TEMA 2: Propiedades de los estimadores MCO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2: Propiedades de los estimadores MCO"

Transcripción

1 TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

2 Propiedades estadísticas de ˆβ 1 Es un estimador lineal. ˆβ es una función lineal de Y al ser X una matriz de constantes (dado el Supuesto 1): ˆβ = (X 0 X) 1 X 0 Y = WY 2 Bajo las hipótesis básicas 1 a 4, ˆβ es un estimador insesgado de β, es decir, E ˆβ = β ya que y por tanto bβ = (X 0 X) 1 X 0 Y = β + (X 0 X) 1 X 0 u h i E b β = β + (X 0 X) 1 X 0 E [u] = β puesto que E[u]=0 Nótese que el estimador MCO es insesgado con independencia de que se verifique o no el supuesto 5. 3 Bajo las hipótesis básicas del MRL, Var ˆβ = σ 2 (X 0 X) 1 ya que: Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

3 h i Var b β hb h h h ii 0 hb h i 0 = E β E b βii b β E b β = E β βi b β β h i h i 0 = E (X 0 X) 1 X 0 u (X 0 X) 1 X 0 u = = (X 0 X) 1 X 0 E(uu 0 )X(X 0 X) 1 = = σ 2 X 0 X 1 Ya que E(uu 0 )=σ 2 I T Teorema de Gauss-Markov: Bajo las hipótesis básicas del MRL, el estimador MCO de β es óptimo entre la familia de estimadores lineales e insesgados. Es decir, no es posible encontrar otro estimador de β que siendo lineal e insesgado tenga una varianza menor que el estimador MCO. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

4 Estimación de σ 2 y propiedades estadísticas de ˆσ 2 1. El vector de residuos MCO es e = Y Ŷ = Y X ˆβ. Puede interpretarse como la estimación del vector de errores u. 2. El vector de residuos MCO es una transformación lineal de u: e = h Y X ˆβ = Y X (X 0 X) 1 X 0 Y = I X (X 0 X) 1 X 0i Y = MY = Mu h puesto que M es una matriz M = I X (X 0 X) 1 X 0i que cumple las siguientes propiedades: 1 M es una matriz h singular: jmj = det(m) = 0 puesto que Rg (M) = Tr (M) = Tr I T X (X 0 X) 1 X 0i h = Tr (I T ) Tr X (X 0 X) 1 X 0i = h i Tr (I T ) Tr (X 0 X) 1 X 0 X = Tr (I T ) Tr (I k ) = T k < T 2 M es una matriz simétrica: M = M 0 3 M es una matriz idempotente: M = M M 4 M es ortogonal h a X: MX = I X (X 0 X) 1 X 0i X = X X (X 0 X) 1 X 0 X = X X = 0 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

5 3. E (e) = 0 puesto que 4. Var (e) = σ 2 M puesto que E[e] = E[Mu] = ME[u] = 0 ya que E[u]=0 Var (e) = Var(Mu) = MVar(u)M 0 = Mσ 2 IM 0 = σ 2 MM 0 = σ 2 M 5. Estimador de σ 2 : La varianza de los errores, σ 2, es un valor poblacional junto a β. Es necesario estimarlo para contrastar hipótesis acerca de β o establecer intervalos de confianza. Intuición: σ 2 = E(u 2 t ) ) σ 2 = 1 T T u 2 t t=1 ˇσ 2 = 1 T T e 2 t = 1 T e0 e t=1 + (para que sea insesgado) ˆσ 2 = 1 T K T t=1 e2 t = 1 T K e0 e Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

6 6. ˆσ 2 = 1 T T e 2 t = e0 e T k (T k son los grados de libertad) es un k t=1 estimador insesgado de σ 2 puesto que E ˆσ 2 e = 0 e E T k 7. Otra expresión de e 0 e : = 1 T k E e0 e = σ2 (T k) = σ 2 T k e 0 e = Y X ˆβ 0 Y X ˆβ = Y 0 Y ˆβ 0 X 0 Y Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

7 Matriz de varianzas estimada de ˆβ y errores estándar Hemos visto que bajo las hipótesis 1 a 5 h i Var b β = σ 2 X 0 X 1 esta matriz es desconocida ya que σ 2 es desconocido. Para saber la fiabilidad de bβ y poder hacer inferencia es importante disponer de un estimador de su varianza. Se define la matriz de varianzas estimada de bβ como \ h i Var b β = bσ 2 X 0 X 1 En el tema 3 veremos cómo contrastar hipótesis sobre el vector de parámetros β utilizando bβ y Var \ h i b β. Nótese que si no se verifica la h i hipótesis 5, Var b β 6= σ 2 (X 0 X) 1 y por tanto bσ 2 (X 0 X) 1 no sería un estimador apropiado de la varianza de bβ. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

8 Se definen los errores estándar como las raices cuadradas de los elementos de la diagonal principal de la matriz Var \ h i b β. Es decir SE(bβ j ) = q bσ 2 (X 0 X) 1 jj j = 1,.., k donde bβ j es el elemento j del vector bβ y (X 0 X) 1 jj es el elemento (j, j) de la matrix (X 0 X) 1. SE(bβ j ) es un estimador de la desviación típica de bβ j. Nota: Si cambiamos las unidades de medida de alguna o algunas de las variables explicativas y/o de la variable dependiente cada uno de los errores estándar variará en la misma proporción que el valor estimado del parámetro correspondiente. Por ejemplo: \ Var h b β 2 SE b β 2 bβ 2 = cbβ 2 i = c 2 \ h i Var b β 2 + = cse b β 2 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

9 Distribución de formas cuadráticas asociadas a la distribución normal Propiedad de la distribución normal multivariante Si X es un vector n 1, X N [µ, Σ], A es una matriz r n (r n) no aleatoria y b es un vector r 1 no aleatorio, entonces: (i) AX + b N [Aµ + b, AΣA 0 ] (ii) En particular Σ 1/2 (X µ) N [0, I n ] Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

10 Definición 1: Chi-cuadrado con 1 grado de libertad Si Z N(0, 1), entonces Z 2 χ 2 1. Nota: E Z 2 = 1, Var Z 2 = 2 Definición 2: Chi-cuadrado con n grados de libertad Si Z 1, Z 2,..., Z n son n variables aleatorias independientes e idénticamente distribuidas (iid) como N [0, 1], entonces n i=1 Z 2 i χ 2 n. Definición 3: t de Student con n grados de libertad Si Z y X son variables aleatorias independientes, Z N [0, 1] y X χ 2 n, entonces Z q t n X n Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

11 Definición 4: F de Snedecor con n y m grados de libertad Si X 1 y X 2 son variables aleatorias independientes X 1 χ 2 n y X 2 χ 2 m entonces X 1 n X 2 m F n,m Teorema 1: Suma de chi-cuadrados Sean X 1 y X 2 dos variables aleatorias independientes con distribución X 1 χ 2 n 1 y X 2 χ 2 n 2, entonces X 1 + X 2 χ 2 n 1 +n 2 Teorema 2: Si Z 1, Z 2,..., Z n son n variables aleatorias independientes e idénticamente distribuidas (iid) como N 0, σ 2, entonces 2 Zi σ χ 2 n. n i=1 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

12 Teorema 3: Distribución de formas cuadráticas de matrices idempotentes en vectores normales estandarizados. Sea X N(0, I n ) de dimensión (n 1), A una matriz simétrica e idempotente de dimensión (n n), entonces X 0 AX χ 2 J donde J=rg(A) = tr(a) Teorema 4: Independencia de dos formas cuadráticas con matrices idempotentes en un mismo vector normal estandarizado. Sea X N(0, I n ) y A y B dos matrices idempotentes de dimensión (n n) tales que AB = 0, entonces las dos formas cuadráticas X 0 AX y X 0 BX son independientes. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

13 EJEMPLO: Sea X N(0, I n ) y A y B dos matrices n n idempotentes de rango n A y n B, respectivamente. Utilizando el Teorema 3 X 0 AX χ 2 n A X 0 BX χ 2 n B Si AB = 0, utilizando el Teorema 4, X 0 AX y X 0 BX son independientes y por tanto (X 0 AX) /n A (X 0 BX) /n B F na,n B Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

14 Teorema 5: Independencia de una forma lineal y una forma cuadrática idempotente de un vector normal estandarizado. Sea X N(0, I n ) y sea L una matriz r n y A una matriz n n idempotente tales que LA = 0, entonces la función lineal LX y la forma cuadrática X 0 AX son independientes. EJEMPLO: Sea X N(0, I n ), A una matriz n n idempotente de rango n A y L un vector n 1 tal que L 0 L = 1. Como X N(0, I n ) ) L 0 X N(0, L 0 L) = N(0, 1) y X 0 AX χ 2 n A. Si L 0 A = 0, utilizando el Teorema 5, L 0 X y X 0 AX son independientes y por tanto L 0 X p (X 0 AX) /n A t na Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

15 Teorema 6: Distribución de formas cuadráticas de matrices de rango completo en vectores normales. Sea X un vector n 1, X N [µ, Σ], entonces: (i) Σ 1/2 (X µ) N [0, I n ] (ii) (X µ) 0 Σ 1 (X µ) χ 2 n Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

16 Propiedades de los estimadores MCO con errores normales Con la hipótesis adicional de normalidad de los errores, se puede calcular la distribución exacta de ˆβ y bσ 2. Nótese que la media y la varianza de ˆβ se obtuvieron previamente sin necesidad de imponer esta hipótesis aunque obviamente la distribución, sin hacer este supuesto, es desconocida. Si u N(0, σ 2 I T ) y dado que bβ = β + (X 0 X) 1 X 0 u, entonces bβ N( β, σ 2 (X 0 X) 1 ) k1 k1 kk Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

17 La distribución marginal de cada elemento del vector bβ es también normal: bβ i N(β i, σ 2 (X 0 X) 1 ii ) para i = 1,..., k donde bβ i es el elemento (i, 1) del vector bβ, β i es el elemento (i, 1) del vector β y (X 0 X) 1 ii es el elemento (i, i) de la matriz (X 0 X) 1. Del mismo modo se puede comprobar que bajo la hipótesis adicional de normalidad se tiene que: Y = Xβ + u N(Xβ, σ 2 I T ) Ŷ = Xbβ N(Xβ, σ 2 X(X 0 X) 1 X 0 ) Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

18 Distribución de bσ 2 bajo el supuesto de normalidad de los errores u Si u N(0, σ 2 I T ), entonces bσ2 (T k) σ 2 χ 2 (T k) Demostración: Dado que bσ 2 = e0 e (T k), queremos demostrar que e0 e χ 2 σ 2 (T k). Sabemos que e 0 e σ 2 = u0 Mu u 0 u u σ 2 = M y N(0, I T ). σ σ σ y M es una matriz idempotente de rango T k, entonces por el e Teorema 3, 0 e χ 2 σ 2 (T k) Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

19 Independencia de ˆβ y bσ 2 bajo el supuesto de normalidad de los errores u Si u N(0, σ 2 I T ), entonces ˆβ y bσ 2 son independientes entre sí. Demostración: Nótese que: ( ˆβ β) σ = (X 0 X) 1 X 0 u σ!forma lineal en u σ bσ 2 (T k) = u 0 σ 2 σ M u σ!forma cuadrática de M y en Entonces, bσ 2 y ˆβ independientes() bσ2 (T k) y ( ˆβ β) σ 2 σ independientes ( Teorema 5 (X0 X) 1 X 0 M = 0 u σ Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Traza de una Matriz Cuadrada

Traza de una Matriz Cuadrada Traza de una Matriz Cuadrada Departamento de Matemáticas, CSI/ITESM 10 de septiembre de 2008 Índice 7.1. Definiciones y propiedades básicas.................................. 1 7.2. La traza de un producto........................................

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Estimación de homografías

Estimación de homografías Estimación de homografías Visión en Robótica 1er cuatrimestre de 2013 1 Introducción del problema Una homografía es una transformación proyectiva que determina una correspondencia entre puntos El problema

Más detalles

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7 EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El método de mínimos cuadrados Curso de Estadística TAE, 005 J.J. Gómez-Cadenas Mínimos cuadrados y máxima verosimilitud Teorema del límite central Una medida y, puede considerarse como un variable aleatoria,

Más detalles

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10 Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA

CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA 3.- INTERVALO DE CONFIANZA PARA LA VARIANZA 4.- INTERVALO DE

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 =

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 = www.clasesalacarta.com.- Universidad de Castilla la Mancha PAU/LOGSE Reserva-2 2.0 Opción A RESERVA _ 2 _ 20 a) Despeja la matriz X en la siguiente ecuación matricial: I - 2X + XA = B, suponiendo que todas

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Tema 4. El Modelo de Regresión Lineal con Series Temporales.

Tema 4. El Modelo de Regresión Lineal con Series Temporales. Tema 4. El Modelo de Regresión Lineal con Series Temporales. En este tema, estudiaremos en detalle la estimación e inferencia del modelo de regresión con datos de series temporales. Dadas las diferencias

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Regresión con autocorrelación Introducción: Consideramos la regresión y t = β 0 + β 1 x 1t + + β k x kt + + β K x Kt + u t = β x t + u t con las hipótesis

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Intervalos de confianza

Intervalos de confianza Capítulo 5 Intervalos de confianza Como su nombre indica, el objetivo de un estadístico puntual para un parámetro desconocido de una población, es acercarnos al verdadero valor del mismo dando un valor

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales 1. Función de distribución binomial: Si X distribuye bin ( n, p), entonces f n x x n

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

MODELOS LINEALES. Francesc Carmona. Departament d Estadística

MODELOS LINEALES. Francesc Carmona. Departament d Estadística MODELOS LINEALES Francesc Carmona Departament d Estadística Barcelona, 19 de diciembre de 2003 Prólogo Las páginas que siguen constituyen una parte de las exposiciones teóricas y prácticas de asignaturas

Más detalles

Análisis de Regresión Múltiple: Estimación

Análisis de Regresión Múltiple: Estimación Análisis de Regresión Múltiple: Estimación Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

ANEXO I. ANÁLISIS DE LA VARIANZA.

ANEXO I. ANÁLISIS DE LA VARIANZA. ANEXO I. ANÁLISIS DE LA VARIANZA. El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias. Cuando se quiere comparar más de dos medias es incorrecto utilizar

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

Vectores Autorregresivos (VAR)

Vectores Autorregresivos (VAR) Vectores Autorregresivos (VAR) 1 Procesos estocasticos multivariados Y t = [Y 1t, Y 2t,, Y Nt ], t = 1, 2,..., T Estamos interesados en el comportamiento temporal de N variables simultaneamente. E(Y t

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

Fundamentos de Estadística

Fundamentos de Estadística Fundamentos de Estadística Introducción a la Estadística Prof. Dr. Eduardo Valenzuela Domínguez eduardo.valenzuela@usm.cl Universidad Técnica Federico Santa María Dr. Eduardo Valenzuela D.; MEE 2005 p.

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1 MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA

Más detalles

Modelado de la aleatoriedad: Distribuciones

Modelado de la aleatoriedad: Distribuciones Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva Bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia

Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia Estimación no-paramétrica Máximo Camacho Alonso Universidad de Murcia www.um.es/econometria/tecpre mcamacho@um.es Maximo Camacho Estimación no-paramétrica 1 Contenido del tema Introducción: ventajas e

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles