MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8."

Transcripción

1 UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía tiene dos departamentos que producen el mismo producto. Se tiene la sensación de que las producciones por hora son diferentes en los dos departamentos. Al tomar una muestra aleatoria de horas de producción en cada departamento se obtuvo los siguientes resultados: Departamento 1 Departamento Tamaño de la muestra n 1 64 n 49 Media muestral x unidades x 90 unidades Se sabe que las varianzas de las producciones por hora son σ 1 56, y σ 196 para los dos departamentos respectivamente. Qué puede decirse de la sospecha que existe acerca de la diferencia entre la producción promedio? Para ello obtenga e interprete un intervalo del 95% para la verdadera diferencia de la producción media. El intervalo de confianza esta dado por la ecuación: σ x 1 1 x ± Z α/ σ n 1 donde α 1 0, 95 0, 05, al sustituir ) Z 0, ) < µ 1 µ < ) Z 0, ) 1, 96) 8 < µ 1 µ < 10) 1, 96) ) 8 n 4, 4563 < µ 1 µ < 15, 5437) Estamos 95% seguros de que en promedio la producción del departamento 1 es de 5 a 16 veces mayor al promedio de la producción del departamento. OBJ. PTA Un empresario potencial estudia la posibilidad de comprar una lavandería. El dueño actual asegura que en los últimos 5 años el promedio de ingresos diarios ha sido 675 Bs con una desviación estándar de 75 Bs. Una muestra de 30 días revela un ingreso promedio diario de 65 Bs. Existe evidencia de que la aseveración del dueño actual no es válida? Use un nivel de significancia de 0, 01) 1

2 Se trata de una prueba de hipótesis Z para una muestra de tamaño n 30 con σ conocida, donde, H 0 : µ 675 H 1 : µ 675 Para α 0, 01 rechazar H 0 si Z > Z α/, 58 o si Z < Z α/, 58. Z X µ σ/ n / 3, como Z 3, 65 <, 58 se rechaza H 0, parece que la afirmación de dueño actual no es válida. OBJ. 3 PTA 3 Una empresa que elabora alimentos para bebés quiere comparar el aumento de peso en infantes que usan sus productos, con el aumento de peso de bebés que consumen los productos de sus competidores. En una muestra de 40 bebés que usan sus productos, el aumento medio de peso en los primeros tres meses de vida fue 3.45 Kg. La desviación estándar de la muestra fue 1.04 Kg. En una muestra de 55 bebés que utilizaban los productos de la competencia, el aumento medio de peso fue 3.67 Kg, y la desviación estándar de 1.3 Kg. Se puede concluir, con nivel de significancia de 0, 05, que el aumento de peso es menor en los bebés que usan su marca? Debemos aplicar una prueba de una cola, H 0 : µ 1 µ H 1 : µ 1 < µ Para α 0, 05, el valor obtenido en la tabla es de 1, 65 entonces rechazar la hipótesis H 0 si Z < 1, 65. S1 S x1 x S n 1 n 1, 04) 1, 3) 0, Z x 1 x S x1 x 3, 45 3, 67 0, 43 0, 9079 como 0, 9079 > 1, 65 no se puede rechazar H 0. No existe evidencia de que el aumento de peso es menor para bebes que usan sus productos. OBJ. 4 PTA 4 Es la opinión de los residentes del municipio Baruta del Estado Miranda respecto a una reforma del impuesto de derecho de frente independiente de sus niveles de ingreso familiar?. Para ello considere, una muestra aleatoria simple de residentes en el municipio que se clasifican de acuerdo con su posición en las categorías de ingreso familiar bajo, medio o alto, y si están a favor o no de la reforma, de lo cual se obtiene la siguiente tabla de contingencia: Nivel de Ingreso Opinión de la Reforma Bajo Medio Alto A favor En contra

3 Completamos la tabla, El estadístico para la prueba de independencia es: Nivel de Ingreso Opinión de la Reforma Bajo Medio Alto Total A favor En contra Total χ O i E i E i i ) ) ) 40336) 18 00, 9) 00, ) ) ) 40351) 13 09, 9) 09, , 1) , 8) 7, , 1 15, ) ) , ) 187, ) 40313) , 1) 135, 1 De la tabla y tomando α 0, 05 encontramos χ 0,05 5, 991 con 1)3 1) grados de libertad. Se rechaza la hipótesis de independencia ya que 7, 85 > 5, 991. Concluimos que la opinión de un votante con respecto a la nueva reforma y su nivel de ingreso no son independientes. Nota: Si el Alumno trabaja con α 0, 01 se debe tomar el ejercicio como correcto siempre y cuando la conclusión sea correcta y de acuerdo al α utilizado. Esto es, para α 0, 01 el valor en tabla es de 9, 1, como 7, 85 < 9, 1 no existe suficiente evidencia para rechazar H 0. OBJ. 5 PTA 5 Los siguientes datos corresponden a una comparación entre el rendimiento académico a final de año y el puntaje obtenido en una prueba para medir el cociente intelectual de 10 estudiantes: Promedio Académico Cociente Intelectual a) Obtenga la ecuación de la recta de regresión con el rendimiento académico como variable dependiente. b) Si un estudiante tuvo un rendimiento académico de 4, 0 cuánto se espera que tenga de cociente intelectual? c) Pruebe la hipótesis nula de que el coeficiente de regresión lineal de la población es igual a cero, contra la hipótesis alternativa es distinto de cero, con nivel de significancia de 5% d) Calcule el coeficiente de correlación e interprete. Observación: Para lograr el objetivo 5 debe responder correctamente las 4 partes de la pregunta anterior. a) La recta de regresión esta dada por, Ŷ b 0 b 1 X, donde; 3

4 SC XY XY X) Y ) 17, 18 n SC X X X 333, 6 n 17, 18 b 1 0, , 6 Y 4, 04 X 14, 8 b 0 Y b 1 X 4, 04 0, 0515)14, 8), 387 OBJ. 7 Finalmente la Recta de regresión es: b) Despejando de la regresión obtenida, se tiene: Ŷ, 387 0, 0515X X c) Se plantea la prueba de hipótesis siguiente: 4, 0, 387 0, 0515 H 0 : β 1 0 H 0 : β , 0 con nivel de significancia de α 0, 05, se utiliza el test de la t de Student. Luego el cociente, T b 1 β 1 0, 0515, S β1 0, se distribuye como una t con n 8 grados de libertad. Se rechaza H 0 si T > t 8;0,05), 3060 o si T <, Por lo tanto como, <, 3060 no se rechaza H 0. Existe evidencia de que el coeficiente de la regresión es igual a cero lo que implica que la variable X no explica la variabilidad de la variable Y. d) El coeficiente de correlación esta dado por: r r SC XY ) SC X )SC Y ) 17, , 6), 604) 0, , 589 Para una mejor interpretación se eleva este coeficiente al cuadrado 0, 34. Esto quiere decir que el 34% de la variabilidad de Y es explicada por X. Como este valor es muy bajo el modelo no es apropiado, lo cual se explica también con la conclusión obtenida en el literal c). PTA 6 El promedio de impuestos recaudados en el mercado Mayor de Coche ha seguido los siguientes promedios mensuales de precios para los últimos 10 meses. Mes Precios de los fondos Bs) 6,7 63,9 68,0 66,4 67, 65,8 68, 69,3 67, 70,1 Cuál es el pronóstico del mes 11 usando el método de medias móviles de 3 meses? 4

5 Mes Precios de los fondos Bs) 64,87 66,1 67, 66,47 67,07 67,77 68,4 68,87 OBJ. 8 PTA 7 La siguiente tabla presenta el financiamiento público al sector inmobiliario, cuáles son los números índices relativos si toma como base el año 001? Año Fin. PúblicoBs) 17 Millardos 15 Millardos 78 Millardos 16 Millardos 84 Millardos 95 Millardos Año Fin. PúblicoBs) 17 Millardos 15 Millardos 78 Millardos 16 Millardos 84 Millardos 95 Millardos Índice 0,1049 0,0959 0,4815 1,00 0,5185 1,81 5

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE II POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual:

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual: Prueba de hipótesis Problema Un grupo de profesores, de cierto estado de la república, plantea una investigación acerca del aprendizaje de las ciencias naturales en la escuela primaria. Uno de los objetivos

Más detalles

Juan Carlos Colonia INTERVALOS DE CONFIANZA

Juan Carlos Colonia INTERVALOS DE CONFIANZA Juan Carlos Colonia INTERVALOS DE CONFIANZA INTERVALOS DE CONFIANZA PARA LOS PARÁMETROS DE DOS POBLACIONES I.C. PARA EL COCIENTE DE VARIANZAS Sean X y dos muestras aleatorias,..., Xn Y,..., Yn independientes

Más detalles

Reporte de Pobreza por Ingresos JUNIO 2015

Reporte de Pobreza por Ingresos JUNIO 2015 Reporte de Pobreza por Ingresos JUNIO 2015 1 Resumen Ejecutivo En el presente documento se exhiben los resultados obtenidos en el cálculo de pobreza y desigualdad por ingresos a partir de la Encuesta Nacional

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

2. Análisis de varianza

2. Análisis de varianza 1. Análisis de varianza Introducción La estadística inferencial no solo realiza estudios con una muestra, también es necesario trabajar con más de una muestra; las que pueden ser dos o más. Para cada una

Más detalles

Reporte de Pobreza y Desigualdad DICIEMBRE 2015

Reporte de Pobreza y Desigualdad DICIEMBRE 2015 Reporte de Pobreza y Desigualdad DICIEMBRE 2015 1 Reporte de Pobreza y Desigualdad - Diciembre 2015 Dirección responsable de la información estadística y contenidos: Dirección de Innovación en Métricas

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

ESTADISTICA GENERAL. INFERENCIA ESTADISTICA Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. INFERENCIA ESTADISTICA Profesor: Celso Celso Gonzales ESTADISTICA GENERAL INFERENCIA ESTADISTICA Profesor: Celso Celso Gonzales Objetivos Entender los conceptos de estimación puntual y estimación por intervalos. Calcular e interpretar intervalos de confianza

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Las secciones anteriores han mostrado cómo puede estimarse un parámetro de

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE

6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE 6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE HIPÓTESIS. 6.1 INFERENCIA ESTADISTICA La estadística está dividida en descriptiva e inferencial donde La estadística Descriptiva se relaciona principalmente

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

PRÁCTICA 3: Ejercicios del capítulo 5

PRÁCTICA 3: Ejercicios del capítulo 5 PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable

Más detalles

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados. El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad 15. Confiabilidad La confiabilidad se refiere a la consistencia de los resultados. En el análisis de la confiabilidad se busca que los resultados de un cuestionario concuerden con los resultados del mismo

Más detalles

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola)

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola) UNIDAD III. PRUEBAS DE HIPÓTESIS 3.7 Prueba de hipótesis para la varianza La varianza como medida de dispersión es importante dado que nos ofrece una mejor visión de dispersión de datos. Por ejemplo: si

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Reporte de Pobreza. Marzo 2016

Reporte de Pobreza. Marzo 2016 Reporte de Pobreza Marzo 2016 1 Reporte de Pobreza - Marzo 2016 Dirección responsable de la información estadística y contenidos: Dirección de Innovación en Métricas y Metodologías Realizadores: Melody

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

1º CURSO BIOESTADÍSTICA

1º CURSO BIOESTADÍSTICA E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015 CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis

Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis Objetivos del tema Conocer el proceso para contrastar hipótesis y su relación con el método científico. Diferenciar entre hipótesis nula y alternativa Nivel de significación Test de Hipótesis Introducción

Más detalles

EJERCICIOS DE ESTADÍSTICA:

EJERCICIOS DE ESTADÍSTICA: EJERCICIOS DE ESTADÍSTICA: 1º/ Una biblioteca desea estimar el porcentaje de libros infantiles que posee. La biblioteca está compuesta de 4 salas (orte, Sur, Este y Oeste) con 2500, 2740, 4000 y 6900 libros,

Más detalles

TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014

TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014 TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014 AGENDA Estadísticas en Excel Construcción de una hoja de trabajo Puntuaciones por asistencia Calificaciones finales igual peso Calificaciones finales pesadas

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

Introducción a una prueba de Hipótesis para una proporción

Introducción a una prueba de Hipótesis para una proporción Introducción a una prueba de Hipótesis para una proporción XVII Semana Regional de Investigación y Docencia en Matemáticas M.C. Paulina Danae López Ceballos Herramientas Una bolsita de chocolates m&m cafés.

Más detalles

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7 EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE

CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE CAPITULO IV ANÁLISIS, INTERPRETACIÓN Y COMPROBACIÓN DE RESULTADOS 4.1 TABULACIÓN DE DATOS N PREGUNTA ALTERNATIVAS SI NO A VECES TOTAL 1 Considera que la normativa de los programas del Plan 2021 favorecen

Más detalles

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia Marco de referencia a) Es útil saber si la estrategia de tratamiento sin un biológico (menos costosa), tiene mejor o igual eficacia que la estrategia con un biológico en AR temprana. b) No hay estudios

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

CAPÍTULO VI RESULTADOS PESO (50 COMPRIMIDOS) INICIAL PESO (50 COMPRIMIDOS) FINAL PESO (50 COMPRIMIDOS) INICIAL PESO DEL PLATO

CAPÍTULO VI RESULTADOS PESO (50 COMPRIMIDOS) INICIAL PESO (50 COMPRIMIDOS) FINAL PESO (50 COMPRIMIDOS) INICIAL PESO DEL PLATO CAPÍTULO VI RESULTADOS 6.1. CÁLCULOS 6.1.1. PORCENTAJE DE FRIABILIDAD RANGO: No mayor 1 % FÓRMULA % = PESO (50 COMPRIMIDOS) INICIAL PESO (50 COMPRIMIDOS) FINAL PESO (50 COMPRIMIDOS) INICIAL PESO DEL PLATO

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.

