TEMA 2: Propiedades de los estimadores MCO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2: Propiedades de los estimadores MCO"

Transcripción

1 TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

2 Propiedades estadísticas de ˆβ 1 Es un estimador lineal. ˆβ es una función lineal de Y al ser X una matriz de constantes (dado el Supuesto 1): ˆβ = (X 0 X) 1 X 0 Y = WY 2 Bajo las hipótesis básicas 1 a 4, ˆβ es un estimador insesgado de β, es decir, E ˆβ = β ya que y por tanto bβ = (X 0 X) 1 X 0 Y = β + (X 0 X) 1 X 0 u h i E b β = β + (X 0 X) 1 X 0 E [u] = β puesto que E[u]=0 Nótese que el estimador MCO es insesgado con independencia de que se verifique o no el supuesto 5. 3 Bajo las hipótesis básicas del MRL, Var ˆβ = σ 2 (X 0 X) 1 ya que: Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

3 h i Var b β hb h h h ii 0 hb h i 0 = E β E b βii b β E b β = E β βi b β β h i h i 0 = E (X 0 X) 1 X 0 u (X 0 X) 1 X 0 u = = (X 0 X) 1 X 0 E(uu 0 )X(X 0 X) 1 = = σ 2 X 0 X 1 Ya que E(uu 0 )=σ 2 I T Teorema de Gauss-Markov: Bajo las hipótesis básicas del MRL, el estimador MCO de β es óptimo entre la familia de estimadores lineales e insesgados. Es decir, no es posible encontrar otro estimador de β que siendo lineal e insesgado tenga una varianza menor que el estimador MCO. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

4 Estimación de σ 2 y propiedades estadísticas de ˆσ 2 1. El vector de residuos MCO es e = Y Ŷ = Y X ˆβ. Puede interpretarse como la estimación del vector de errores u. 2. El vector de residuos MCO es una transformación lineal de u: e = h Y X ˆβ = Y X (X 0 X) 1 X 0 Y = I X (X 0 X) 1 X 0i Y = MY = Mu h puesto que M es una matriz M = I X (X 0 X) 1 X 0i que cumple las siguientes propiedades: 1 M es una matriz h singular: jmj = det(m) = 0 puesto que Rg (M) = Tr (M) = Tr I T X (X 0 X) 1 X 0i h = Tr (I T ) Tr X (X 0 X) 1 X 0i = h i Tr (I T ) Tr (X 0 X) 1 X 0 X = Tr (I T ) Tr (I k ) = T k < T 2 M es una matriz simétrica: M = M 0 3 M es una matriz idempotente: M = M M 4 M es ortogonal h a X: MX = I X (X 0 X) 1 X 0i X = X X (X 0 X) 1 X 0 X = X X = 0 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

5 3. E (e) = 0 puesto que 4. Var (e) = σ 2 M puesto que E[e] = E[Mu] = ME[u] = 0 ya que E[u]=0 Var (e) = Var(Mu) = MVar(u)M 0 = Mσ 2 IM 0 = σ 2 MM 0 = σ 2 M 5. Estimador de σ 2 : La varianza de los errores, σ 2, es un valor poblacional junto a β. Es necesario estimarlo para contrastar hipótesis acerca de β o establecer intervalos de confianza. Intuición: σ 2 = E(u 2 t ) ) σ 2 = 1 T T u 2 t t=1 ˇσ 2 = 1 T T e 2 t = 1 T e0 e t=1 + (para que sea insesgado) ˆσ 2 = 1 T K T t=1 e2 t = 1 T K e0 e Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

6 6. ˆσ 2 = 1 T T e 2 t = e0 e T k (T k son los grados de libertad) es un k t=1 estimador insesgado de σ 2 puesto que E ˆσ 2 e = 0 e E T k 7. Otra expresión de e 0 e : = 1 T k E e0 e = σ2 (T k) = σ 2 T k e 0 e = Y X ˆβ 0 Y X ˆβ = Y 0 Y ˆβ 0 X 0 Y Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

7 Matriz de varianzas estimada de ˆβ y errores estándar Hemos visto que bajo las hipótesis 1 a 5 h i Var b β = σ 2 X 0 X 1 esta matriz es desconocida ya que σ 2 es desconocido. Para saber la fiabilidad de bβ y poder hacer inferencia es importante disponer de un estimador de su varianza. Se define la matriz de varianzas estimada de bβ como \ h i Var b β = bσ 2 X 0 X 1 En el tema 3 veremos cómo contrastar hipótesis sobre el vector de parámetros β utilizando bβ y Var \ h i b β. Nótese que si no se verifica la h i hipótesis 5, Var b β 6= σ 2 (X 0 X) 1 y por tanto bσ 2 (X 0 X) 1 no sería un estimador apropiado de la varianza de bβ. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

8 Se definen los errores estándar como las raices cuadradas de los elementos de la diagonal principal de la matriz Var \ h i b β. Es decir SE(bβ j ) = q bσ 2 (X 0 X) 1 jj j = 1,.., k donde bβ j es el elemento j del vector bβ y (X 0 X) 1 jj es el elemento (j, j) de la matrix (X 0 X) 1. SE(bβ j ) es un estimador de la desviación típica de bβ j. Nota: Si cambiamos las unidades de medida de alguna o algunas de las variables explicativas y/o de la variable dependiente cada uno de los errores estándar variará en la misma proporción que el valor estimado del parámetro correspondiente. Por ejemplo: \ Var h b β 2 SE b β 2 bβ 2 = cbβ 2 i = c 2 \ h i Var b β 2 + = cse b β 2 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

9 Distribución de formas cuadráticas asociadas a la distribución normal Propiedad de la distribución normal multivariante Si X es un vector n 1, X N [µ, Σ], A es una matriz r n (r n) no aleatoria y b es un vector r 1 no aleatorio, entonces: (i) AX + b N [Aµ + b, AΣA 0 ] (ii) En particular Σ 1/2 (X µ) N [0, I n ] Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

10 Definición 1: Chi-cuadrado con 1 grado de libertad Si Z N(0, 1), entonces Z 2 χ 2 1. Nota: E Z 2 = 1, Var Z 2 = 2 Definición 2: Chi-cuadrado con n grados de libertad Si Z 1, Z 2,..., Z n son n variables aleatorias independientes e idénticamente distribuidas (iid) como N [0, 1], entonces n i=1 Z 2 i χ 2 n. Definición 3: t de Student con n grados de libertad Si Z y X son variables aleatorias independientes, Z N [0, 1] y X χ 2 n, entonces Z q t n X n Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

11 Definición 4: F de Snedecor con n y m grados de libertad Si X 1 y X 2 son variables aleatorias independientes X 1 χ 2 n y X 2 χ 2 m entonces X 1 n X 2 m F n,m Teorema 1: Suma de chi-cuadrados Sean X 1 y X 2 dos variables aleatorias independientes con distribución X 1 χ 2 n 1 y X 2 χ 2 n 2, entonces X 1 + X 2 χ 2 n 1 +n 2 Teorema 2: Si Z 1, Z 2,..., Z n son n variables aleatorias independientes e idénticamente distribuidas (iid) como N 0, σ 2, entonces 2 Zi σ χ 2 n. n i=1 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

12 Teorema 3: Distribución de formas cuadráticas de matrices idempotentes en vectores normales estandarizados. Sea X N(0, I n ) de dimensión (n 1), A una matriz simétrica e idempotente de dimensión (n n), entonces X 0 AX χ 2 J donde J=rg(A) = tr(a) Teorema 4: Independencia de dos formas cuadráticas con matrices idempotentes en un mismo vector normal estandarizado. Sea X N(0, I n ) y A y B dos matrices idempotentes de dimensión (n n) tales que AB = 0, entonces las dos formas cuadráticas X 0 AX y X 0 BX son independientes. Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

13 EJEMPLO: Sea X N(0, I n ) y A y B dos matrices n n idempotentes de rango n A y n B, respectivamente. Utilizando el Teorema 3 X 0 AX χ 2 n A X 0 BX χ 2 n B Si AB = 0, utilizando el Teorema 4, X 0 AX y X 0 BX son independientes y por tanto (X 0 AX) /n A (X 0 BX) /n B F na,n B Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

14 Teorema 5: Independencia de una forma lineal y una forma cuadrática idempotente de un vector normal estandarizado. Sea X N(0, I n ) y sea L una matriz r n y A una matriz n n idempotente tales que LA = 0, entonces la función lineal LX y la forma cuadrática X 0 AX son independientes. EJEMPLO: Sea X N(0, I n ), A una matriz n n idempotente de rango n A y L un vector n 1 tal que L 0 L = 1. Como X N(0, I n ) ) L 0 X N(0, L 0 L) = N(0, 1) y X 0 AX χ 2 n A. Si L 0 A = 0, utilizando el Teorema 5, L 0 X y X 0 AX son independientes y por tanto L 0 X p (X 0 AX) /n A t na Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

15 Teorema 6: Distribución de formas cuadráticas de matrices de rango completo en vectores normales. Sea X un vector n 1, X N [µ, Σ], entonces: (i) Σ 1/2 (X µ) N [0, I n ] (ii) (X µ) 0 Σ 1 (X µ) χ 2 n Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

16 Propiedades de los estimadores MCO con errores normales Con la hipótesis adicional de normalidad de los errores, se puede calcular la distribución exacta de ˆβ y bσ 2. Nótese que la media y la varianza de ˆβ se obtuvieron previamente sin necesidad de imponer esta hipótesis aunque obviamente la distribución, sin hacer este supuesto, es desconocida. Si u N(0, σ 2 I T ) y dado que bβ = β + (X 0 X) 1 X 0 u, entonces bβ N( β, σ 2 (X 0 X) 1 ) k1 k1 kk Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

17 La distribución marginal de cada elemento del vector bβ es también normal: bβ i N(β i, σ 2 (X 0 X) 1 ii ) para i = 1,..., k donde bβ i es el elemento (i, 1) del vector bβ, β i es el elemento (i, 1) del vector β y (X 0 X) 1 ii es el elemento (i, i) de la matriz (X 0 X) 1. Del mismo modo se puede comprobar que bajo la hipótesis adicional de normalidad se tiene que: Y = Xβ + u N(Xβ, σ 2 I T ) Ŷ = Xbβ N(Xβ, σ 2 X(X 0 X) 1 X 0 ) Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

18 Distribución de bσ 2 bajo el supuesto de normalidad de los errores u Si u N(0, σ 2 I T ), entonces bσ2 (T k) σ 2 χ 2 (T k) Demostración: Dado que bσ 2 = e0 e (T k), queremos demostrar que e0 e χ 2 σ 2 (T k). Sabemos que e 0 e σ 2 = u0 Mu u 0 u u σ 2 = M y N(0, I T ). σ σ σ y M es una matriz idempotente de rango T k, entonces por el e Teorema 3, 0 e χ 2 σ 2 (T k) Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

19 Independencia de ˆβ y bσ 2 bajo el supuesto de normalidad de los errores u Si u N(0, σ 2 I T ), entonces ˆβ y bσ 2 son independientes entre sí. Demostración: Nótese que: ( ˆβ β) σ = (X 0 X) 1 X 0 u σ!forma lineal en u σ bσ 2 (T k) = u 0 σ 2 σ M u σ!forma cuadrática de M y en Entonces, bσ 2 y ˆβ independientes() bσ2 (T k) y ( ˆβ β) σ 2 σ independientes ( Teorema 5 (X0 X) 1 X 0 M = 0 u σ Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso / 19

GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE.

GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE. ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA. PROPIEDADES DE LOS ESTIMADORES MCO Bibliografía apartados.1,. y.3: Greene, 6.6.1, 6.6.3

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Estadística para la Economía y la Gestión IN 3401

Estadística para la Economía y la Gestión IN 3401 Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Formulación matricial del modelo lineal general

Formulación matricial del modelo lineal general Formulación matricial del modelo lineal general Estimadores MCO, propiedades e inferencia usando matrices Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni Formulación matricial del modelo

Más detalles

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Revista Colombiana de Estadística ISSN: Universidad Nacional de Colombia Colombia

Revista Colombiana de Estadística ISSN: Universidad Nacional de Colombia Colombia Revista Colombiana de Estadística ISSN: 0120-1751 revcoles_fcbog@unal.edu.co Universidad Nacional de Colombia Colombia Jiménez Moscoso, José Alfredo Un criterio para identificar datos atípicos Revista

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Estadística para la Economía y la Gestión IN 3401 Clase 5

Estadística para la Economía y la Gestión IN 3401 Clase 5 Estadística para la Economía y la Gestión IN 3401 Clase 5 Problemas con los Datos 9 de junio de 2010 1 Multicolinealidad Multicolinealidad Exacta y Multicolinealidad Aproximada Detección de Multicolinealidad

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Errores de especificación

Errores de especificación CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza El concepto de intervalo de confianza (IC) IC aproximados basados en el TCL: intervalos para una proporción Determinación del mínimo tamaño

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Examen de Introducción a la Econometría 8 de septiembre de 2008

Examen de Introducción a la Econometría 8 de septiembre de 2008 NOMBRE DNI: GRUPO Firma: MODELO 1: SOLUCIONES Examen de Introducción a la Econometría 8 de septiembre de 008 Sólo una respuesta es válida. Debe justificar la respuesta de cada pregunta en el espacio que

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas

Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas Economía Aplicada III (UPV/EHU) OCW 2013 Contents 1 Mínimos Cuadrados en 2 Etapas 2 Mínimos Cuadrados en 2 Etapas El método de Mínimos Cuadrados

Más detalles

TEMA VI: EL MODELO DE REGRESIÓN LINEAL MÚLTIPLE

TEMA VI: EL MODELO DE REGRESIÓN LINEAL MÚLTIPLE ESADÍSICA II EMA VI: EL MODELO DE REGRESIÓN LINEAL MÚLIPLE VI.1.- Introducción. VI..- Hipótesis básicas del modelo de regresión lineal múltiple. VI.3.- El estimador mínimo cuadrático ordinario del modelo

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

Econometría III Examen. 29 de Marzo de 2012

Econometría III Examen. 29 de Marzo de 2012 Econometría III Examen. 29 de Marzo de 2012 El examen consta de 20 preguntas de respuesta múltiple. El tiempo máximo es 1:10 minutos. nota: no se pueden hacer preguntas durante el examen a no ser que sean

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Tema 7 Intervalos de confianza Hugo S. Salinas

Tema 7 Intervalos de confianza Hugo S. Salinas Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 romero@econ.unicen.edu.ar Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Ejemplo 6.2. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejemplo 6.2. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejemplo 6.2 Inferencia en el Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 6.2 Inferencia

Más detalles

Modelo clásico de regresión lineal normal (MCRLN)

Modelo clásico de regresión lineal normal (MCRLN) Capítulo 4 Modelo clásico de regresión lineal normal (MCRLN) La llamada teoría clásica de la inferencia estadística consta de dos ramas, a saber: estimación y pruebas de hipótesis. Hasta el momento hemos

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Matrices Particionadas Traza de una Matriz

Matrices Particionadas Traza de una Matriz CAPÍTULO Matrices Particionadas Traza de una Matriz Este capítulo consta de tres secciones Las dos primeras versan sobre matrices particionadas La tercera sección trata sobre la traza de una matriz En

Más detalles

6 Variables aleatorias independientes

6 Variables aleatorias independientes 6 Variables aleatorias independientes Edgar Acuna ESMA 4 Edgar Acuna Dos variables aleatorias son independientes si para todo a b P[

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Estadística I Tema 7: Estimación por intervalos

Estadística I Tema 7: Estimación por intervalos Estadística I Tema 7: Estimación por intervalos Tema 7: Estimación por intervalos Ideas a transmitir Definición e interpretación frecuentista. Intervalos de confianza para medias y varianzas en poblaciones

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Y= F.LINEAL (X) + PERTURBACIÓN ALEATORIA

Y= F.LINEAL (X) + PERTURBACIÓN ALEATORIA T.8 EL MODELO LINEAL DEFINICIÓN DE MODELO LINEAL UTILIDAD ESPECIFICACIÓN DEL MODELO HIPOTESIS BÁSICAS DEL MODELO LINEAL ESTIMACIÓN DEL MODELO Y PREDICCIÓN DISTRIBUCIÓN DE LOS ESTIMADORES DE LOS PARAMETROS

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Brindar al alumno los conocimientos de los métodos econométricos fundamentales y de los conceptos estadísticos que éstos requieren,

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Regresión Lineal Múltiple

Regresión Lineal Múltiple Universidad Nacional Agraria La Molina 2011-2 Efectos de Diagnósticos de Dos predictores X 1 y X 2 son exactamente colineales si existe una relación lineal tal que C 1 X 1 + C 2 X 2 = C 0 para algunas

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Modelos lineales. Tema 1: Modelo de regresión lineal simple. 6 de febrero de Carmen Armero

Modelos lineales. Tema 1: Modelo de regresión lineal simple. 6 de febrero de Carmen Armero Carmen Armero 6 de febrero de 2012 Introducción Un poco de historia Definición y propiedades Mínimos cuadrados Máxima verosimilitud Ejemplo: Masa muscular y edad 1.I La edad es uno de los factores determinantes

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

ECONOMETRIA. Tema 5: ERRORES DE ESPECIFICACIÓN. César Alonso UC3M. César Alonso (UC3M) ECONOMETRIA. Tema 5 1 / 35

ECONOMETRIA. Tema 5: ERRORES DE ESPECIFICACIÓN. César Alonso UC3M. César Alonso (UC3M) ECONOMETRIA. Tema 5 1 / 35 ECONOMETRIA Tema 5: ERRORES DE ESPECIFICACIÓN César Alonso UC3M César Alonso (UC3M) ECONOMETRIA. Tema 5 1 / 35 Introducción Hemos visto que el estimador MCO tiene buenas propiedades bajo los supuestos

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Tema 3.2: Modelo lineal general: inferencia y predicción. Universidad Complutense de Madrid 2013

Tema 3.2: Modelo lineal general: inferencia y predicción. Universidad Complutense de Madrid 2013 Tema 3.2: Modelo lineal general: inferencia y predicción Universidad Complutense de Madrid 2013 Contraste de hipótesis paramétricas en el MLG (I) Necesitamos añadir a la lista de hipótesis del MLG, la

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Disttool Es una herramienta de MATLAB que permite visualizar de forma gráfica las características de cada distribución con la posibilidad de variar sus parámetros. Las funciones que muestra son: Función

Más detalles

Inferencia. Estadísticos. Distribuciones en el muestreo. Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón

Inferencia. Estadísticos. Distribuciones en el muestreo. Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón Inferencia. Estadísticos. Distribuciones en el muestreo Estadística aplicada a la empresa II Prof. D. Juan José Pérez Castejón 1 INFERENCIA. ESTADÍSTICOS Los apartados que siguen están dedicados a desarrollar

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas GUIA DOCENTE Curso Académico 2012-2013 1. ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1.1. Datos de la asignatura Tipo de estudios Licenciatura Titulación Administración y Dirección de Empresas Nombre

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

I. Distribuciones discretas

I. Distribuciones discretas Probabilidades y Estadística (M) Funciones de densidad o probabilidad puntual, esperanzas, varianzas y funciones características de las variables aleatorias más frecuentes I. Distribuciones discretas Distribución

Más detalles

TEMA 3: PROPIEDADES DEL ESTIMADOR MCO

TEMA 3: PROPIEDADES DEL ESTIMADOR MCO TEMA 3: PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos

Más detalles

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido

Más detalles

SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN 0.- INTRODUCCIÓN. Sobre Matrices Inversas Generalizadas

SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN 0.- INTRODUCCIÓN. Sobre Matrices Inversas Generalizadas SOBRE INVERSAS GENERALIZADAS Y SU APLICACIÓN EN LA REGRESIÓN José Carlos de Miguel Domínguez Agustín Ramos Calvo Dpto. de Métodos Cuantitativos para la Economía y la Empresa Fac. de C.C.E.E. Santiago de

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2. Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Inferencia y Especificación en Modelos de Ecuaciones Simultáneas

Inferencia y Especificación en Modelos de Ecuaciones Simultáneas Inferencia y Especificación en Modelos de Ecuaciones Simultáneas Economía Aplicada III (UPV/EHU) OCW 2013 Contenidos 1 Inferencia con estimadores de información limitada Contrastes de restricciones con

Más detalles