Tema 10: Introducción a los problemas de Asociación y Correlación

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 10: Introducción a los problemas de Asociación y Correlación"

Transcripción

1 Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

2 Índice 1 Asociación entre caracteres 2 Contraste chi cuadrado 3 Medidas de asociación 4 Correlación y regresión entre variables 5 Correlación y Regresión Lineal Simple 6 Inferencia en el Modelo de Regresión Lineal 7 Correlación Lineal 8 Predicciones Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

3 Asociación entre caracteres Sea X una variable cualitativa con modalidades A 1,, A k, e Y otra variable cualitativa con modalidades B 1,, B l, ambas definidas en la misma población Estamos interesados en saber si las variables X e Y presentan relación Los parámetros de interés serán las probabilidades condicionadas P(A i B j ) que representan la probabilidad de que un individuo que presenta la modalidad B j del carácter Y presente la modalidad A i de la variable X También en este caso son de interés las probabilidades condicionadas P(B j A i ) Las variables X e Y son independientes si P(A i B 1 ) = = P(A i B l ) para i = 1,, k es decir, si la probabilidad de que un individuo presente una determinada modalidad de X no depende de qué modalidad de Y presente dicho individuo Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

4 Asociación entre caracteres Tablas de contingencia En la situación anterior resolveremos el problema en base a una muestra de n individuos Los datos se representan en una tabla de contingencia: B 1 B j B l Total A 1 n 11 n 1j n 1l n 1 A i n i1 n ij n il n i A k n k1 n kj n kl n k Total n 1 n j n l n Frecuencias absolutas de la muestra (valores observados) n ij número de individuos que presentan simultáneamente la modalidad A i de la variable X y la modalidad B j de la variable Y n i número de individuos que presentan la modalidad A i de la variable X n j número individuos que presentan la modalidad B j de la variable Y Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

5 Asociación entre caracteres Frecuencias relativas de la muestra f ij = n ij n = P(A i B j ), f i = n i n = P(A i ), f j = n j n = P(B j ) f ij es la probabilidad estimada de que un individuo presente simultáneamente la modalidad A i de la variable X y la modalidad B j de la variable Y Frecuencias por filas de la muestra P(B j A i ) = n ij n i es la probabilidad estimada de que un individuo que presenta la modalidad A i de la variable X presente la modalidad B j del carácter Y Frecuencias por columnas de la muestra P(A i B j ) = n ij es la probabilidad de que un individuo que presenta la modalidad B j n j del carácter Y presente la modalidad A i de la variable X Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

6 Asociación entre caracteres Valores esperados Se calculan mediante la expresión E ij = n in j n Son los valores que cabría esperar para n ij si las variables X e Y fueran independientes Por lo tanto, bajo la hipótesis de independencia, todas las cantidades n ij E ij deberían ser próximas a 0 Si hemos comprobado que hay relación, para saber a cual de las categorías de X o de Y hemos de atribuir la relación entre ambas variables, hemos de buscar en la tabla los valores de n ij E ij más altos Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

7 Contraste chi cuadrado Planteamos el contraste de hipótesis del siguiente modo: H 0 : P(A i B 1) = = P(A i B l) para i = 1,, k H 1 : estas probabilidades no son iguales para algún i dicho de forma intuitiva: H 0 : H 1 : las variables X e Y son independientes hay relación entre las variables El valor experimental se calcula mediante la fórmula: χ = X i,j (n ij E ij) 2 E ij Rechazamos H 0 al nivel α si χ > χ 2 (k 1)(l 1),α Este test no sería válido si más del 25% de los valores E ij son menores que 5 Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

8 Medidas de asociación En caso de ser significativo el contraste anterior, calculamos grado de relación con el coeficiente de contingencia de Pearson n 2 ij χ C = χ + n = i,j E ij n n 2 ij i,j E ij Si q = min{l, k} entonces C toma valores entre 0 (asociación nula o independencia) y (q 1)/q (asociación máxima) Para tablas 2 2 tenemos el coeficiente Φ definido Φ = χ n = (n 11 n 22 n 12 n 21 ) 2 n 1 n 2 n 1 n 2 Φ toma valores entre 0 (asociación nula o independencia) y 1 (asociación máxima) Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

9 Correlación y regresión entre variables En este tema estudiaremos cómo determinar si existe relación entre dos variables cuantitativas X e Y, así como algunos coeficientes para, caso de existir, determinar la fuerza de dicha asociación Al mismo tiempo que daremos respuesta a estos problemas, desarrollaremos un modelo que relaciona X e Y aunque no de forma determinística, sino admitiendo la existencia de una componente aleatoria, debida al azar y a otros elementos del experimento estadístico que no se han tenido en cuenta en el análisis Dicho modelo se denomina Modelo de Regresión Lineal Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

10 Correlación y regresión entre variables Modelo General de Regresión Supongamos que estamos interesados en determinar la relación entre las siguientes variables: Y, variable aleatoria sobre una población (dependiente o respuesta) las variables que influyen en Y se llaman predictoras o regresoras Nos limitaremos al caso de una única variable predictora, X, definida sobre la misma población que Y La distribución de probabilidad de Y dependerá del valor que tome X No obstante, Y no está completamente determinada por X, ya que hay otras influencias aleatorias Esto se expresa mediante la ecuación: Y = f (X) + E (ecuación de regresión de Y sobre X) E, variable aleatoria no observable con media E[E] = 0 (error o ruido) Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

11 Correlación y Regresión Lineal Simple Modelo de Regresión Lineal Si en el Modelo General de Regresión, la función f es una recta, entonces la regresión de Y sobre X es lineal Y = β 0 + β 1 X + E En la práctica, la ecuación anterior es imposible de determinar Nuestro problema se limita a la Inferencia (estimación puntual, intervalos de confianza y contraste de hipótesis) sobre los parámetros β 0 y β 1 Intuitivamente, la pendiente de la recta, β 1, marca el crecimiento (o decrecimiento) de la variable Y por cada unidad que crece la variable X Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

12 Correlación y Regresión Lineal Simple Otros parámetros de interés: correlación lineal Algunos parámetros cuantificarán el grado de relación entre X e Y y el sentido de la misma Son la Covarianza poblacional (σ xy ) y el Coeficiente de Correlación Lineal (ρ) Se relacionan mediante la expresión Se verifica que ρ = σ xy σ x σ y, 1 ρ 1 Si β 1, σ xy, ρ < 0, la relación lineal es negativa (cuando crece X, decrece Y) Si β 1, σ xy, ρ = 0, no hay relación lineal, las variables son incorreladas, es decir, el comportamiento de X no afecta al de Y Si β 1, σ xy, ρ > 0, la relación lineal es positiva (cuando crece X también crece Y) Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

13 Correlación y Regresión Lineal Simple Ejemplo 1 Se desea conocer si existe relación entre las concentraciones de nitrato y sulfato en un suelo Para ello se toman 20 muestras de tierra resultando estas concentraciones: SO NO SO NO Representamos las dos variables en la nube de puntos o diagrama de dispersión nitrato NIT SULF sulfato Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

14 Correlación y Regresión Lineal Simple Inferencia en el Modelo de Regresión Lineal Como hemos visto en el Ejemplo, la inferencia se basará en una muestra aleatoria simple ambas variables X e Y, medidas sobre los mismos individuos Estimación puntual Los estimadores de los parámetros del modelo son: ˆσ xy = s xy = 1 n 1 Y y 1 y 2 y 3 y n X x 1 x 2 x 3 x n nx (x i x)(y i ȳ), ˆρ = r = sxy, 1 r 1 s i=1 xs y La recta de regresión lineal estimada de Y sobre X es la recta que mejor se ajusta a la nube de puntos de un determinado conjunto de datos (ajuste de mínimos cuadrados) y sus coeficientes se calculan son: s s ˆβ 1 = sxy s s 2, E 1 = 2 x (n 1)s 2, ˆβ0 = ȳ ˆβ 1 1 x, E 0 = s 2 x n + x 2 «(n 1)s 2 x siendo s 2 la varianza intrínseca muestral: s 2 = 1 X n n 2 (y i ( ˆβ 0 + ˆβ 1 x i )) 2 = n 1 i=1 n 2 (s2 y sxy ˆβ 1 ) Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

15 Correlación y Regresión Lineal Simple Intervalos de confianza Hemos de suponer que E N(0, σ) A un nivel de confianza 1 α: Para β 1 : I 1 = [ ˆβ 1 ± E 1 t n 2,α/2 ] Para β 0 : I 0 = [ ˆβ 0 ± E 0 t n 2,α/2 ] Contraste de hipótiesis Supondremos también que E N(0, σ) La hipótesis más interesante a contrastar es que hay relación entre las variables, es decir, H 0 : β 1 = 0 H 1 : β 1 0 H 0 : no hay relación lineal entre X e Y H 1 : sí hay relación lineal entre X e Y El estadístico de contraste es: T = ˆβ 1 E 1 Rechazamos H 0 al nivel α si T > t n 2,α/2 (equivalentemente si 0 I 1 ) Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

16 Correlación y Regresión Lineal Simple Grado de relación entre las variables Intuitivamente, si aceptamos H 0 la variable X desaparece de la ecuación Y = β 0 + β 1 X + E es decir, toda la variabilidad de Y es aleatoria Por el contrario si aceptamos H 1, entonces parte de la variabilidad de Y es debida a X y habrá relación entre X e Y El grado de relación y el signo de la misma nos lo dan ˆσ xy = s xy, ˆρ = r Este último coeficiente está entre -1 y 1, y por tanto su magnitud puede ser comparada con estas cantidades Así su proximidad a -1 ó a 1 nos da idea de una asociación lineal fuerte mientras que su proximidad a 0 de una asociación débil Coeficiente de determinación Al valor r 2 se le denomina coeficiente de determinación Mide el grado de asociación lineal (sin signo) entre X e Y Intuitivamente, r 2 se puede interpretar como el tanto por 1 de la variabilidad de Y que queda explicada por la variable X Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

17 Correlación y Regresión Lineal Simple Predicciones en el modelo de regresión lineal La recta de regresión estimada Y = ˆβ 0 + ˆβ 1 X puede ser utilizada para realizar predicciones Sea x 0 un valor observado de la variable X, que se corresponde con un valor y 0 de la variable Y que no hemos observado Aunque no conozcamos y 0, la recta anterior nos permite hacer inferencia sobre este valor Así su estimación será ŷ 0 = ˆβ 0 + ˆβ 1 x 0 Si además E N(0, σ) podemos dar un intervalo de confianza al nivel 1 α para y 0 : [ ( ŷ 0 ± s n + (x ) ] 0 x) 2 (n 1)s 2 t n 2,α/2 x Estas predicciones sólo serán fiables si hemos probado que hay relación entre las variables y el coeficiente de determinación r 2 es alto Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación Curso / 18

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

Estadística Descriptiva II: Relación entre variables

Estadística Descriptiva II: Relación entre variables Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL OBJETIVO Analizar las Diferentes formas de Describir la Relación entre dos variables numéricas Trazar un diagrama de dispersión

Más detalles

Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis

Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis VDC Prof. Mª JOSÉ PRIETO CASTELLÓ MÉTODOS ESTADÍSTICOS. TÉCNICAS ESTADÍSTICA DESCRIPTIVA TEORÍA DE LA PROBABILIDAD

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min

Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min Estadística II Examen final enero 19/1/17 Curso 016/17 Soluciones Duración del examen: h y 15 min 1. 3 puntos El Instituto para la Diversificación y Ahorro de la Energía IDAE ha publicado un estudio sobre

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

Estadística aplicada al medio ambiente

Estadística aplicada al medio ambiente Estadística aplicada al medio ambiente III. Regresión lineal 3 o de CC. AA. Departamento de Matemáticas Universidad Autónoma de Madrid 2011/12 Planteamiento Modelo Estimación de parámetros Intervalos de

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Estadística aplicada a la comunicación

Estadística aplicada a la comunicación Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2

Más detalles

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Repaso Estadística Descriptiva

Repaso Estadística Descriptiva Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable

Más detalles

ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez https://torrezcesar.wordpress.com

ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez https://torrezcesar.wordpress.com ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez torrezcat@gmail.com https://torrezcesar.wordpress.com 0416-2299743 Programa de Estadística II UNIDAD IV: REGRESIÓN Y CORRELACIÓN MÚLTIPLE LINEAL TANTO

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes 1 Tema 2: Análisis de datos bivariantes En este tema: Tabla de contingencia, tabla de doble entrada, distribución conjunta. Frecuencias relativas, marginales, condicionadas. Diagrama de dispersión. Tipos

Más detalles

Unidad 1 DISTRIBUCIONES MUESTRALES Objetivo particular El alumno identificará distribuciones discretas y continuas, obtendrá la probabilidad de

Unidad 1 DISTRIBUCIONES MUESTRALES Objetivo particular El alumno identificará distribuciones discretas y continuas, obtendrá la probabilidad de Nombre de la materia Estadística Inferencial Departamento Ciencias Aplicadas de la Información Academia Ciencias Básicas Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I4863 60 20 0 80

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Estadística II Examen final junio 27/6/17 Curso 2016/17 Soluciones

Estadística II Examen final junio 27/6/17 Curso 2016/17 Soluciones Estadística II Examen final junio 27/6/7 Curso 206/7 Soluciones Duración del examen: 2 h y 5 min. (3 puntos) Los responsables de un aeropuerto afirman que el retraso medido en minutos en el tiempo de salida

Más detalles

Principios de Bioestadística

Principios de Bioestadística Principios de Bioestadística Dra. Juliana Giménez www.cii.org.ar Nos permite Llegar a conclusiones correctas acerca de procedimientos para el diagnostico Valorar protocolos de estudio e informes Se pretende

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Estudio descriptivo de dos variables

Estudio descriptivo de dos variables Metodología de la Investigación en Enfermería Cátedra de Bioestadística Universidad de Extremadura 1 de febrero de 2012 Índice Introducción 1 Introducción 2 3 4 Índice Introducción 1 Introducción 2 3 4

Más detalles

Los estimadores mínimo cuadráticos bajo los supuestos clásicos

Los estimadores mínimo cuadráticos bajo los supuestos clásicos Los estimadores mínimo cuadráticos bajo los supuestos clásicos Propiedades estadísticas e inferencia Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni MCO bajo los supuestos clásicos 1

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

peso edad grasas Regresión lineal simple Los datos

peso edad grasas Regresión lineal simple Los datos Regresión lineal simple Los datos Los datos del fichero EdadPesoGrasas.txt corresponden a tres variables medidas en 25 individuos: edad, peso y cantidad de grasas en sangre. Para leer el fichero de datos

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía

ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía Novedades en el Plan de Trabajo Desviación típica sesgada

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable.

Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. 1 DEFINICIONES PREVIAS Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. Correlación: es la cuantificación del grado de relación existente

Más detalles

Distribuciones Bidimensionales.

Distribuciones Bidimensionales. Distribuciones Bidimensionales. 1.- Variables Estadísticas Bidimensionales. Las variables estadísticas bidimensionales se representan por el par (X, Y) donde, X es una variable unidimensional, e Y es otra

Más detalles

Universidad Central del Este UCE Facultad de Ciencias de la Salud Escuela de Medicina

Universidad Central del Este UCE Facultad de Ciencias de la Salud Escuela de Medicina Universidad Central l Este UCE Facultad Ciencias la Salud Escuela Medicina Programa la asignatura: : MED-052 Bioestadística II Código: Semestre: Asignatura electiva Total créditos 3 Teóricos 3 Prácticos

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992.

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992. Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Análisis y Diseño de Modelos Econométricos Profesor: MSc. Julio Rito Vargas Avilés. Participantes: Docentes /FAREM-Carazo Encuentro No.4

Más detalles

TEMA 2: DISTRIBUCIONES BIDIMENSIONALES

TEMA 2: DISTRIBUCIONES BIDIMENSIONALES TEMA : DISTRIBUCIONES BIDIMENSIONALES 1.- DISTRIBUCIONES BIDIMENSIONALES Cuando estudiamos un solo carácter estadístico, los datos que obtenemos forman una variable estadística unidimensional. También

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. Los modelos de regresión sirven, en general, para tratar de expresar una variable respuesta (numérica) en

Más detalles

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste.

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Tema 1 (III) Estadística 2 Curso 08/09 Tema 1 (III) (Estadística 2) Contrastes de bondad de

Más detalles

TEMA N 1.- ANÁLISIS DE REGRESIÓN Y MÉTODO DE MÍNIMOS CUADRADOS

TEMA N 1.- ANÁLISIS DE REGRESIÓN Y MÉTODO DE MÍNIMOS CUADRADOS UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI Asignatura: Estadística II Docente: Ing. Jesús Alonso Campos TEMA N 1.- ANÁLISIS DE REGRESIÓN Y MÉTODO DE

Más detalles

Tema 15: Contrastes de hipótesis sobre algunos parámetros

Tema 15: Contrastes de hipótesis sobre algunos parámetros ema 15: Contrastes de hipótesis sobre algunos parámetros 1. CORASE DE HIPÓESIS SOBRE LA MEDIA, Conocida Desconocida. CORASE DE HIPÓESIS SOBRE LA CORRELACIÓ, Bibliografía: ema 15 (págs. 379-4) Ejercicios

Más detalles

Distribuciones bidimensionales

Distribuciones bidimensionales Distribuciones bidimensionales Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplo Si se deja caer una piedra,

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

Tema 7. Contrastes no paramétricos en una población

Tema 7. Contrastes no paramétricos en una población Tema 7. Contrastes no paramétricos en una población Resumen del tema 7.1. Introducción a la Estadística Inferencial. Estimación de parámetros Como ya sabemos, la Estadística estudia los métodos científicos

Más detalles

Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda.

Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se deja caer una piedra, existe una fórmula que nos permite

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

Inferencia Estadística

Inferencia Estadística ESTADISTICA INFERENCIA ESTADÍSTICA. TITULO: AUTOR: Una corta introducción teórica de inferencia estadística Test o Pruebas de hipótesis CHI-CUADRADO. Ejercicios resueltos y propuestos JUAN VICENTE GONZÁLEZ

Más detalles

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL

ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL ESTADÍSTICA. DISTRIBUCIÓN BIDIMENSIONAL CONCEPTOS PREVIOS RELACIÓN ESTADÍSTICA Dos variables x e y están relacionadas estadísticamente cuando conocida la primera se puede estimar aproximadamente el valor

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

3. RELACION ENTRE DOS CONJUNTOS DE DATOS.

3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. 1 Introducción En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre variables. Para lo cual existen

Más detalles

Estadística Diplomado

Estadística Diplomado Diplomado HRB UNAM 1 / 25 1 Estimación Puntual Momentos Máxima Verosimiltud Propiedades 2 / 25 1 Estimación Puntual Momentos Máxima Verosimiltud Propiedades 2 Estimación por Intervalos Cantidades Pivotales

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Variables estadísticas bidimensionales

Variables estadísticas bidimensionales Variables estadísticas bidimensionales BEITO J GOZÁLEZ RODRÍGUEZ (bjglez@ulles) DOMIGO HERÁDEZ ABREU (dhabreu@ulles) MATEO M JIMÉEZ PAIZ (mjimenez@ulles) M ISABEL MARRERO RODRÍGUEZ (imarrero@ulles) ALEJADRO

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES RESUMEN DISTRIBUCIONES BIDIMENSIONALES J. Vega RELACIONES LABORALES ESTADÍSTICA 15 de noviembre de 2008 RESUMEN 1 DISTRIBUCIONES BIDIMENSIONALES DISTRIBUCIÓN CONJUNTA DISTRIBUCIONES MARGINALES DISTRIBUCIONES

Más detalles

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal Estadística Inferencial Sesión No. 9 Regresión y correlación lineal Contextualización En la administración, las decisiones suelen basarse en la relación entre dos o más variables. En esta sesión se estudia

Más detalles

Cuaderno de actividades 1º

Cuaderno de actividades 1º Cuaderno de actividades 1º 1 ITRODUCCIÓ: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población En el caso de dos (o más)

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Tema 9: Estadística en dos variables (bidimensional)

Tema 9: Estadística en dos variables (bidimensional) Tema 9: Estadística en dos variables (bidimensional) 1. Distribución de frecuencias bidimensional En el tema anterior se han estudiado las distribuciones unidimensionales obtenidas al observar sólo un

Más detalles

Unidad V: Estadística aplicada

Unidad V: Estadística aplicada Unidad V: Estadística aplicada 5.1 Inferencia estadística: Concepto, Estimación, Prueba de hipótesis La Inferencia Estadística es la parte de la estadística matemática que se encarga del estudio de los

Más detalles

X Y

X Y Capítulo 2 Distribuciones bivariantes Hasta ahora hemos estudiado herramientas que nos permiten describir las características de un único carácter Sin embargo, en muchos casos prácticos, es necesario estudiar

Más detalles

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se

Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se Distr ibuciones bidim ensionales Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Estadística para la Economía y la Gestión IN 3401 Clase 5

Estadística para la Economía y la Gestión IN 3401 Clase 5 Estadística para la Economía y la Gestión IN 3401 Clase 5 Problemas con los Datos 9 de junio de 2010 1 Multicolinealidad Multicolinealidad Exacta y Multicolinealidad Aproximada Detección de Multicolinealidad

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Titulación(es) Titulación Centro Curso Periodo Grado de Fisioterapia FACULTAT DE FISIOTERÀPIA 1 Primer cuatrimestre

Titulación(es) Titulación Centro Curso Periodo Grado de Fisioterapia FACULTAT DE FISIOTERÀPIA 1 Primer cuatrimestre FICHA IDENTIFICATIVA Datos de la Asignatura Código 33005 Nombre Estadística Ciclo Grado Créditos ECTS 6.0 Curso académico 2016-2017 Titulación(es) Titulación Centro Curso Periodo 1202 - Grado de Fisioterapia

Más detalles

Bioestadística: Inferencia Estadística. Análisis de Una Muestra

Bioestadística: Inferencia Estadística. Análisis de Una Muestra Bioestadística: Inferencia Estadística. Análisis de Una Muestra M. González Departamento de Matemáticas. Universidad de Extremadura Estimación Puntual e Intervalos de Confianza Planteamiento del Problema

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

Estudio del consumo y los precios al consumo de Frutas y Hortalizas

Estudio del consumo y los precios al consumo de Frutas y Hortalizas Conseería de Agricultura y Pesca Estudio del consumo y los precios al consumo de Frutas y Hortalizas Aspectos Metodológicos Marzo 008 Versión 1 SECRETARÍA GENERAL DE AGRICULTURA, GANADERÍA Y DESARROLLO

Más detalles

TEMA 5: Especificación y Predicción en el MRL

TEMA 5: Especificación y Predicción en el MRL EMA 5: Especificación y Predicción en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) ema 5: Especificación y Predicción Curso

Más detalles

TEMA 3 REGRESIÓN Y CORRELACIÓN

TEMA 3 REGRESIÓN Y CORRELACIÓN TEMA 3 REGRESIÓN Y CORRELACIÓN Regresión mínimo-cuadrática bidimensional Planteamiento del problema Dadas dos variables aleatorias X e Y definidas sobre un mismo espacio de probabilidad (asociadas a un

Más detalles

Estadísticas II. M. en E. M. Milagros Eugenia Faci. 15 de julio de 2010

Estadísticas II. M. en E. M. Milagros Eugenia Faci. 15 de julio de 2010 2010 Estadísticas II M. en E. M. Milagros Eugenia Faci 15 de julio de 2010 2 Estadísticas II CONTENIDO UNIDAD III. CORRELACIÓN Y REGRESIÓN...3 III.1 CARACTERÍSTICAS DE UNA CORRELACIÓN...3 METODO DE MÍNIMOS

Más detalles

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16 Regresión Lineal Rodrigo A. Alfaro 2009 Rodrigo A. Alfaro (BCCh) Regresión Lineal 2009 1 / 16 Contenidos 1 Regresiones Lineales Regresión Clásica Paquetes estadísticos 2 Estadísticos de Ajuste Global 3

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO CÁTEDRA DE ESTADÍSTICA CLASE ESPECIAL. Tema:

UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO CÁTEDRA DE ESTADÍSTICA CLASE ESPECIAL. Tema: UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO CÁTEDRA DE ESTADÍSTICA CLASE ESPECIAL Tema: Correlación múltiple y parcial. Ecuaciones y planos de regresión La Plata, septiembre

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

Tema 2: Regresión. Grado en Fisioterapia, 2010/11. Jesús Montanero Fernández. Cátedra de Bioestadística Universidad de Extremadura

Tema 2: Regresión. Grado en Fisioterapia, 2010/11. Jesús Montanero Fernández. Cátedra de Bioestadística Universidad de Extremadura Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 8 de noviembre de 2010 Índice 1 Regresión lineal simple 2 3 Índice 1 Regresión lineal simple 2 3 Índice 1 Regresión lineal

Más detalles

Curso de Estadística con R: Nivel Medio

Curso de Estadística con R: Nivel Medio Curso de Estadística con R: Nivel Medio Prof. Vanesa Jordá Departamento de Economía Facultad de Ciencias Económicas y Empresariales Universidad de Cantabria Índice Introducción Contrastes de hipótesis

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 3.1 Colinealidad Exacta 3.2 Los efectos de la multicolinealidad Del

Más detalles

Estadística II Ejercicios Tema 4

Estadística II Ejercicios Tema 4 Estadística II Ejercicios Tema 4 1. Los siguientes datos muestran la estatura (en cm.) y el peso (en Kg.) para una muestra de cinco alumnos de una clase: estatura (cm.) peso (Kg.) 154 60 158 62 162 61

Más detalles