MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8."

Transcripción

1 UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía tiene dos departamentos que producen el mismo producto. Se tiene la sensación de que las producciones por hora son diferentes en los dos departamentos. Al tomar una muestra aleatoria de horas de producción en cada departamento se obtuvo los siguientes resultados: Departamento 1 Departamento Tamaño de la muestra n 1 64 n 49 Media muestral x unidades x 90 unidades Se sabe que las varianzas de las producciones por hora son σ 1 56, y σ 196 para los dos departamentos respectivamente. Qué puede decirse de la sospecha que existe acerca de la diferencia entre la producción promedio? Para ello obtenga e interprete un intervalo del 95% para la verdadera diferencia de la producción media. El intervalo de confianza esta dado por la ecuación: σ x 1 1 x ± Z α/ σ n 1 donde α 1 0, 95 0, 05, al sustituir ) Z 0, ) < µ 1 µ < ) Z 0, ) 1, 96) 8 < µ 1 µ < 10) 1, 96) ) 8 n 4, 4563 < µ 1 µ < 15, 5437) Estamos 95% seguros de que en promedio la producción del departamento 1 es de 5 a 16 veces mayor al promedio de la producción del departamento. OBJ. PTA Un empresario potencial estudia la posibilidad de comprar una lavandería. El dueño actual asegura que en los últimos 5 años el promedio de ingresos diarios ha sido 675 Bs con una desviación estándar de 75 Bs. Una muestra de 30 días revela un ingreso promedio diario de 65 Bs. Existe evidencia de que la aseveración del dueño actual no es válida? Use un nivel de significancia de 0, 01) 1

2 Se trata de una prueba de hipótesis Z para una muestra de tamaño n 30 con σ conocida, donde, H 0 : µ 675 H 1 : µ 675 Para α 0, 01 rechazar H 0 si Z > Z α/, 58 o si Z < Z α/, 58. Z X µ σ/ n / 3, como Z 3, 65 <, 58 se rechaza H 0, parece que la afirmación de dueño actual no es válida. OBJ. 3 PTA 3 Una empresa que elabora alimentos para bebés quiere comparar el aumento de peso en infantes que usan sus productos, con el aumento de peso de bebés que consumen los productos de sus competidores. En una muestra de 40 bebés que usan sus productos, el aumento medio de peso en los primeros tres meses de vida fue 3.45 Kg. La desviación estándar de la muestra fue 1.04 Kg. En una muestra de 55 bebés que utilizaban los productos de la competencia, el aumento medio de peso fue 3.67 Kg, y la desviación estándar de 1.3 Kg. Se puede concluir, con nivel de significancia de 0, 05, que el aumento de peso es menor en los bebés que usan su marca? Debemos aplicar una prueba de una cola, H 0 : µ 1 µ H 1 : µ 1 < µ Para α 0, 05, el valor obtenido en la tabla es de 1, 65 entonces rechazar la hipótesis H 0 si Z < 1, 65. S1 S x1 x S n 1 n 1, 04) 1, 3) 0, Z x 1 x S x1 x 3, 45 3, 67 0, 43 0, 9079 como 0, 9079 > 1, 65 no se puede rechazar H 0. No existe evidencia de que el aumento de peso es menor para bebes que usan sus productos. OBJ. 4 PTA 4 Es la opinión de los residentes del municipio Baruta del Estado Miranda respecto a una reforma del impuesto de derecho de frente independiente de sus niveles de ingreso familiar?. Para ello considere, una muestra aleatoria simple de residentes en el municipio que se clasifican de acuerdo con su posición en las categorías de ingreso familiar bajo, medio o alto, y si están a favor o no de la reforma, de lo cual se obtiene la siguiente tabla de contingencia: Nivel de Ingreso Opinión de la Reforma Bajo Medio Alto A favor En contra

3 Completamos la tabla, El estadístico para la prueba de independencia es: Nivel de Ingreso Opinión de la Reforma Bajo Medio Alto Total A favor En contra Total χ O i E i E i i ) ) ) 40336) 18 00, 9) 00, ) ) ) 40351) 13 09, 9) 09, , 1) , 8) 7, , 1 15, ) ) , ) 187, ) 40313) , 1) 135, 1 De la tabla y tomando α 0, 05 encontramos χ 0,05 5, 991 con 1)3 1) grados de libertad. Se rechaza la hipótesis de independencia ya que 7, 85 > 5, 991. Concluimos que la opinión de un votante con respecto a la nueva reforma y su nivel de ingreso no son independientes. Nota: Si el Alumno trabaja con α 0, 01 se debe tomar el ejercicio como correcto siempre y cuando la conclusión sea correcta y de acuerdo al α utilizado. Esto es, para α 0, 01 el valor en tabla es de 9, 1, como 7, 85 < 9, 1 no existe suficiente evidencia para rechazar H 0. OBJ. 5 PTA 5 Los siguientes datos corresponden a una comparación entre el rendimiento académico a final de año y el puntaje obtenido en una prueba para medir el cociente intelectual de 10 estudiantes: Promedio Académico Cociente Intelectual a) Obtenga la ecuación de la recta de regresión con el rendimiento académico como variable dependiente. b) Si un estudiante tuvo un rendimiento académico de 4, 0 cuánto se espera que tenga de cociente intelectual? c) Pruebe la hipótesis nula de que el coeficiente de regresión lineal de la población es igual a cero, contra la hipótesis alternativa es distinto de cero, con nivel de significancia de 5% d) Calcule el coeficiente de correlación e interprete. Observación: Para lograr el objetivo 5 debe responder correctamente las 4 partes de la pregunta anterior. a) La recta de regresión esta dada por, Ŷ b 0 b 1 X, donde; 3

4 SC XY XY X) Y ) 17, 18 n SC X X X 333, 6 n 17, 18 b 1 0, , 6 Y 4, 04 X 14, 8 b 0 Y b 1 X 4, 04 0, 0515)14, 8), 387 OBJ. 7 Finalmente la Recta de regresión es: b) Despejando de la regresión obtenida, se tiene: Ŷ, 387 0, 0515X X c) Se plantea la prueba de hipótesis siguiente: 4, 0, 387 0, 0515 H 0 : β 1 0 H 0 : β , 0 con nivel de significancia de α 0, 05, se utiliza el test de la t de Student. Luego el cociente, T b 1 β 1 0, 0515, S β1 0, se distribuye como una t con n 8 grados de libertad. Se rechaza H 0 si T > t 8;0,05), 3060 o si T <, Por lo tanto como, <, 3060 no se rechaza H 0. Existe evidencia de que el coeficiente de la regresión es igual a cero lo que implica que la variable X no explica la variabilidad de la variable Y. d) El coeficiente de correlación esta dado por: r r SC XY ) SC X )SC Y ) 17, , 6), 604) 0, , 589 Para una mejor interpretación se eleva este coeficiente al cuadrado 0, 34. Esto quiere decir que el 34% de la variabilidad de Y es explicada por X. Como este valor es muy bajo el modelo no es apropiado, lo cual se explica también con la conclusión obtenida en el literal c). PTA 6 El promedio de impuestos recaudados en el mercado Mayor de Coche ha seguido los siguientes promedios mensuales de precios para los últimos 10 meses. Mes Precios de los fondos Bs) 6,7 63,9 68,0 66,4 67, 65,8 68, 69,3 67, 70,1 Cuál es el pronóstico del mes 11 usando el método de medias móviles de 3 meses? 4

5 Mes Precios de los fondos Bs) 64,87 66,1 67, 66,47 67,07 67,77 68,4 68,87 OBJ. 8 PTA 7 La siguiente tabla presenta el financiamiento público al sector inmobiliario, cuáles son los números índices relativos si toma como base el año 001? Año Fin. PúblicoBs) 17 Millardos 15 Millardos 78 Millardos 16 Millardos 84 Millardos 95 Millardos Año Fin. PúblicoBs) 17 Millardos 15 Millardos 78 Millardos 16 Millardos 84 Millardos 95 Millardos Índice 0,1049 0,0959 0,4815 1,00 0,5185 1,81 5

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA N 3 Profesor: Hugo S. Salinas. Segundo Semestre 200. Se investiga el diámetro

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2.

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2. Pruebas de Hipótesis 1. Se sabe que la desviación típica de las notas de cierto examen de Matemáticas es,4. Para una muestra de 6 estudiantes se obtuvo una nota media de 5,6. Sirven estos datos para confirmar

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL

Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL OBJETIVO Analizar las Diferentes formas de Describir la Relación entre dos variables numéricas Trazar un diagrama de dispersión

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

Prueba de Hipotesis de Grandes Muestras INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA

Prueba de Hipotesis de Grandes Muestras INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA Prueba de Hipotesis de Grandes Muestras INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA Estadístico de Prueba de Muestra Grande para μ 1) Hipotesis Nula H 0 : μ = μ 0 2) Hipótesis Alternativa : Prueba de

Más detalles

Qué es una regresión lineal?

Qué es una regresión lineal? Apéndice B Qué es una regresión lineal? José Miguel Benavente I. Introducción En varios capítulos de este libro se ocupan regresiones lineales y se afirma que el coeficiente de regresión indica cuánto

Más detalles

CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes

CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes (revisado_oct 15_LWB/RS) CLAVE-Laboratorio 9: Pruebas t para una y dos muestras independientes 1. Calcule las siguientes probabilidades usando la tabla t e InfoStat. Incluya un diagrama en cada caso. a.

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos)

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) PROBLEMA 1 Se quiere comparar la cantidad de energía necesaria para realizar 3 ejercicios o actividades: andar, correr y montar en bici.

Más detalles

LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO

LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO TRABAJO DE ESTADISTICA PROBABILISTICA PRESENTADO A LA PROFESORA MARIA ESTELA SEVERICHE SINCELEJO CORPORACIÓN UNIVERSITARIA

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

Práctica 8: Test de hipótesis

Práctica 8: Test de hipótesis : Test de hipótesis 1. Un director de manufactura debe convencer a la gerencia que un nuevo método de fabricación reduce los costos, antes de poder implementarlo. El método actual funciona con un costo

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que

Más detalles

Inferencia a partir de muestras pequeñas INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA

Inferencia a partir de muestras pequeñas INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA Inferencia a partir de muestras pequeñas INFERENCIA ESTADÍSTICA JTP. JUAN PABLO QUIROGA Prueba de hipotesis de muestra pequeña para μ 1) Hipotesis nula: H 0 = μ = μ 0 2) Hipótesis alternativa: Prueba de

Más detalles

DISTRIBUCION JI-CUADRADA (X 2 )

DISTRIBUCION JI-CUADRADA (X 2 ) DISTRIBUCION JI-CUADRADA (X 2 ) En realidad la distribución ji-cuadrada es la distribución muestral de s 2. O sea que si se extraen todas las muestras posibles de una población normal y a cada muestra

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba

Más detalles

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Integral Lapso 2010-2 745 1/5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: 610-612-613 Fecha: 26-02-2011 OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2,

Más detalles

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992.

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992. Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Análisis y Diseño de Modelos Econométricos Profesor: MSc. Julio Rito Vargas Avilés. Participantes: Docentes /FAREM-Carazo Encuentro No.4

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS

INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS Febrero 2011 EXAMEN MODELO B Pág. 1 INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: 62011037 EXAMEN MODELO B DURACION: 2 HORAS X Ciudad A Ciudad B 17-20 10 17 13-16 20 27 9-12 25 15 5-8 15

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

Prácticas Tema 5. Ampliaciones del Modelo lineal básico

Prácticas Tema 5. Ampliaciones del Modelo lineal básico Prácticas Tema 5. Ampliaciones del Modelo lineal básico Ana J. López y Rigoberto Pérez Dpto. Economía Aplicada, Universidad de Oviedo PRÁCTICA 5.1. Se ha examinado la evolución reciente de las ventas de

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

PRUEBA DE BONDAD DE AJUSTE O PRUEBA CHI - CUADRADO

PRUEBA DE BONDAD DE AJUSTE O PRUEBA CHI - CUADRADO O PRUEBA CHI - CUADRADO Hasta ahora se han mencionado formas de probar lo que se puede llamar hipótesis paramétricas con relación a una variable aleatoria, o sea que se ha supuesto que se conoce la ley

Más detalles

DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo):

DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): son aquellas que representan los valores muestrales observados

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales Técnicas de Inferencia Estadística II Tema 2. Contrastes de hipótesis en poblaciones normales M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2010/11 Tema 2. Contrastes

Más detalles

Econometría II. Hoja de Problemas 1

Econometría II. Hoja de Problemas 1 Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Modelo de Análisis de la Covarianza. Introducción al modelo de Medidas Repetidas

Modelo de Análisis de la Covarianza. Introducción al modelo de Medidas Repetidas Modelo de Análisis de la Covariza. Introducción al modelo de Medidas Repetidas Modelo de Análisis de la Covariza Introducción El diseño por bloques se considera para eliminar el efecto de los factores

Más detalles

RESPUESTAS BREVES A LA PRÁCTICA 6

RESPUESTAS BREVES A LA PRÁCTICA 6 RESPUESTAS BREVES A LA PRÁCTICA 6 EJERCICIO [Prueba bilateral] Se rechaza la hipótesis nula con un nivel de significación del % (z =5). La evidencia muestral sostiene la hipótesis de que el puntaje medio

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Unidad VI Pruebas de Hipótesis Dos Muestras

Unidad VI Pruebas de Hipótesis Dos Muestras Ahora el análisis se hará extensivo a dos muestras, se verá la similitud que existe con la construcción de intervalos de confianza para dos muestras. En el material adjunto se detalla el procedimiento,

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 01 1. Intervalo de Confianza para la Media µ (con σ conocida Dada una muestra de tamaño n, para un nivel de confianza 1-α y la desviación típica de la población σ, el Intervalo

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---)

EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---) Nivel de ansiedad Ansiedad INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 4. 4.1. Con los datos de la Tabla 1, el valor de es igual a: A) 7,17; B) 11,80 C) 16,8. Tabla 1. En un estudio se investigó

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

Considerar la siguiente colección de datos {10, 12, 12, 12, 10, 30, 0, 0, 0, 0, 0, 30, 30} para contestar las preguntas del 1al 5.

Considerar la siguiente colección de datos {10, 12, 12, 12, 10, 30, 0, 0, 0, 0, 0, 30, 30} para contestar las preguntas del 1al 5. PONTIFICIA UNIVERSIDAD CATÒLICA DEPARTAMENTO DE FÌSICA - MATEMÀTICA Nombre: Fecha: Núm. Registro Prof. MATH 298 Sec. Examen Final Parte I. Seleccione la respuesta correcta (3 puntos cada uno) Considerar

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Anota aquí tus respuestas para esta sección Distribución Z

Anota aquí tus respuestas para esta sección Distribución Z Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1 IV. RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1 Ver gráficos en ANEXO 1 4.2 SELECTIVIDAD Placebo de excipientes: No

Más detalles

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN Beatriz Meneses A. de Sesma * I. INTRODUCCIÓN En todo centro educativo, es de suma importancia el uso que se haga

Más detalles

Estadística Descriptiva II: Relación entre variables

Estadística Descriptiva II: Relación entre variables Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 3.1 Colinealidad Exacta 3.2 Los efectos de la multicolinealidad Del

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

Introducción a la Inferencia Estadística

Introducción a la Inferencia Estadística Introducción a la Inferencia Estadística Prof. Jose Jacobo Zubcoff Universidad de Alicante 2008 1 Introducción En este tema explicaremos los contrastes para la media de una población normal. e estudiarán

Más detalles

10.3. Sec. Prueba de hipótesis para la media poblacional. Copyright 2013, 2010 and 2007 Pearson Education, Inc.

10.3. Sec. Prueba de hipótesis para la media poblacional. Copyright 2013, 2010 and 2007 Pearson Education, Inc. Sec. 10.3 Prueba de hipótesis para la media poblacional (μ) Para probar una hipótesis con respecto a la media poblacional, cuando la desviación estándar poblaciónal es desconocida, usamos una distribución-t

Más detalles

Estadística Inferencial. Sesión 7. Pruebas de hipótesis para diferencia de medias y proporciones.

Estadística Inferencial. Sesión 7. Pruebas de hipótesis para diferencia de medias y proporciones. Estadística Inferencial. Sesión 7. Pruebas de hipótesis para diferencia de medias y proporciones. Contextualización. En la sesión anterior se mostró como realizar una prueba de hipótesis cuando se trata

Más detalles

HIPOTESIS ESTADISTICA

HIPOTESIS ESTADISTICA HIPOTESIS ESTADISTICA HIPOTESIS: Una hipótesis es una declaración sobre el valor de un parámetro de la población desarrollado con el fin de poner a prueba. PRUEBA DE HIPOTESIS: La prueba de hipótesis es

Más detalles

Ejercicio 1(10 puntos)

Ejercicio 1(10 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE II POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Unidad 15 Estadística inferencial. Estimación por intervalos. Pruebas de hipótesis

Unidad 15 Estadística inferencial. Estimación por intervalos. Pruebas de hipótesis Unidad 15 Estadística inferencial. Estimación por intervalos. Pruebas de hipótesis PÁGINA 353 SOLUCIONES 1. El peso de azúcar por confitura se distribuye según la normal N (465;30). Veamos el porcentaje

Más detalles

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009 Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados

Más detalles

Ejercicios T.5 CONTRASTES PARAMÉTRICOS

Ejercicios T.5 CONTRASTES PARAMÉTRICOS Ejercicios T.5 CONTRASTES PARAMÉTRICOS 1. Un fabricante de perfume asegura que los frascos que produce contienen por término medio 100 ml. distribuyéndose el contenido de dichos frascos según una distribución

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) = SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden

Más detalles

Definición de Correlación

Definición de Correlación Definición de Correlación En ocasiones nos puede interesar estudiar si existe o no algún tipo de relación entre dos variables aleatorias: Estudiar cómo influye la estatura del padre sobre la estatura del

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Aniel Nieves-González () LSP 1 / 16 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por departamento. La v.a. dependiente

Más detalles

ANÁLISIS ESTADÍSTICO CORRELACIÓN LINEAL

ANÁLISIS ESTADÍSTICO CORRELACIÓN LINEAL ANÁLISIS ESTADÍSTICO CORRELACIÓN LINEAL Jorge Fallas jfallas56@gmail.com 2010 1 Temario Concepto de correlación Diagramas de dispersión Correlación: dirección, intensidad Coef. Correlación lineal de Pearson

Más detalles

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X 2 )

EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X 2 ) Jesús Eduardo Pulido Guatire, marzo 010 EJEMPLO PRÁCTICO DE CORRELACIÓN Y CHI-CUADRADO (X ) EJEMPLO PRÁCTICO DE CORRELACIÓN Con base en la fundamentación teórica de la correlación lineal y el Archivo de

Más detalles

Muestreo e intervalos de confianza

Muestreo e intervalos de confianza Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Caso particular: Contraste de homocedasticidad

Caso particular: Contraste de homocedasticidad 36 Bioestadística: Métodos y Aplicaciones 9.5.5. Caso particular: Contraste de homocedasticidad En la práctica un contraste de gran interés es el de la homocedasticidad o igualdad de varianzas. Decimos

Más detalles

Inferencia 1. Solución: 60

Inferencia 1. Solución: 60 Inferencia 2008 EJERCICIO 1A Se desea estimar la proporción de individuos zurdos en una determinada ciudad. Para ello se toma una muestra aleatoria de 300 individuos resultando que 45 de ellos son zurdos.

Más detalles

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles.

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles. completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos. DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles