u Y X.0+0.5X u Y A partir de aquí obtenemos el valor de la variable dependiente. 1 Estimadores de los Coeficientes de Regresión: variables aleatorias Observad que gráficamente las observaciones ya no están en la recta determinista.

12 Estimadores de los Coeficientes de Regresión: variables aleatorias De donde obtenemos la recta de regresión. 3 Estimadores de los Coeficientes de Regresión: variables aleatorias Para comparar, podemos graficar la parte no estocástica verdadera, que es la que surge de la definición del modelo.! (tiene como verdadero valor 0.50) y ha sido sobreestimado mientras que! 1 (con un valor verdadero de.00) ha sido subestimada. 4

13 Estimadores de los Coeficientes de Regresión: variables aleatorias El experimento Monte Carlo consiste en repetir el anterior proceso un número elevado de veces, estimar los parámetros y ver cómo se comportan. Vamos a repetirlo. La verdadera recta es la que se observa en el gráfico, que está dada por la definición del experimento. 5 Estimadores de los Coeficientes de Regresión: variables aleatorias A los valores no estocásticos les sumamos un término de perturbación y obtenemos los datos que observamos en la realidad. 6

14 Estimadores de los Coeficientes de Regresión: variables aleatorias Nuevamente, ajustamos por MCO y obtenemos la recta de regresión, que nunca coincidirá con la verdadera. 7 Estimadores de los Coeficientes de Regresión: variables aleatorias replicación b 1 b Esta tabla resume los valores de las estimaciones si repetimos 10 veces el mismo experimento. 8

15 Estimadores de los Coeficientes de Regresión: variables aleatorias 10 replicaciones Observad el histograma para b 9 Estimadores de los Coeficientes de Regresión: variables aleatorias En el caso de 50 replicaciones, estas serían las estimaciones de!. 30

16 Estimadores de los Coeficientes de Regresión: variables aleatorias El histograma ahora sería. 50 replicaciones 31 Estimadores de los Coeficientes de Regresión: variables aleatorias 100 replicaciones La linea roja muestra la distribución límite, la que se obtendría si hiciéramos muchísimas replicaciones del experimento. Observad que la distribución es simétrica en el verdadero valor del parámetro, confirmando que el estimador es insesgado. 3

17 LAS CONDICIONES DE GAUSS-MARKOV Y LA INSESGADEZ DE LOS ESTIMADORES Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov 1. E(u i ) = 0 Suponga E(u i ) = µ u 0. Definimos v = u - µ u, entonces u = v + µ u Entonces Y =! 1 +! X + v + µ u = (! 1 +µ u ) +! X + v donde E(v) = E(u - µ u ) = E(u) - E(µ u ) = 0 Esta condición está relacionada con la perturbación, u. Este supuesto sostiene que el valor esperado de la perturbación es cero, por lo que, en media, no afecta al valor de la variable dependiente: no tiene una tendencia sistemática en ninguna dirección (positiva o negativa). Nótese que el término constante normalmente recoge cualquier tendencia de Y no tomada 33 en cuenta por las variables explicativas. Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov. La varianza poblacional de u i es la misma para todo i La segunda condición es que los valores del término de perturbación en las diferentes observaciones son extraídos de una distribución con varianza constante: Homocedasticidad. 34

18 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov 3. La covarianza poblacional entre u i y u j es igual a 0, i distinto de j La tercera condición sostiene que el valor del término de perturbación para una observación no podrá co-variar con ninguna de las otras observaciones: las u i se distribuyen independientemente: Incorrelación. 35 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov 4. X no estocástico Esta condición final puede verse en dos versiones: la fuerte, que supone que las variables explicativas son no estocásticas. La débil: son aleatorias pero se distribuyen de forma independiente al término de perturbación. Utilizaremos el supuesto fuerte pues facilita el análisis de la propiedad de los estimadores. 36

19 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov 4. X no estocástica Este ejemplo, de muestra estratificada, es un caso de variables no estocásticas. S n , etc Suponga que del censo nacional se sabe que el 1% de la población tiene S = 8, el 3% tiene S = 9, el 5% tiene 10, el 7% S = 11, el 43% S = 1 etc. 37 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Supuesto de Normalidad 5. u tiene una distribución normal. Además de las condiciones de Gauss-Markov, generalmente se supone que la perturbación tiene distribución normal. Este supuesto permite derivar, de forma sencilla, la distribución de los estadísticos. Justificación: Teorema Central del Límite. 38

20 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Insesgadez Por lo tanto, llegamos a que el estimador se descompone en el verdadero valor del parámetro y un término de error que depende de la covarianza entre las variables explicativas y el término de perturbación. 39 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Insesgadez EJERCICIO: Demostrar que E(Cov(X,u))=0. Para ello, utilizar la definición de covarianzas 40

21 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Insesgadez EJERCICIO Demostrar que el estimador b 1 es insesgado con respecto a! ANÁLISIS DE LA PRECISIÓN DE LA REGRESIÓN Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores densidad de b! b Hemos visto que los estimadores b 1 y b son variables aleatorias que generan estimaciones puntuales de! 1 y!. Sabemos, además, que dichos estimadores son insesgados: la media de la densidad del estimador coincide con el verdadero valor del parámetro, como se observa en el gráfico. 4

22 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores densidad de b desviación típica de b! b La desviación típica de un estimador mide la precisión del mismo: lo cerca que estoy del verdadero valor del parámetro, si interpreto la desviación típica como una distancia. Dada esta interpretación, la desviación típica permite realizar contrastes relacionados con 43 posibles valores del verdadero valor del parámetro. Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Varianza poblacional de b = " b 1 1 " = n u ' $ & + X 1 # % Var ( X )" Varianza poblacional de b = " = b " u n Var ( X ) Inversamente con n 44

23 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Varianza poblacional b = " b 1 1 " = n u ' $ & + X 1 # % Var ( X )" Varianza poblacional b = " = b " u n Var ( X ) Proporcional a la varianza de la perturbación 45 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Y Y X X Y = X Observar cómo cambia el ajuste cuando cambia la varianza de las observaciones de la variable dependiente. La gráfica punteada es la verdadera recta de regresión, Y = X. 46

24 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Varianza poblacional de b = " b 1 1 " = n u ' $ & + X 1 # % Var ( X )" Varianza poblacional de b = " = b " u n Var ( X ) Inversamente proporcional a la varianza de X 47 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Y Y X X Y = X 48

25 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores También podemos estimar las desviaciones típicas de los estimadores (las denotamos por s.e., del inglés standard error) 49 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X = u Varianza de los estimadores. reg EARNINGS S Source SS df MS Number of obs = F( 1, 568) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = EARNINGS Coef. Std. Err. t P> t [95% Conf. Interval] S _cons

26 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Eficiencia densidad de b OLS Otros estimadores insesgados! b El teorema de Gauss-Markov establece que si el modelo está bien especificado, los estimadores de MCO son los de menor varianza dentro de todos los estimadores insesgados 51 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Eficiencia Y Y n Y n - Y 1 Y 1 X n - X 1 X 1 X n X 5

27 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X`+ u Eficiencia Investigaremos las propiedades de este estimador EJERCICIO: calcular la media y la varianza de este estimador 53 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Eficiencia Se demuestra que la varianza del estimador MCO es menor que la del estimador alternativo. EJERCICIO: realizar dicha demostración 54

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Errores de especificación

Errores de especificación CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Muestreo e inferencia

Muestreo e inferencia Images created with STATA software. 1 Muestreo e inferencia Calidad de los datos y las mediciones Razones para hablar de muestreo Formación académica de la población Comprender los datos que se van a utilizar

Más detalles

Ejercicio 1(10 puntos)

Ejercicio 1(10 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Intervalos de confianza con STATGRAPHICS

Intervalos de confianza con STATGRAPHICS Intervalos de confianza con STATGRAPHICS Ficheros empleados: TiempoaccesoWeb.sf3 ; TiempoBucle.sf3; 1. Ejemplo 1: Tiempo de acceso a una página Web Se desean construir intervalos de confianza para la media

Más detalles

Coeficiente de Correlación

Coeficiente de Correlación Coeficiente de Correlación Al efectuar un análisis de regresión simple (de dos variables) necesitamos hacer las siguientes suposiciones. Que las dos variables son mensurables Que la relación entre las

Más detalles

Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral

Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral Introducción A partir de 1994, el Registro Federal de Electores ha llevado a cabo diversos ejercicios cuyo objetivo

Más detalles

Estadística para la Economía y la Gestión IN 3401

Estadística para la Economía y la Gestión IN 3401 Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los

Más detalles

Funciones de Regresión No Lineales (SW Cap. 6)

Funciones de Regresión No Lineales (SW Cap. 6) Funciones de Regresión No Lineales (SW Cap. 6) Todo anteriormente ha sido lineal en las X s La aproximación de que la función de regresión es lineal puede ser satisfactoria para algunas variables pero

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Econometría Tutorial 6 Ejercicios de Multicolinealidad

Econometría Tutorial 6 Ejercicios de Multicolinealidad Econometría Tutorial 6 Ejercicios de Multicolinealidad En los siguientes ejercicios vamos a retomar la Curva de Kuznets Ambiental analizada en los primeros dos trabajos prácticos. La relación entre contaminación

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Repaso de estadística básica. Juan D. Barón Santiago de Chile, 8 de abril de 2013

Repaso de estadística básica. Juan D. Barón Santiago de Chile, 8 de abril de 2013 Repaso de estadística básica Juan D. Barón Santiago de Chile, 8 de abril de 2013 1 I. CONCEPTOS ESTADÍSTICOS BÁSICOS 2 Las decisiones se toman bajo incertidumbre Las decisiones se basan en información

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL Msc. Lácides Baleta Octubre 16 Página 1 de 11 REGRESIÓN Y CORRELACIÓN LINEAL Son dos herramientas para investigar la dependencia de una variable dependiente Y

Más detalles

Práctica 3: Regresión simple con R

Práctica 3: Regresión simple con R Estadística II Curso 2010/2011 Licenciatura en Matemáticas Práctica 3: Regresión simple con R 1. El fichero de datos Vamos a trabajar con el fichero salinity que se encuentra en el paquete boot. Para cargar

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

TEMA 2: Propiedades de los estimadores MCO

TEMA 2: Propiedades de los estimadores MCO TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

Ejercicio Heterocedasticidad_2

Ejercicio Heterocedasticidad_2 Ejercicio heterocedasticidad 2. 1 Ejercicio Heterocedasticidad_2 Tengamos los siguientes datos de los beneficios (B i ) y ventas (V i ) de 20 empresas: obs B V 1 13,2 61 2 15 78 3 22,2 158 4 15,2 110 5

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011

Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011 Econometría I Examen Final 1 Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011 Este examen consta de un total de 50 puntos.

Más detalles

GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE.

GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE. ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA. PROPIEDADES DE LOS ESTIMADORES MCO Bibliografía apartados.1,. y.3: Greene, 6.6.1, 6.6.3

Más detalles

Examen de Introducción a la Econometría 8 de septiembre de 2008

Examen de Introducción a la Econometría 8 de septiembre de 2008 NOMBRE DNI: GRUPO Firma: MODELO 1: SOLUCIONES Examen de Introducción a la Econometría 8 de septiembre de 008 Sólo una respuesta es válida. Debe justificar la respuesta de cada pregunta en el espacio que

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Econometría III Examen. 29 de Marzo de 2012

Econometría III Examen. 29 de Marzo de 2012 Econometría III Examen. 29 de Marzo de 2012 El examen consta de 20 preguntas de respuesta múltiple. El tiempo máximo es 1:10 minutos. nota: no se pueden hacer preguntas durante el examen a no ser que sean

Más detalles

10 Modelo de regresión lineal

10 Modelo de regresión lineal 0 Modelo de regresión lineal La relación matemática determinística más simple entre dos variables x e y, es una relación lineal y = 0 + x. El conjunto de pares (x; y) que veri can esta relación, determinan

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez. MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción

Más detalles

El Movimiento Browniano en la modelización del par EUR/USD

El Movimiento Browniano en la modelización del par EUR/USD MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

CUERPO TÉCNICO, OPCION ESTADISTICA

CUERPO TÉCNICO, OPCION ESTADISTICA CUERPO TÉCNICO, OPCION ESTADISTICA ESTADÍSTICA TEÓRICA BÁSICA TEMA 1. Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de probabilidad. Sucesos independientes. Teorema de Bayes. TEMA

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Efecto de la cercanía a las estaciones de Subte y valor de la propiedad residencial en Buenos Aires

Efecto de la cercanía a las estaciones de Subte y valor de la propiedad residencial en Buenos Aires > Año 10 / Número 101 / Marzo 2011 Economía de las ciudades Efecto de la cercanía a las estaciones de Subte y valor de la propiedad residencial en Buenos Aires Un estudio según el modelo de valuación hedónico

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

TEMA 3: PROPIEDADES DEL ESTIMADOR MCO

TEMA 3: PROPIEDADES DEL ESTIMADOR MCO TEMA 3: PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

... *Elasticidad ingreso del gasto en electricidad (Modelo Restringido). reg lviv ling

... *Elasticidad ingreso del gasto en electricidad (Modelo Restringido). reg lviv ling ---- ---------------------------------------- log: C:\datos\docencia\econIccee\practicas2009\chowlog log type: text opened on: 17 Sep 2009, 17:58:52 use "$ruta\chowdta", clear * crear variable logaritmo

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado

Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado Tribunal de la Oposición al Cuerpo Superior de Estadísticos del Estado Pruebas selectivas para el ingreso en el Cuerpo Superior de Estadísticos del Estado. Orden ECC/1517/2015, de 16 de Julio (BOE 27/07/2015).

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

Gráfico 1: Evolución del exceso de rentabilidad de la empresa y de la cartera de mercado

Gráfico 1: Evolución del exceso de rentabilidad de la empresa y de la cartera de mercado Caso 1: Solución Apartado a) - 2 0 2 4 6 0 2 0 4 0 6 0 8 0 1 0 0 p e r i o d E x c e s s r e t u r n, c o m p a n y a e x c e s s r e t u r n m a r k e t p o r t f o l i o Gráfico 1: Evolución del exceso

Más detalles

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA 1 CLASES DE ESTADÍSTICA II CLASE ) ESPERANZA ABSOLUTA. ESPERANZA CONDICIONAL. ESPERANZA ABSOLUTA El cálculo de valores esperados o esperanzas a nivel de dos variables aleatorias es una generalización matemática

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

Introducción a la Inferencia Estadística

Introducción a la Inferencia Estadística MÁSTER EN ESTADÍSTICA PÚBLICA Experto Universitario: Estadística Aplicada y Técnicas de Encuestación 1 Introducción a la Inferencia Estadística Estimación puntual paramétrica M a Teresa Gómez Departamento

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Sesgo y varianza del estimador de la razón. con el problema de presición vs. sesgo que ya discutimos. t y. ˆt x

Sesgo y varianza del estimador de la razón. con el problema de presición vs. sesgo que ya discutimos. t y. ˆt x Sesgo y varianza del estimador de la razón A diferencia de los estimadores lineales vistos en las clases anteriores, los estimadores de la razón son usualmente sesgados. La varianza, comunmente más reducida,

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

Universidad de la República, Facultad de Ciencias Económicas y Administración.

Universidad de la República, Facultad de Ciencias Económicas y Administración. Universidad de la República, Facultad de Ciencias Económicas y Administración. ECONOMETRIA II- CURSO 2010 Practica 5 MODELOS DE VARIABLE DEPENDIENTE TRUNCADA CENSURADA, MODELOS DE SELECTIVIDAD, MODELOS

Más detalles

Tema 6. Estimación puntual

Tema 6. Estimación puntual Tema 6. Estimación puntual Contenidos Planteamiento del problema Criterios de comparación de estimadores: Insesgadez Estimadores de mínima varianza Error cuadrático medio Consistencia Métodos para obtener

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Tema 3.2: Modelo lineal general: inferencia y predicción. Universidad Complutense de Madrid 2013

Tema 3.2: Modelo lineal general: inferencia y predicción. Universidad Complutense de Madrid 2013 Tema 3.2: Modelo lineal general: inferencia y predicción Universidad Complutense de Madrid 2013 Contraste de hipótesis paramétricas en el MLG (I) Necesitamos añadir a la lista de hipótesis del MLG, la

Más detalles

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA PROGRAMA DE ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS DE ESTADÍSTICA Definición de Estadística Origen del concepto. Evolución histórica de la Estadística Estadística Descriptiva y Estadística Inferencial

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. Los modelos de regresión sirven, en general, para tratar de expresar una variable respuesta (numérica) en

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT es Docentes PROGRAMA DE CURSO Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural.

Aplicaciones de apoyo al diagnóstico médico. Identificación de objetos amigos y enemigos. Identificación de zonas afectadas por un desastre natural. Capítulo 5 Evaluación En muchas ocasiones requerimos hacer una evaluación muy precisa de nuestros algoritmos de aprendizaje computacional porque los vamos a utilizar en algún tipo de aplicación que así

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 romero@econ.unicen.edu.ar Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

PRUEBA DE FALTA DE AJUSTE (Lack-of-fit Test) Fortino Vela Peón fvela@correo.xoc.uam.mx

PRUEBA DE FALTA DE AJUSTE (Lack-of-fit Test) Fortino Vela Peón fvela@correo.xoc.uam.mx PRUEBA DE FALTA DE AJUSTE (Lack-of-fit Test) Fortino Vela Peón fvela@correo.xoc.uam.mx Octubre, 2011 Introducción Un supuesto básico del modelo es la existencia de una relación lineal entre la variable

Más detalles