ESTADÍSTICA. Tema 4 Regresión lineal simple

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA. Tema 4 Regresión lineal simple"

Transcripción

1 ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1

2 Estructura de este tema Planteamiento del problema. Ejemplos. Recta de regresión de mínimos cuadrados. El modelo de regresión lineal simple. IC y contrastes para los parámetros del modelo. Predicción. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 2

3 Introducción En algunas situaciones, los diagramas de dispersión sugieren que hay una relación lineal entre dos variables. 7 Asociación positiva 7 Asociación negativa Pregunta: Cómo es la correlación en estos dos ejemplos? Aplicaciones: Resumir la información de los datos mediante una recta. Predecir valores de una variable usando la otra. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 3

4 Ejemplo 4.1: Observamos dos variables en una muestra de países desarrollados (fichero vino.sav): X : Consumo anual de vino (en litros por habitante) Y : N o de muertes por enfermedad cardíaca, por cada hab. País X Y País X Y Australia 2,5 211 Países Bajos 1,8 167 Austria 3,9 167 Nueva Zelanda 1,9 266 Bélgica 2,9 131 Noruega 0,8 227 Canadá 2,4 191 España 6,5 86 Dinamarca 2,9 220 Suecia 1,6 207 Finlandia 0,8 297 Suiza 5,8 115 Francia 9,1 71 Reino Unido 1,3 285 Islandia 0,8 211 Estados Unidos 1,2 199 Irlanda 0,7 300 Alemania 2,7 172 Italia 7,9 107 Qué podemos decir sobre la relación entre las dos variables? Podemos afirmar que a mayor consumo de vino menor número de muertes por enfermedad cardíaca? Podemos predecir aproximadamente el valor de la variable Y si sabemos el valor de X? Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 4

5 Estadísticos Correlaciones N Media Desv. típ. Válidos Perdidos Vino Card , ,05 2, ,396 Vino Card Correlación de Pearson Sig. (bilateral) N Correlación de Pearson Sig. (bilateral) N Vino Card 1 -,843, ,843 1, Irlanda Finlandia Reino Unido Muertes por enfermedad cardiaca Nueva Zelanda Noruega Dinamarca Islandia Suecia Australia Canadá Estados Unidos Alemania Austria Países Bajos Bélgica Suiza España Italia Francia Consumo de vino Pregunta: Implica esta asociación causalidad? 10 Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 5

6 2. ASOCIACION ESTADISTICA O CAUSAL? La asociación 2. Asociación ASOCIACION entre una estadística causa ESTADISTICA (C) y un causalidad efecto O CAUSAL? (E), puede surgir de tres modos distintos: La asociación entre una causa (C) y un efecto (E), puede surgir de tres modos distintos: a) La Laasociación C es causa entre entre de una E causa una (C) causa y un (C) efecto y (E), un efecto puede surgir (E), de puede tres modos surgir distintos: de a) tres Cmodos es causa distintos: de E a) C es causa de E (a) C es causa de E. C E C E C E b) C y E tiene una causa común (variable X) b) C y E tiene una causa común (variable X) (b) C yce ytiene E tiene una una causa común (variablex) X). X X X C E C E C E c) E es causa de C (c) E es E es causa causa de de C. C c) E es causa de C C E C E C Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 6

7 Ejemplo 4.2: Renta y fracaso escolar en la CAM Ana Justel Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 7

8 Ejemplo 4.2 (cont.): Renta y fracaso escolar en la CAM % fracaso escolar Arganda Torrelodones Renta (en miles de euros) Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 8

9 El problema de regresión El objetivo es analizar la relación existente entre dos variables, X e Y, de forma que podamos predecir o aproximar el valor de la variable Y a partir del valor de la variable X. La variable Y se llama variable respuesta La variable X se llama variable regresora o explicativa Observación: En un problema de regresión el papel de las dos variables no es simétrico. La variable X juega el papel de variable independiente y la variable Y el papel de variable dependiente (de X ). Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 9

10 La recta de regresión Es frecuente suponer que existe entre las variables observadas una relación aproximadamente lineal: y i a + bx i, i = 1,..., n. La recta y = a + bx es una recta de regresión. El parámetro b es la pendiente de la recta. Indica cómo cambia la variable respuesta cuando el incremento de x es una unidad. El parámetro a es el término independiente de la recta. Indica el valor de Y cuando X = 0. Problema estadístico: Estimar los parámetros a y b a partir de los datos (x i, y i ), i = 1,..., n, de una muestra. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 10

11 La recta de mínimos cuadrados Si estimamos a y b mediante â y ˆb, la predicción de la variable respuesta Y en función del regresor X es: Ŷ = â + ˆbX. En particular, para los datos de la muestra los valores previstos de Y son ŷ i = â + ˆbx i, i = 1,..., n. Definimos los residuos como e i = y i ŷ i = y i (â + ˆbx i ). La recta de regresión de mínimos cuadrados viene dada por los valores â y ˆb que minimizan la suma de cuadrados residual n ei 2 = i=1 n [y i ŷ i ] 2 = i=1 n [y i (â + ˆbx i )] 2 = n ECM. i=1 Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 11

12 Los residuos: x y x y Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 12

13 Los estimadores mínimo-cuadráticos de a y b son ˆb = cov x,y v x = r vy v x â = ȳ b x, donde r es el coeficiente de correlación, v y y v x son las varianzas muestrales de Y y X respectivamente. Ejemplo 4.1 (cont.): Consumo de vino y muertes cardíacas 68, 396 ˆb = 0, 843 = 22, 974 2, 5097 â = 191, 05 ( 22, 974) 3, 026 = 260, 57 Recta de regresión estimada: ŷ = 260, 57 22, 974x Predicción de Y para x 0 = 4: ŷ 0 = 260, 57 22, = 168, 674 Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 13

14 Ejemplo 4.1 (cont.): 300 Muertes por enfermedad cardíaca R 2 Lineal = 0, Consumo de vino Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 14

15 Observaciones: La recta de mínimos cuadrados pasa por el punto cuyas coordenadas son las medias: ( x, ȳ). La suma de los residuos siempre vale cero. La recta para predecir Y en función de X no es la misma que la recta para predecir X en función de Y. Como medida de la bondad del ajuste de la recta a los datos, se utiliza el coeficiente de determinación R 2 : el cuadrado del coeficiente de correlación. Cuando R 2 está cerca de 0, el ajuste será malo. Cuando R 2 está cerca de 1, el ajuste será bueno. R 2 indica el porcentaje de variabilidad de Y explicado por la regresión lineal en función de X. No es aconsejable realizar predicciones con la recta de regresión fuera del rango de valores observados. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 15

16 El modelo de regresión lineal simple Para poder hacer inferencia (IC y contrastes) sobre los parámetros, suponemos que se verifica el siguiente modelo: donde: Y i = a + b x i + ɛ i, i = 1,..., n, El valor esperado de los errores ɛ i es cero. Todos los errores tienen la misma varianza σ 2. Los errores tienen distribución normal. Los errores son v.a. independientes entre sí. En resumen: ɛ 1,..., ɛ n son N(0, σ) independientes que equivale a Y i es N(a + b x i, σ) e Y 1,..., Y n independientes. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 16

17 Suposiciones del modelo de regresión lineal simple: Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 17

18 En cuáles de las 4 situaciones se verifica el modelo? x y x2 y x y x y4 Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 18

19 Ejemplo 4.1 (cont.): Consumo de vino y enfermedades cardíacas Residuo Valor previsto de Y 250 Si en el gráfico de residuos e i frente a valores previstos ŷ i, los puntos no se disponen aleatoriamente en una banda horizontal de anchura constante en torno a 0, entonces falla alguna de las hipótesis del modelo. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 19

20 Ejemplo 1.6 (cont.): Sabor del queso cheddar Sabor Residuo ,8 1,0 1,2 1,4 1,6 Ácido láctico 1,8 2,0 2, Valor previsto Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 20

21 Una simulación Supongamos que σ = 1, a = 0 y b = 1 Entonces el modelo es Y i = x i + ɛ i, donde los errores ɛ i tienen distribución normal estándar y son independientes Fijamos x i = 1, 2,..., 10 (n = 10) y generamos las respuestas correspondientes de acuerdo con este modelo Posteriormente calculamos la recta de mínimos cuadrados y la representamos junto con la verdadera recta y = x Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 21

22 Repetimos 6 veces el experimento x x x x x x Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 22

23 Repetimos 6 veces el experimento b = b = b = b = 0.95 b = 1.01 b = 0.99 Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 23

24 Repetimos 1000 veces el experimento â b Los estimadores van cambiando para las diferentes muestras Existen fórmulas del error típico de ˆβ 0 y ˆβ 1 que recogen esta variabilidad Estas fórmulas son las que se utilizan para calcular IC y llevar a cabo contrastes en lo que sigue. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 24

25 Inferencia en el modelo de regresión simple Intervalos de confianza Los intervalos de confianza de nivel 1 α para los parámetros a y b tienen la estructura habitual: (âi t n 2;α/2 e.t.(â) ) (ˆb i t n 2;α/2 e.t.(ˆb)) En comparación con los intervalos de confianza para la media: Los grados de libertad son n 2 en lugar de n 1. La fórmula del error típico es más complicada (siempre lo calcularemos con el ordenador). Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 25

26 Contrastes para el parámetro de la regresión b En los contrastes para a las expresiones son las mismas (donde pone b ponemos a). Contrastes unilaterales: Hipótesis: H 0 : b b 0 frente a H 1 : b > b 0 Región crítica: { } ˆb b0 R = e.t.(ˆb) > t n 2,α. Hipótesis: H 0 : b b 0 frente a H 1 : b < b 0 Región crítica: { } ˆb b0 R = e.t.(ˆb) < t n 2,α. Contraste bilateral: Hipótesis: H 0 : b = b 0 frente a H 1 : b b 0 Región crítica: { } ˆb b 0 R = e.t.(ˆb) > t n 2,α/2. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 26

27 Ejemplo 4.1 (cont.): Consumo de vino y enfermedades cardíacas Sabiendo que el error típico del estimador de mínimos cuadrados de la pendiente es 3.557, calcula un IC para β 1 de nivel 95 %: [ ˆβ 1 t n 2,α/2 e.t.( ˆβ 1 )] [ 22,974 2,11 3,557] ya que t 17,0,025 = 2,11. Aportan los datos evidencia para afirmar (α = 0,01) que un incremento en el consumo de vino está asociado a un menor número de muertes por enfermedad cardíaca? Queremos contrastar H 0 : β 1 0 frente a H 1 : β 1 < 0. Calculamos: t = 22,974 3,557 = 6,457 y t 17,0,01 = 2,567 Como 6,457 < 2,567 rechazamos H 0. Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 27

28 Ejemplo 4.1 (cont.): Con SPSS Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 28

29 Ejemplo 4.1 (cont.): Con SPSS Resumen del modelo b Modelo R R cuadrado R cuadrado corregida Error típ. de la estimación 1,843 a,710,693 37,879 a. Variables predictoras: (Constante), Vino b. Variable dependiente: Card Coeficientes a Coeficientes Coeficientes no estandarizados estandarizado s Modelo B Error típ. Beta t Sig. 1 (Constante) 260,563 13,835 18,833,000 Vino -22,969 3,557 -,843-6,457,000 a. Variable dependiente: Card Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 29

30 Ejemplo 4.2 (cont.): Renta y fracaso escolar en la CAM con SPSS Resumen del modelo b Modelo R R cuadrado R cuadrado corregida Error típ. de la estimación 1,742 a,550,528 4,7566 a. Variables predictoras: (Constante), Renta b. Variable dependiente: Fracaso Coeficientes a Coeficientes Coeficientes no estandarizados estandarizado s Modelo B Error típ. Beta t Sig. 1 (Constante) 38,494 **** 10,562,000 Renta -1,347,266 -,742-5,065,000 a. Variable dependiente: Fracaso Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 30

31 Ejemplo 4.2 (cont.): Renta y fracaso escolar en la CAM. (a) Escribe la ecuación de la recta de mínimos cuadrados que describe el nivel de fracaso escolar como función de la renta. (b) Calcula los intervalos de confianza de nivel 95 % para la pendiente y el término independiente de la recta de regresión. (c) Podemos afirmar, a nivel α = 0,05 que niveles más altos de renta están asociados a niveles más bajos de fracaso escolar? (d) Cuánto vale el coeficiente de correlación entre el nivel de renta y el porcentaje de fracaso escolar? (e) Qué porcentaje de fracaso escolar se predice en una población cuya renta es x 0 = euros? (f) Cuál es el residuo correspondiente a Colmenar Viejo? Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 31

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Página de CAPÍTULO (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Relaciones entre dos variables cuantitativas A menudo nos va a interesar describir la relación o asociación entre dos variables. Como

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

Tema 3. Relación entre dos variables cuantitativas

Tema 3. Relación entre dos variables cuantitativas Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas

Más detalles

5. Regresión Lineal Múltiple

5. Regresión Lineal Múltiple 1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente

Más detalles

Doc. Juan Morales Romero

Doc. Juan Morales Romero Análisis de Correlación y Regresión Lineal ANALISIS DE CORRELACION Conjunto de técnicas estadísticas empleadas para medir la intensidad de la asociación entre dos variables DIAGRAMA DE DISPERSION Gráfica

Más detalles

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

Grado en NHyD 23 de junio de 2014

Grado en NHyD 23 de junio de 2014 Estadística Aplicada Examen extraordinario Grado en HyD 23 de junio de 214 OTA: Explica y desarrolla tus respuestas usando las salidas de los anexos. En las preguntas de verdadero y falso indica qué gráficos

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Variables estadísticas bidimensionales: problemas resueltos

Variables estadísticas bidimensionales: problemas resueltos Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO

Más detalles

Tema 3. Modelo de regresión simple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1

Tema 3. Modelo de regresión simple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1 Tema 3. Modelo de regresión simple Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1 Introducción Objetivo del modelo de regresión simple: Explicar el comportamiento de

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

1. Cómo introducir datos en SPSS/PC? - Recordatorio

1. Cómo introducir datos en SPSS/PC? - Recordatorio 1 Taller de Estadística Curso 2oo5/2oo6 Descripción de datos bivariantes El objetivo de esta práctica es familiarizarse con las técnicas de descripción de datos bidimensionales y con algunas de las opciones

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

APUNTES DE QUIMIOMETRIA REGRESIO LINEAL

APUNTES DE QUIMIOMETRIA REGRESIO LINEAL REGRESIO LINEAL APUNTES DE QUIMIOMETRIA Datos anómalos y levas en las rectas de calibrado. Regresión robusta Mínima mediana de cuadrados Recta de calibrado mediante mínimos cuadrados. Hipótesis básicas

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

1. Caso no lineal: ajuste de una función potencial

1. Caso no lineal: ajuste de una función potencial 1. Caso no lineal: ajuste de una función potencial La presión (P) y el volumen (V ) en un tipo de gas están ligados por una ecuación del tipo PV b = a, siendo a y b dos parámetros desconocidos. A partir

Más detalles

TEMA 8: DISTRIBUCIONES BIDIMENSIONALES PAÍSES A B C D E F G H I J R.P.C I.N

TEMA 8: DISTRIBUCIONES BIDIMENSIONALES PAÍSES A B C D E F G H I J R.P.C I.N TEMA 8: DISTRIBUCIONES BIDIMENSIONALES 1- La siguiente tabla muestra cómo se ordenan entre sí diez países, A, B, C,, según dos variables, R.P.C.(renta per cápita) e I.N.(índice de natalidad). Representa

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Práctica 2: Intervalos de confianza y contrastes con SPSS 1

Práctica 2: Intervalos de confianza y contrastes con SPSS 1 Estadística Aplicada Curso 2010/2011 Diplomatura en Nutrición Humana y Dietética Práctica 2: Intervalos de confianza y contrastes con SPSS 1 El objetivo de esta práctica es aprender a calcular intervalos

Más detalles

Práctica 9 REGRESION LINEAL Y CORRELACIÓN

Práctica 9 REGRESION LINEAL Y CORRELACIÓN Práctica 9. Regresión lineal y Correlación 1 Práctica 9 REGRESION LINEAL Y CORRELACIÓN Objetivos: En esta práctica utilizaremos el paquete SPSS para estudiar la regresión lineal entre dos variables y la

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):

Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables): 0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción Curso de Estadística Aplicada a las Ciencias Sociales Tema 12. Contraste de (Cap. 22 del libro) Tema 12. Contraste de 1. Tipos de 2. La nula y la Ejercicios Tema 12, Contraste de 2 En muchas investigaciones

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Diagramas de Dispersión simples

Diagramas de Dispersión simples Ayuda SPSS-Diagrama de Dispersión-Inserción Recta de Regresión -1- AYUDA SPSS DIAGRAMA DE DISPERSIÓN e INSERCIÓN DE LA RECTA DE REGRESIÓN Ruta Cuadros de Diálogos Autor: Prof. Rubén José Rodríguez 1 de

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

1. VALORES FALTANTES 2. MECANISMOS DE PÉRDIDA

1. VALORES FALTANTES 2. MECANISMOS DE PÉRDIDA 1. VALORES FALTANTES Los valores faltantes son observaciones que en un se tenía la intención de hacerlas, pero por distintas razones no se obtuvieron. Puede ser que no se encuentre a un encuestado, entonces

Más detalles

Análisis de regresión lineal simple

Análisis de regresión lineal simple Análisis de regresión lineal simple El propósito de un análisis de regresión es la predicción Su objetivo es desarrollar un modelo estadístico que se pueda usar para predecir los valores de una variable

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

T4. Modelos con variables cualitativas

T4. Modelos con variables cualitativas T4. Modelos con variables cualitativas Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad

Más detalles

Estadísticos Descriptivos

Estadísticos Descriptivos ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales

MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales 3.1. En algunas reservas naturales se controla el número Y de ejemplares de cierta especie al

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL.

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. Benjamín R. Sarmiento Lugo. Universidad Pedagógica Nacional bsarmiento@pedagogica.edu.co Esta conferencia está basada en uno de los temas desarrollados

Más detalles

Hoja de Ejercicios 4 Análisis de regresión con información cualitativa

Hoja de Ejercicios 4 Análisis de regresión con información cualitativa Hoja de Ejercicios 4 Análisis de regresión con información cualitativa Nota: En aquellos ejercicios en los que se incluyen estimaciones y referencia al archivo de datos utilizado, el estudiante debería

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 01221701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia URRUTIA MOSQUERA, JORGE ANDRÉS; SALAZAR, HEVER DARÍO; CRUZ TREJOS, EDUARDO ARTURO EVALUACIÓN DE LA ROBUSTEZ

Más detalles

a. Poisson: los totales marginales y el total muestral varían libremente.

a. Poisson: los totales marginales y el total muestral varían libremente. TEMA 2º: TABLAS DE CONTINGENCIA BIDIMENSIONALES 1º Distribución de frecuencias observadas El único aspecto cuantificable en el análisis cualitativo es el número de individuos que presenta una combinación

Más detalles

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara Descripción: Los temas de estadística propuestos corresponden con los conocimientos mínimos que un

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Intervalos de confianza y contrastes de hipótesis. Intervalo de confianza de la media.

Intervalos de confianza y contrastes de hipótesis. Intervalo de confianza de la media. R PRÁCTICA IV Intervalos de confianza y contrastes de hipótesis Sección IV.1 Intervalo de confianza de la media. 44. Cargar (abrir) el conjunto de Datos Pulso.rda. Se pide: a) Calcular el de confianza

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles