TEMA 2: Propiedades de los estimadores MCO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2: Propiedades de los estimadores MCO"

Transcripción

1 TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

2 Propiedades estadísticas de ˆβ 1 Es un estimador lineal. ˆβ es una función lineal de Y al ser X una matriz de constantes (dado el Supuesto 1): ˆβ = (X 0 X) 1 X 0 Y = WY 2 Bajo las hipótesis básicas 1 a 4, ˆβ es un estimador insesgado de β, es decir, E ˆβ = β ya que y por tanto bβ = (X 0 X) 1 X 0 Y = β + (X 0 X) 1 X 0 u h i E b β = β + (X 0 X) 1 X 0 E [u] = β puesto que E[u]=0 Nótese que el estimador MCO es insesgado con independencia de que se verifique o no el supuesto 5. 3 Bajo las hipótesis básicas del MRL, Var ˆβ = σ 2 (X 0 X) 1 ya que: Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

3 h i Var b β hb h h h ii 0 hb h i 0 = E β E b βii b β E b β = E β βi b β β h i h i 0 = E (X 0 X) 1 X 0 u (X 0 X) 1 X 0 u = = (X 0 X) 1 X 0 E(uu 0 )X(X 0 X) 1 = = σ 2 X 0 X 1 Ya que E(uu 0 )=σ 2 I T Teorema de Gauss-Markov: Bajo las hipótesis básicas del MRL, el estimador MCO de β es óptimo entre la familia de estimadores lineales e insesgados. Es decir, no es posible encontrar otro estimador de β que siendo lineal e insesgado tenga una varianza menor que el estimador MCO. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

4 Estimación de σ 2 y propiedades estadísticas de ˆσ 2 1. El vector de residuos MCO es e = Y Ŷ = Y X ˆβ. Puede interpretarse como la estimación del vector de errores u. 2. El vector de residuos MCO es una transformación lineal de u: e = h Y X ˆβ = Y X (X 0 X) 1 X 0 Y = I X (X 0 X) 1 X 0i Y = MY = Mu h puesto que M es una matriz M = I X (X 0 X) 1 X 0i que cumple las siguientes propiedades: 1 M es una matriz h singular: jmj = det(m) = 0 puesto que Rg (M) = Tr (M) = Tr I T X (X 0 X) 1 X 0i h = Tr (I T ) Tr X (X 0 X) 1 X 0i = h i Tr (I T ) Tr (X 0 X) 1 X 0 X = Tr (I T ) Tr (I k ) = T k < T 2 M es una matriz simétrica: M = M 0 3 M es una matriz idempotente: M = M M 4 M es ortogonal h a X: MX = I X (X 0 X) 1 X 0i X = X X (X 0 X) 1 X 0 X = X X = 0 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

5 3. E (e) = 0 puesto que 4. Var (e) = σ 2 M puesto que E[e] = E[Mu] = ME[u] = 0 ya que E[u]=0 Var (e) = Var(Mu) = MVar(u)M 0 = Mσ 2 IM 0 = σ 2 MM 0 = σ 2 M 5. Estimador de σ 2 : La varianza de los errores, σ 2, es un valor poblacional junto a β. Es necesario estimarlo para contrastar hipótesis acerca de β o establecer intervalos de confianza. Intuición: σ 2 = E(u 2 t ) ) σ 2 = 1 T T u 2 t t=1 ˇσ 2 = 1 T T e 2 t = 1 T e0 e t=1 + (para que sea insesgado) ˆσ 2 = 1 T K T t=1 e2 t = 1 T K e0 e Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

6 6. ˆσ 2 = 1 T T e 2 t = e0 e T k (T k son los grados de libertad) es un k t=1 estimador insesgado de σ 2 puesto que E ˆσ 2 e = 0 e E T k 7. Otra expresión de e 0 e : = 1 T k E e0 e = σ2 (T k) = σ 2 T k e 0 e = Y X ˆβ 0 Y X ˆβ = Y 0 Y ˆβ 0 X 0 Y Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

7 Matriz de varianzas estimada de ˆβ y errores estándar Hemos visto que bajo las hipótesis 1 a 5 h i Var b β = σ 2 X 0 X 1 esta matriz es desconocida ya que σ 2 es desconocido. Para saber la fiabilidad de bβ y poder hacer inferencia es importante disponer de un estimador de su varianza. Se define la matriz de varianzas estimada de bβ como \ h i Var b β = bσ 2 X 0 X 1 En el tema 3 veremos cómo contrastar hipótesis sobre el vector de parámetros β utilizando bβ y Var \ h i b β. Nótese que si no se verifica la h i hipótesis 5, Var b β 6= σ 2 (X 0 X) 1 y por tanto bσ 2 (X 0 X) 1 no sería un estimador apropiado de la varianza de bβ. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

8 Se definen los errores estándar como las raices cuadradas de los elementos de la diagonal principal de la matriz Var \ h i b β. Es decir SE(bβ j ) = q bσ 2 (X 0 X) 1 jj j = 1,.., k donde bβ j es el elemento j del vector bβ y (X 0 X) 1 jj es el elemento (j, j) de la matrix (X 0 X) 1. SE(bβ j ) es un estimador de la desviación típica de bβ j. Nota: Si cambiamos las unidades de medida de alguna o algunas de las variables explicativas y/o de la variable dependiente cada uno de los errores estándar variará en la misma proporción que el valor estimado del parámetro correspondiente. Por ejemplo: \ Var h b β 2 SE b β 2 bβ 2 = cbβ 2 i = c 2 \ h i Var b β 2 + = cse b β 2 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

9 Distribución de formas cuadráticas asociadas a la distribución normal Propiedad de la distribución normal multivariante Si X es un vector n 1, X N [µ, Σ], A es una matriz r n (r n) no aleatoria y b es un vector r 1 no aleatorio, entonces: (i) AX + b N [Aµ + b, AΣA 0 ] (ii) En particular Σ 1/2 (X µ) N [0, I n ] Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

10 Definición 1: Chi-cuadrado con 1 grado de libertad Si Z N(0, 1), entonces Z 2 χ 2 1. Nota: E Z 2 = 1, Var Z 2 = 2 Definición 2: Chi-cuadrado con n grados de libertad Si Z 1, Z 2,..., Z n son n variables aleatorias independientes e idénticamente distribuidas (iid) como N [0, 1], entonces n i=1 Z 2 i χ 2 n. Definición 3: t de Student con n grados de libertad Si Z y X son variables aleatorias independientes, Z N [0, 1] y X χ 2 n, entonces Z q t n X n Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

11 Definición 4: F de Snedecor con n y m grados de libertad Si X 1 y X 2 son variables aleatorias independientes X 1 χ 2 n y X 2 χ 2 m entonces X 1 n X 2 m F n,m Teorema 1: Suma de chi-cuadrados Sean X 1 y X 2 dos variables aleatorias independientes con distribución X 1 χ 2 n 1 y X 2 χ 2 n 2, entonces X 1 + X 2 χ 2 n 1 +n 2 Teorema 2: Si Z 1, Z 2,..., Z n son n variables aleatorias independientes e idénticamente distribuidas (iid) como N 0, σ 2, entonces 2 Zi σ χ 2 n. n i=1 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

12 Teorema 3: Distribución de formas cuadráticas de matrices idempotentes en vectores normales estandarizados. Sea X N(0, I n ) de dimensión (n 1), A una matriz simétrica e idempotente de dimensión (n n), entonces X 0 AX χ 2 J donde J=rg(A) = tr(a) Teorema 4: Independencia de dos formas cuadráticas con matrices idempotentes en un mismo vector normal estandarizado. Sea X N(0, I n ) y A y B dos matrices idempotentes de dimensión (n n) tales que AB = 0, entonces las dos formas cuadráticas X 0 AX y X 0 BX son independientes. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

13 EJEMPLO: Sea X N(0, I n ) y A y B dos matrices n n idempotentes de rango n A y n B, respectivamente. Utilizando el Teorema 3 X 0 AX χ 2 n A X 0 BX χ 2 n B Si AB = 0, utilizando el Teorema 4, X 0 AX y X 0 BX son independientes y por tanto (X 0 AX) /n A (X 0 BX) /n B F na,n B Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

14 Teorema 5: Independencia de una forma lineal y una forma cuadrática idempotente de un vector normal estandarizado. Sea X N(0, I n ) y sea L una matriz r n y A una matriz n n idempotente tales que LA = 0, entonces la función lineal LX y la forma cuadrática X 0 AX son independientes. EJEMPLO: Sea X N(0, I n ), A una matriz n n idempotente de rango n A y L un vector n 1 tal que L 0 L = 1. Como X N(0, I n ) ) L 0 X N(0, L 0 L) = N(0, 1) y X 0 AX χ 2 n A. Si L 0 A = 0, utilizando el Teorema 5, L 0 X y X 0 AX son independientes y por tanto L 0 X p (X 0 AX) /n A t na Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

15 Teorema 6: Distribución de formas cuadráticas de matrices de rango completo en vectores normales. Sea X un vector n 1, X N [µ, Σ], entonces: (i) Σ 1/2 (X µ) N [0, I n ] (ii) (X µ) 0 Σ 1 (X µ) χ 2 n Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

16 Propiedades de los estimadores MCO con errores normales Con la hipótesis adicional de normalidad de los errores, se puede calcular la distribución exacta de ˆβ y bσ 2. Nótese que la media y la varianza de ˆβ se obtuvieron previamente sin necesidad de imponer esta hipótesis aunque obviamente la distribución, sin hacer este supuesto, es desconocida. Si u N(0, σ 2 I T ) y dado que bβ = β + (X 0 X) 1 X 0 u, entonces bβ N( β, σ 2 (X 0 X) 1 ) k1 k1 kk Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

17 La distribución marginal de cada elemento del vector bβ es también normal: bβ i N(β i, σ 2 (X 0 X) 1 ii ) para i = 1,..., k donde bβ i es el elemento (i, 1) del vector bβ, β i es el elemento (i, 1) del vector β y (X 0 X) 1 ii es el elemento (i, i) de la matriz (X 0 X) 1. Del mismo modo se puede comprobar que bajo la hipótesis adicional de normalidad se tiene que: Y = Xβ + u N(Xβ, σ 2 I T ) Ŷ = Xbβ N(Xβ, σ 2 X(X 0 X) 1 X 0 ) Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

18 Distribución de bσ 2 bajo el supuesto de normalidad de los errores u Si u N(0, σ 2 I T ), entonces bσ2 (T k) σ 2 χ 2 (T k) Demostración: Dado que bσ 2 = e0 e (T k), queremos demostrar que e0 e χ 2 σ 2 (T k). Sabemos que e 0 e σ 2 = u0 Mu u 0 u u σ 2 = M y N(0, I T ). σ σ σ y M es una matriz idempotente de rango T k, entonces por el e Teorema 3, 0 e χ 2 σ 2 (T k) Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

19 Independencia de ˆβ y bσ 2 bajo el supuesto de normalidad de los errores u Si u N(0, σ 2 I T ), entonces ˆβ y bσ 2 son independientes entre sí. Demostración: Nótese que: ( ˆβ β) σ = (X 0 X) 1 X 0 u σ!forma lineal en u σ bσ 2 (T k) = u 0 σ 2 σ M u σ!forma cuadrática de M y en Entonces, bσ 2 y ˆβ independientes() bσ2 (T k) y ( ˆβ β) σ 2 σ independientes ( Teorema 5 (X0 X) 1 X 0 M = 0 u σ Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Revista Colombiana de Estadística ISSN: Universidad Nacional de Colombia Colombia

Revista Colombiana de Estadística ISSN: Universidad Nacional de Colombia Colombia Revista Colombiana de Estadística ISSN: 0120-1751 revcoles_fcbog@unal.edu.co Universidad Nacional de Colombia Colombia Jiménez Moscoso, José Alfredo Un criterio para identificar datos atípicos Revista

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

Tema 7 Intervalos de confianza Hugo S. Salinas

Tema 7 Intervalos de confianza Hugo S. Salinas Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

Y= F.LINEAL (X) + PERTURBACIÓN ALEATORIA

Y= F.LINEAL (X) + PERTURBACIÓN ALEATORIA T.8 EL MODELO LINEAL DEFINICIÓN DE MODELO LINEAL UTILIDAD ESPECIFICACIÓN DEL MODELO HIPOTESIS BÁSICAS DEL MODELO LINEAL ESTIMACIÓN DEL MODELO Y PREDICCIÓN DISTRIBUCIÓN DE LOS ESTIMADORES DE LOS PARAMETROS

Más detalles

Modelo clásico de regresión lineal normal (MCRLN)

Modelo clásico de regresión lineal normal (MCRLN) Capítulo 4 Modelo clásico de regresión lineal normal (MCRLN) La llamada teoría clásica de la inferencia estadística consta de dos ramas, a saber: estimación y pruebas de hipótesis. Hasta el momento hemos

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Matrices Particionadas Traza de una Matriz

Matrices Particionadas Traza de una Matriz CAPÍTULO Matrices Particionadas Traza de una Matriz Este capítulo consta de tres secciones Las dos primeras versan sobre matrices particionadas La tercera sección trata sobre la traza de una matriz En

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

Regresión Lineal Múltiple

Regresión Lineal Múltiple Universidad Nacional Agraria La Molina 2011-2 Efectos de Diagnósticos de Dos predictores X 1 y X 2 son exactamente colineales si existe una relación lineal tal que C 1 X 1 + C 2 X 2 = C 0 para algunas

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Tema 3.2: Modelo lineal general: inferencia y predicción. Universidad Complutense de Madrid 2013

Tema 3.2: Modelo lineal general: inferencia y predicción. Universidad Complutense de Madrid 2013 Tema 3.2: Modelo lineal general: inferencia y predicción Universidad Complutense de Madrid 2013 Contraste de hipótesis paramétricas en el MLG (I) Necesitamos añadir a la lista de hipótesis del MLG, la

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez. MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

I. Distribuciones discretas

I. Distribuciones discretas Probabilidades y Estadística (M) Funciones de densidad o probabilidad puntual, esperanzas, varianzas y funciones características de las variables aleatorias más frecuentes I. Distribuciones discretas Distribución

Más detalles

Inferencia. Estadísticos. Distribuciones en el muestreo. Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón

Inferencia. Estadísticos. Distribuciones en el muestreo. Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón Inferencia. Estadísticos. Distribuciones en el muestreo Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón 1 INFERENCIA. ESTADÍSTICOS Los apartados que siguen están dedicados a desarrollar

Más detalles

Traza de una Matriz Cuadrada

Traza de una Matriz Cuadrada Traza de una Matriz Cuadrada Departamento de Matemáticas, CSI/ITESM 10 de septiembre de 2008 Índice 7.1. Definiciones y propiedades básicas.................................. 1 7.2. La traza de un producto........................................

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

Diplomado en Estadística Aplicada

Diplomado en Estadística Aplicada Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad

Más detalles

Anota aquí tus respuestas para esta sección Distribución Z

Anota aquí tus respuestas para esta sección Distribución Z Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma er. imposio Metodología eis igma Resumen Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Ejemplos de situaciones normales Ejemplos de situaciones no normales Resumen Implicaciones

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

CUERPO TÉCNICO, OPCION ESTADISTICA

CUERPO TÉCNICO, OPCION ESTADISTICA CUERPO TÉCNICO, OPCION ESTADISTICA ESTADÍSTICA TEÓRICA BÁSICA TEMA 1. Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de probabilidad. Sucesos independientes. Teorema de Bayes. TEMA

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN 0.- INTRODUCCIÓN. Sobre Matrices Inversas Generalizadas

SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN 0.- INTRODUCCIÓN. Sobre Matrices Inversas Generalizadas SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN José Carlos de Miguel Domínguez Agustín Ramos Calvo Dpto. de Métodos Cuantitativos para la Economía y la Empresa Fac. de C.C.E.E. Santiago de

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B

Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 2010 Contenidos...............................................................

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Análisis de Regresión Múltiple: Inferencia

Análisis de Regresión Múltiple: Inferencia Análisis de Regresión Múltiple: Inferencia Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Aniel Nieves-González () LSP 1 / 16 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por departamento. La v.a. dependiente

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles