INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión"

Transcripción

1 INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = F( 1, 568) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = SALARIO Coef. Std. Err. t P> t [95% Conf. Interval] S _cons Esta es una salida de ordenador de un programa econométrico típico.

2 Interpretación de la regresión ^ Salario = S Qué significan los coeficientes? 3 Interpretación de la regresión $11.49 $10.41 Un año $1.07 Qué mide la pendiente? 4

3 Interpretación de la regresión ^ Salario = S Qué significa el término constante? 5 Interpretación de la regresión ^ Salario = S 6

4 Interpretación de la regresión Ajuste cuadrático 7 BONDAD DE AJUSTE Tres resultados relevantes: 8

5 Bondad de ajuste Tres resultados relevantes: 9 Bondad de ajuste Tres resultados relevantes: 10

6 Bondad de ajuste Tres resultados relevantes: Demostrad que es igual a 0 11 Bondad de ajuste Para analizar la bondad del ajuste, descomponemos el valor observado en el valor ajustado y el residuo. 1

7 Bondad de ajuste SCT = SCE + SCR R = SCE SCT =!! ( Y ˆ i ( Y i Y ) Y ) = 1!!( Y i e i Y ) 13 Bondad de ajuste Otro criterio de bondad de ajuste es la correlacion entre el valor observado y ajustado de la variable Y. 14

8 ESTIMADORES DE LOS COEFICIENTES DE REGRESIÓN: VARIABLES ALEATORIAS Los estimadores de los coeficientes de regresión son un tipo particular de variable aleatoria: recordar la definición de un estimador. Para analizarlo, visualizaremos cómo se obtienen los estimadores en el caso de una regresión simple 15 Estimadores de los Coeficientes de Regresión: variables aleatorias Por tanto, hemos descompuesto b en dos componentes: el verdadero valor del parámetro,!, y el término de error. 16

9 Estimadores de los Coeficientes de Regresión: variables aleatorias Construir un modelo donde Y se determina por X, el valor de los parametros y u Elegir los datos, X Elegir parámetros Modelo Generar los valores de Y Elegir una distribución para u Un experimento Monte Carlo es un ejercicio de laboratorio, basado en la utilización de ordenadores, cuyo objetivo es evaluar las propiedades de un estimador en situaciones controladas. 17 Estimadores de los Coeficientes de Regresión: variables aleatorias Construir un modelo donde Y se determina por X, el valor de los parametros y u Elegir los datos, X Elegir parámetros Modelo Generar valores de Y Estimador Estimación Elegir una distribución para u El experimento empieza eligiendo los valores de X, los parámetros y la distribución de la perturbación. A partir de aquí se genera el valor de Y. Una vez que tengo (X,Y), aplica el método de MCO y se obtiene una estimación. Este proceso se repite varias veces. 18

10 Estimadores de los Coeficientes de Regresión: variables aleatorias Construir un modelo donde Y se determina por X, el valor de los parametros y u Y =! 1 +! X + u Elegir los datos, X Elegir parámetros Elegir una distribución para u X = 1,,..., 0! 1 =.0! = 0.5 u es i.i.d. N (0,1) Modelo Generar valores de Y Estimador Y = X + u Generar valores de Y b = Cov(X, Y)/Var(X); Estimación Estimar el valor de los parámetros Se regresará Y sobre X usando MCO y, a partir de los estimadores b 1 y b, se obtendrán estimaciones para los verdaderos valores de! 1 y!. 19 Estimadores de los Coeficientes de Regresión: variables aleatorias Observad lo que es el componente no estocástico. 0

11 Estimadores de los Coeficientes de Regresión: variables aleatorias Y = X + u X.0+0.5X u Y X.0+0.5X u Y A partir de aquí obtenemos el valor de la variable dependiente. 1 Estimadores de los Coeficientes de Regresión: variables aleatorias Observad que gráficamente las observaciones ya no están en la recta determinista.

12 Estimadores de los Coeficientes de Regresión: variables aleatorias De donde obtenemos la recta de regresión. 3 Estimadores de los Coeficientes de Regresión: variables aleatorias Para comparar, podemos graficar la parte no estocástica verdadera, que es la que surge de la definición del modelo.! (tiene como verdadero valor 0.50) y ha sido sobreestimado mientras que! 1 (con un valor verdadero de.00) ha sido subestimada. 4

13 Estimadores de los Coeficientes de Regresión: variables aleatorias El experimento Monte Carlo consiste en repetir el anterior proceso un número elevado de veces, estimar los parámetros y ver cómo se comportan. Vamos a repetirlo. La verdadera recta es la que se observa en el gráfico, que está dada por la definición del experimento. 5 Estimadores de los Coeficientes de Regresión: variables aleatorias A los valores no estocásticos les sumamos un término de perturbación y obtenemos los datos que observamos en la realidad. 6

14 Estimadores de los Coeficientes de Regresión: variables aleatorias Nuevamente, ajustamos por MCO y obtenemos la recta de regresión, que nunca coincidirá con la verdadera. 7 Estimadores de los Coeficientes de Regresión: variables aleatorias replicación b 1 b Esta tabla resume los valores de las estimaciones si repetimos 10 veces el mismo experimento. 8

15 Estimadores de los Coeficientes de Regresión: variables aleatorias 10 replicaciones Observad el histograma para b 9 Estimadores de los Coeficientes de Regresión: variables aleatorias En el caso de 50 replicaciones, estas serían las estimaciones de!. 30

16 Estimadores de los Coeficientes de Regresión: variables aleatorias El histograma ahora sería. 50 replicaciones 31 Estimadores de los Coeficientes de Regresión: variables aleatorias 100 replicaciones La linea roja muestra la distribución límite, la que se obtendría si hiciéramos muchísimas replicaciones del experimento. Observad que la distribución es simétrica en el verdadero valor del parámetro, confirmando que el estimador es insesgado. 3

17 LAS CONDICIONES DE GAUSS-MARKOV Y LA INSESGADEZ DE LOS ESTIMADORES Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov 1. E(u i ) = 0 Suponga E(u i ) = µ u 0. Definimos v = u - µ u, entonces u = v + µ u Entonces Y =! 1 +! X + v + µ u = (! 1 +µ u ) +! X + v donde E(v) = E(u - µ u ) = E(u) - E(µ u ) = 0 Esta condición está relacionada con la perturbación, u. Este supuesto sostiene que el valor esperado de la perturbación es cero, por lo que, en media, no afecta al valor de la variable dependiente: no tiene una tendencia sistemática en ninguna dirección (positiva o negativa). Nótese que el término constante normalmente recoge cualquier tendencia de Y no tomada 33 en cuenta por las variables explicativas. Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov. La varianza poblacional de u i es la misma para todo i La segunda condición es que los valores del término de perturbación en las diferentes observaciones son extraídos de una distribución con varianza constante: Homocedasticidad. 34

18 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov 3. La covarianza poblacional entre u i y u j es igual a 0, i distinto de j La tercera condición sostiene que el valor del término de perturbación para una observación no podrá co-variar con ninguna de las otras observaciones: las u i se distribuyen independientemente: Incorrelación. 35 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov 4. X no estocástico Esta condición final puede verse en dos versiones: la fuerte, que supone que las variables explicativas son no estocásticas. La débil: son aleatorias pero se distribuyen de forma independiente al término de perturbación. Utilizaremos el supuesto fuerte pues facilita el análisis de la propiedad de los estimadores. 36

19 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Condiciones de Gauss-Markov 4. X no estocástica Este ejemplo, de muestra estratificada, es un caso de variables no estocásticas. S n , etc Suponga que del censo nacional se sabe que el 1% de la población tiene S = 8, el 3% tiene S = 9, el 5% tiene 10, el 7% S = 11, el 43% S = 1 etc. 37 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Supuesto de Normalidad 5. u tiene una distribución normal. Además de las condiciones de Gauss-Markov, generalmente se supone que la perturbación tiene distribución normal. Este supuesto permite derivar, de forma sencilla, la distribución de los estadísticos. Justificación: Teorema Central del Límite. 38

20 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Insesgadez Por lo tanto, llegamos a que el estimador se descompone en el verdadero valor del parámetro y un término de error que depende de la covarianza entre las variables explicativas y el término de perturbación. 39 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Insesgadez EJERCICIO: Demostrar que E(Cov(X,u))=0. Para ello, utilizar la definición de covarianzas 40

21 Las condiciones de Gauss-Markov y la insesgadez de los estimadores Regresión simple: Y =! 1 +! X + u Insesgadez EJERCICIO Demostrar que el estimador b 1 es insesgado con respecto a! ANÁLISIS DE LA PRECISIÓN DE LA REGRESIÓN Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores densidad de b! b Hemos visto que los estimadores b 1 y b son variables aleatorias que generan estimaciones puntuales de! 1 y!. Sabemos, además, que dichos estimadores son insesgados: la media de la densidad del estimador coincide con el verdadero valor del parámetro, como se observa en el gráfico. 4

22 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores densidad de b desviación típica de b! b La desviación típica de un estimador mide la precisión del mismo: lo cerca que estoy del verdadero valor del parámetro, si interpreto la desviación típica como una distancia. Dada esta interpretación, la desviación típica permite realizar contrastes relacionados con 43 posibles valores del verdadero valor del parámetro. Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Varianza poblacional de b = " b 1 1 " = n u ' $ & + X 1 # % Var ( X )" Varianza poblacional de b = " = b " u n Var ( X ) Inversamente con n 44

23 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Varianza poblacional b = " b 1 1 " = n u ' $ & + X 1 # % Var ( X )" Varianza poblacional b = " = b " u n Var ( X ) Proporcional a la varianza de la perturbación 45 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Y Y X X Y = X Observar cómo cambia el ajuste cuando cambia la varianza de las observaciones de la variable dependiente. La gráfica punteada es la verdadera recta de regresión, Y = X. 46

24 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Varianza poblacional de b = " b 1 1 " = n u ' $ & + X 1 # % Var ( X )" Varianza poblacional de b = " = b " u n Var ( X ) Inversamente proporcional a la varianza de X 47 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores Y Y X X Y = X 48

25 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Varianza de los estimadores También podemos estimar las desviaciones típicas de los estimadores (las denotamos por s.e., del inglés standard error) 49 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X = u Varianza de los estimadores. reg EARNINGS S Source SS df MS Number of obs = F( 1, 568) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = EARNINGS Coef. Std. Err. t P> t [95% Conf. Interval] S _cons

26 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Eficiencia densidad de b OLS Otros estimadores insesgados! b El teorema de Gauss-Markov establece que si el modelo está bien especificado, los estimadores de MCO son los de menor varianza dentro de todos los estimadores insesgados 51 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Eficiencia Y Y n Y n - Y 1 Y 1 X n - X 1 X 1 X n X 5

27 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X`+ u Eficiencia Investigaremos las propiedades de este estimador EJERCICIO: calcular la media y la varianza de este estimador 53 Análisis de la precisión de la regresión Modelo de regresión simple: Y =! 1 +! X + u Eficiencia Se demuestra que la varianza del estimador MCO es menor que la del estimador alternativo. EJERCICIO: realizar dicha demostración 54

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Muestreo e inferencia

Muestreo e inferencia Images created with STATA software. 1 Muestreo e inferencia Calidad de los datos y las mediciones Razones para hablar de muestreo Formación académica de la población Comprender los datos que se van a utilizar

Más detalles

Ejercicio 1(10 puntos)

Ejercicio 1(10 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral

Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral Análisis de Tendencias de los indicadores en las Encuestas de Verificación Nacional Muestral Introducción A partir de 1994, el Registro Federal de Electores ha llevado a cabo diversos ejercicios cuyo objetivo

Más detalles

Funciones de Regresión No Lineales (SW Cap. 6)

Funciones de Regresión No Lineales (SW Cap. 6) Funciones de Regresión No Lineales (SW Cap. 6) Todo anteriormente ha sido lineal en las X s La aproximación de que la función de regresión es lineal puede ser satisfactoria para algunas variables pero

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Econometría Tutorial 6 Ejercicios de Multicolinealidad

Econometría Tutorial 6 Ejercicios de Multicolinealidad Econometría Tutorial 6 Ejercicios de Multicolinealidad En los siguientes ejercicios vamos a retomar la Curva de Kuznets Ambiental analizada en los primeros dos trabajos prácticos. La relación entre contaminación

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011

Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011 Econometría I Examen Final 1 Universitat Pompeu Fabra Licenciatura de ADE y Economía Econometría I / 10143) Profesor: Javier Coronado Examen Final Diciembre 2011 Este examen consta de un total de 50 puntos.

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010

MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010 IES ATENEA San Sebastián de los Rees MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I Eamen de la tercera evaluación Nombre apellidos Fecha: 0 de junio de 00.- (, 5 puntos) En seis modelos de zapatillas deportivas

Más detalles

... *Elasticidad ingreso del gasto en electricidad (Modelo Restringido). reg lviv ling

... *Elasticidad ingreso del gasto en electricidad (Modelo Restringido). reg lviv ling ---- ---------------------------------------- log: C:\datos\docencia\econIccee\practicas2009\chowlog log type: text opened on: 17 Sep 2009, 17:58:52 use "$ruta\chowdta", clear * crear variable logaritmo

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

Curva de Lorenz e Indice de Gini Curva de Lorenz

Curva de Lorenz e Indice de Gini Curva de Lorenz Curva de Lorenz e Indice de Gini Curva de Lorenz La curva de Lorenz es útil para demostrar la diferencia entre dos distribuciones: por ejemplo quantiles de población contra quantiles de ingresos. También

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

PRUEBA DE FALTA DE AJUSTE (Lack-of-fit Test) Fortino Vela Peón fvela@correo.xoc.uam.mx

PRUEBA DE FALTA DE AJUSTE (Lack-of-fit Test) Fortino Vela Peón fvela@correo.xoc.uam.mx PRUEBA DE FALTA DE AJUSTE (Lack-of-fit Test) Fortino Vela Peón fvela@correo.xoc.uam.mx Octubre, 2011 Introducción Un supuesto básico del modelo es la existencia de una relación lineal entre la variable

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

1. Caso no lineal: ajuste de una función potencial

1. Caso no lineal: ajuste de una función potencial 1. Caso no lineal: ajuste de una función potencial La presión (P) y el volumen (V ) en un tipo de gas están ligados por una ecuación del tipo PV b = a, siendo a y b dos parámetros desconocidos. A partir

Más detalles

Análisis de Regresión Múltiple: Estimación

Análisis de Regresión Múltiple: Estimación Análisis de Regresión Múltiple: Estimación Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso

Más detalles

Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo

Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo Favor de abrir el navegador Mozilla Firefox y escriba la siguiente dirección http://math.uprag.edu/area.mtw

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

ESTADÍSTICA Y PROBABILIDAD

ESTADÍSTICA Y PROBABILIDAD V ESTADÍSTICA Y PROBABILIDAD Página 9 Observa estas dos distribuciones bidimensionales: I II Asigna a cada una un coeficiente de correlación tomándolo de entre los siguientes valores: 0,; 0,; 0,; 0,; 0,92;

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

1. Cómo introducir datos en SPSS/PC? - Recordatorio

1. Cómo introducir datos en SPSS/PC? - Recordatorio 1 Taller de Estadística Curso 2oo5/2oo6 Descripción de datos bivariantes El objetivo de esta práctica es familiarizarse con las técnicas de descripción de datos bidimensionales y con algunas de las opciones

Más detalles

Universidad de la República, Facultad de Ciencias Económicas y Administración.

Universidad de la República, Facultad de Ciencias Económicas y Administración. Universidad de la República, Facultad de Ciencias Económicas y Administración. ECONOMETRIA II- CURSO 2010 Practica 5 MODELOS DE VARIABLE DEPENDIENTE TRUNCADA CENSURADA, MODELOS DE SELECTIVIDAD, MODELOS

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

ANEXOS. 1) Modelo Probit.

ANEXOS. 1) Modelo Probit. ANEXOS 1) Modelo Probit. Estos modelos pertenecen a los modelos de respuesta binaria 1, es decir, la variable dependiente es una variable dicotómica, donde toma 1 para indicar el éxito en la variable de

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

MÓDULO 1: GESTIÓN DE CARTERAS

MÓDULO 1: GESTIÓN DE CARTERAS MÓDULO 1: GESTIÓN DE CARTERAS TEST DE EVALUACIÓN 1 Una vez realizado el test de evaluación, cumplimenta la plantilla y envíala, por favor, antes del plazo fijado. En todas las preguntas sólo hay una respuesta

Más detalles

Exactitud y Linearidad del Calibrador

Exactitud y Linearidad del Calibrador Exactitud y Linearidad del Calibrador Resumen El procedimiento Exactitud y Linearidad del Calibrador fue diseñado para estimar la exactitud del sistema de medición. En contraste con los procedimientos

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

Análisis de regresión lineal simple

Análisis de regresión lineal simple Análisis de regresión lineal simple El propósito de un análisis de regresión es la predicción Su objetivo es desarrollar un modelo estadístico que se pueda usar para predecir los valores de una variable

Más detalles

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Página de CAPÍTULO (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Relaciones entre dos variables cuantitativas A menudo nos va a interesar describir la relación o asociación entre dos variables. Como

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): 0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta

Más detalles

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo.

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. Mediante el modelo de Hertz o Simulación de Montecarlo, trataremos

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Tema 3. Relación entre dos variables cuantitativas

Tema 3. Relación entre dos variables cuantitativas Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

APUNTES DE QUIMIOMETRIA REGRESIO LINEAL

APUNTES DE QUIMIOMETRIA REGRESIO LINEAL REGRESIO LINEAL APUNTES DE QUIMIOMETRIA Datos anómalos y levas en las rectas de calibrado. Regresión robusta Mínima mediana de cuadrados Recta de calibrado mediante mínimos cuadrados. Hipótesis básicas

Más detalles

LAB 13 - Análisis de Covarianza - CLAVE

LAB 13 - Análisis de Covarianza - CLAVE LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidades y stadística Computación Facultad de Ciencias actas y Naturales Universidad de uenos ires na M ianco y lena J Martínez 004 Variables aleatorias continuas jemplo: Con el in de realizar un

Más detalles

CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE EVALUABLES

CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE EVALUABLES Matemáticas hasta 6º de Primaria CONTENIDOS Bloque 5. Estadística y probabilidad CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE EVALUABLES Gráficos y parámetros estadísticos. Recogida y clasificación

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Práctica 3: Distribuciones de Probabilidad Binomial, Poisson y Normal

Práctica 3: Distribuciones de Probabilidad Binomial, Poisson y Normal Práctica 3: Distribuciones de Probabilidad Binomial, Poisson y Normal Ejercicio 1: Todos los días se seleccionan de manera aleatoria 12 unidades de un proceso de manufactura, con el propósito de verificar

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo José María Cara Carmona Adrián López Ibáñez MODELO ECONOMÉTRICO Explicación del desempleo Desarrollaremos un modelo econométrico para intentar predecir el desempleo. Trataremos los diversos problemas que

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD

Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Práctica 5.Métodos descriptivos para determinar la normalidad 1 Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Objetivos: En esta práctica utilizaremos el paquete SPSS para determinar si

Más detalles

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en

Más detalles