Más detalles

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS INTRODUCCIÓN A LA ESTADÍSTICA Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS 1.- Obtener las medias aritmética, geométrica, armónica para la siguiente distribución: SOL: 2,74; 2,544; 2,318

Más detalles

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática

SEMINARIOS. (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática SEMINARIOS (Problemas de exámenes de años anteriores) Estadística. 1º Grado en Informática Seminario de Estadística Descriptiva Unidimensional y Bidimensional 1. Se ha realizado un control de calidad en

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

no paramétrica comparar más de dos grupos de rangos (medianas)

no paramétrica comparar más de dos grupos de rangos (medianas) Kruskal-Wallis Es una prueba no paramétrica de comparación de tres o más grupos independientes, debe cumplir las siguientes características: Es libre de curva, no necesita una distribución específica Nivel

Más detalles

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 =

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 = www.clasesalacarta.com.- Universidad de Castilla la Mancha PAU/LOGSE Reserva-2 2.0 Opción A RESERVA _ 2 _ 20 a) Despeja la matriz X en la siguiente ecuación matricial: I - 2X + XA = B, suponiendo que todas

Más detalles

CAPÍTULO I. INTRODUCCIÓN. Cuando se requiere obtener información de una población, y se desean obtener los mejores

CAPÍTULO I. INTRODUCCIÓN. Cuando se requiere obtener información de una población, y se desean obtener los mejores CAPÍTULO I. INTRODUCCIÓN I.1 Breve Descripción Cuando se requiere obtener información de una población, y se desean obtener los mejores y más completos resultados, el censo es una opción para dar una respuesta

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

Propuesta A B = M = (

Propuesta A B = M = ( Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (016) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A ó B. Se

Más detalles

Código: 102385 Créditos ECTS: 6. Titulación Tipo Curso Semestre. 2501572 Administración y Dirección de Empresas FB 2 1. 2501573 Economía FB 2 1

Código: 102385 Créditos ECTS: 6. Titulación Tipo Curso Semestre. 2501572 Administración y Dirección de Empresas FB 2 1. 2501573 Economía FB 2 1 Estadística II 2016/2017 Código: 102385 Créditos ECTS: 6 Titulación Tipo Curso Semestre 2501572 Administración y Dirección de Empresas FB 2 1 2501573 Economía FB 2 1 Contacto Nombre: Maria Dolores Márquez

Más detalles

Guía de Ejercicios Estadística. Nombre del Estudiante:

Guía de Ejercicios Estadística. Nombre del Estudiante: Colegio Raimapu Departamento de Matemática Guía de Ejercicios Estadística Nombre del Estudiante: V Medio Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos)

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Alberto Contreras Cristán, Miguel Ángel Chong Rodríguez. Departamento de Probabilidad y Estadística Instituto de Investigaciones en

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

CAPÍTULO 7 INFERENCIA ESTADÍSTICA

CAPÍTULO 7 INFERENCIA ESTADÍSTICA CAPÍTULO 7 INFERENCIA ESTADÍSTICA La Inferencia Estadística comprende los métodos que son usados para obtener conclusiones de la población en base a una muestra tomada de ella. Incluye los métodos de estimación

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA DATOS BÁSICOS DE LA ASIGNATURA Nombre: Titulación: Centro: Tipo: Créditos: Curso: Prerrequisitos: Profesor: Dpto.: Estadística Aplicada. Licenciatura

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO

PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO PREGUNTAS DE EJEMPLO EDUCACIÓN MATEMÁTICA PRIMER NIVEL MEDIO VALIDACIÓN DE ESTUDIOS DECRETO Nº257 LEA LA INFORMACIÓN Y RESPONDA LAS PREGUNTAS 1 Y 2. 1. Francisco desea pintar una pieza que tiene dos paredes

Más detalles

Intervalos de confianza y contrastes de hipótesis. Intervalo de confianza de la media.

Intervalos de confianza y contrastes de hipótesis. Intervalo de confianza de la media. R PRÁCTICA IV Intervalos de confianza y contrastes de hipótesis Sección IV.1 Intervalo de confianza de la media. 44. Cargar (abrir) el conjunto de Datos Pulso.rda. Se pide: a) Calcular el de confianza

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles