Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:"

Transcripción

1 Integral Lapso /5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Fecha: OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7 y 8. El contenido de nicotina, en miligramos, de 10 cigarrillos de dos marcas diferentes se registraron como sigue: Marca A Marca B , (a) Cuál marca de cigarrillos tiene en promedio mayor cantidad de nicotina? (b) Cuál marca de cigarrillos tiene menor variabilidad? Observación: Justifique completamente sus respuestas. Para lograr el objetivo 2 debe responder correctamente las dos partes en que se encuentra dividida la pregunta (a) Para ver cuál marca de cigarrillos tiene mayor promedio de nicotina, se comparan los promedios para las dos marcas de cigarrillos. Marca A: La media o promedio es, Marca B: La media o promedio es, n=10 1 X i = n i=1 n=10 1 X i = n i=1 18, , = 1, 838 = 1, 664 Comparando estos resultados, observamos que la marca de cigarrillos que posee un promedio mayor, es la marca de cigarrillos A. (b) Para visualizar cuál de las dos marcas de cigarrillo tiene menor variabilidad, calculamos la varianza muestral para cada marca de cigarrillos y las comparamos. Marca A: s 2 = n=10 i=1 (X i X) 2 n 1 = 0, 14744

2 Integral Lapso /5 Marca B: s 2 = n=10 i=1 (X i X) 2 n 1 = 0, La marca de cigarrillos con menor variabilidad es la marca de cigarrillos B. OBJ. 3 PTA 2 En una empresa del total de trabajadores, el 20 % son mujeres, el 8 % desempeña algún puesto directivo y el 6 % son mujeres y desempeña algún puesto directivo. (a) Qué porcentaje de los trabajadores son mujeres y no desempeña ningún cargo directivo? (b) Qué porcentaje de los trabajadores no es directivo ni mujer? (c) Si la empresa tiene 150 trabajadores, cuántos son directivos y hombres? Observación: Para lograr el Objetivo 3 debe responder correctamente los tres literales de la pregunta Sea, A el evento los trabajadores son mujeres y B el evento los trabajadores desempeñan algún puesto directivo. Entonces P(A) = 0, 2, P(B) = 0, 08 y P(A B) = 0, 06. (a) P(A B c ) = P[A (A B)] = P(A) P(A B) = 0, 2 0, 06 = 0, 14 (b) P(A c B c ) = P[(A B) c ] = 1 P(A B) = 1 [P(A) + P(B) P(A B)] = 1 0, 22 = 0, 78 (c) P(A c B) = P[B (A B)] = P(B) P(A B) = 0, 08 0, 06 = 0, 02 OBJ. 4 PTA 3 Luego, P(A c B) = cardinal (Ac B), despejando cardinal (Ω) cardinal (A c B) = P(A c B) cardinal (Ω) = 0, 02(150) = 3 Una compañía constructora emplea a 2 ingenieros de ventas. El ingeniero 1 hace el trabajo de estimar costos en 70 % de las cotizaciones solicitadas a la empresa. El ingeniero 2 lo hace para el 30 % de tales cotizaciones. La probabilidad de un error cuando el ingeniero 1 hace el trabajo es de 0, 02; mientras que la probabilidad de un error en el trabajo del ingeniero 2 es de 0, 06. Suponga que llega una solicitud de cotización y ocurre un error al estimar los costos, cuál es la probabilidad que el error lo halla cometido el ingeniero 1?

3 Integral Lapso /5 Sea A 1 el evento el Ingeniero 1 estima los costos de la cotización, A 2 el evento el Ingeniero 2 estima los costos de la cotización, y B el evento se comete un error en la cotización. Se tiene que: Luego por el Teorema de Bayes, se tiene: P(A 1 B) = P(A 1 ) = 0, 70 P(A 2 ) = 0, 30 P(B A 1 ) = 0, 02 P(B A 2 ) = 0, 06 P(A 1 )P(B A 1 ) P(A 1 )P(B A 1 ) + P(A 2 )P(B A 2 ) = 0, 014 0, 014 = 0, , 018 0, 032 = 0, 4375 OBJ. 5 PTA 4 Sea X el número de siniestros en un día que se reportan en una pequeña compañía de seguros de automóviles. Suponga que X tiene la siguiente distribución de probabilidad: (a) Encuentre el número esperado de siniestros. x (%) P(x) 0, 01 0, 05 0, 16 0, 37 0, 25 0, 16 (b) Calcule la esperanza de la variable aleatoria Z = 2X + 3 Observación: Para lograr el Objetivo 5 debe responder correctamente los dos literales de la pregunta (a) E(X) = (0)(0, 01) + (1)(0, 05) + (2)(0, 16) + (3)(0, 37) + (4)(0, 25) + (5)(0, 16) = 3, 28 (b) Utilizando las propiedades de la esperanza se tiene, E(Z) = E(2X + 3) = 2E(X) + 3 = 9, 56 OBJ. 6 PTA 5 Cada año ocurren en promedio de 15 accidentes aéreos. Calcula la probabilidad: (a) de que no haya accidente en un mes. (b) de que haya más de un accidente en un mes. Observación: Para lograr el Objetivo 6 deber responder correctamente los dos literales de la pregunta

4 Integral Lapso /5 Se trata de una distribución de Poisson de parámetro λ = 15 para un año. El número medio de accidentes aéreos por un mes es de λ = 15/12 = 1, 25. Se desea: (a) (b) P(X = 0) = (1, 25)0 e 1,25 0! = 0, 2865 P(X > 1) = 1 P(X 1) = 1 [P(X = 0) + P(X = 1)] [ (1, 25) 0 e 1,25 = 1 + (1, 25)1 e 1,25 ] 0! 1! = 1 0, 6446 = 0, 3554 OBJ. 7 PTA 6 La cantidad promedio de precipitación pluvial captada por la estación ubicada en la UCV, durante el mes de enero es 20, 1 mm. Suponga que se puede usar una distribución normal y que la desviación estándar es de 6, 8 mm (a) Qué porcentaje del tiempo la precipitación pluvial en enero es mayor que 30 mm? (b) Qué porcentaje del tiempo la precipitación pluvial en enero se encuentre entre el 15 mm y 40 mm? Observación: Para lograr el objetivo 7 debe responder correctamente ambas partes de la pregunta Sea X la cantidad promedio de precipitación pluvial en el mes de enero, X se distribuye N(20, 1; 6, 8) (a) (b) ( ) X 20, , 1 P(X > 30) = P > 6, 8 6, 8 = P(Z > 1, 46) = 0,0721 ( 15 20, 1 P(15 < X < 40) = P < X 20, 1 < 6, 8 6, 8 = P ( 0, 75 < Z < 2, 93) = P (Z < 2, 93) P (Z < 0, 75) = [1 P (Z > 2, 93)] P (Z > 0, 75) = (1 0, 0017) 0, 2266 = 0, 7717 ) 40 20, 1 6, 8

5 Integral Lapso /5 OBJ. 8 PTA 7 La vida de cierto tipo de dispositivo tiene una tasa de falla anunciada de 1 β falla es constante y se aplica la distribución exponencial, = 0, 01 por hora. La tasa de (a) Cuál es el tiempo medio de operación antes del fallo? (b) Cuál es la probabilidad de que pasen no más de 200 horas antes de que se observe una falla? Observación: Para lograr el objetivo 8 debe responder correctamente ambas partes de la pregunta (a) El tiempo medio de operación antes del fallo es de µ = β = 1/0, 01 = 100. (b) La probabilidad de que pasen no más de 200 horas antes de que se observe una falla es de, P(X < 200) = P(X 200) = 1 e 200/100 = 1 0, = 0, FIN DEL MODELO DE RESPUESTAS

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

PROCESO DE NACIMIENTO PURO Y MUERTE PURA

PROCESO DE NACIMIENTO PURO Y MUERTE PURA PROCESO DE NACIMIENTO PURO Y MUERTE PURA En esta sección consideraremos dos procesos especiales. En el primer proceso, los clientes llegan y nunca parten y en el segundo proceso los clientes se retiran

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central

Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Objetivos: Al terminar este capítulo podrá: 1. Explicar por qué una muestra es la única forma posible de tener conocimientos acerca de una

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Teoría de la decisión

Teoría de la decisión Unidad 7.. Definiciones. Muestreo aleatorio y estadístico. Estadísticos importantes. Técnica de muestreo. Transformación integral Muestreo: selección de un subconjunto de una población ) Representativo

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2 Curso de nivelación Estadística y Matemática Cuarta clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2016 Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

MANTENIMIENTO INDUSTRIAL.

MANTENIMIENTO INDUSTRIAL. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL MANTENIMIENTO INDUSTRIAL. Realizado por: Ing. Danmelys Perozo UNIDAD II: ESTADÍSTICAS DE FALLAS

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAD24.500919 HORAS TEORÍA: 4.5 SEMESTRE: CUARTO HORAS PRÁCTICA: 0 REQUISITOS:

Más detalles

Tema 1: Distribuciones en el muestreo

Tema 1: Distribuciones en el muestreo Tema 1: Distribuciones en el muestreo 1 (transparencias de A. Jach http://www.est.uc3m.es/ajach/) Muestras aleatorias Estadísticos Concepto de distribución muestral Media muestral Distribución muestral

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

ANÁLISIS DE DATOS. Jesús García Herrero

ANÁLISIS DE DATOS. Jesús García Herrero ANÁLISIS DE DATOS Jesús García Herrero ANALISIS DE DATOS EJERCICIOS Una empresa de seguros de automóviles quiere utilizar los datos sobre sus clientes para obtener reglas útiles que permita clasificar

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

MODELOS DE PROBABILIDAD

MODELOS DE PROBABILIDAD MODELOS DE PROBABILIDAD Jorge Galbiati Riesco EXPERIMENTOS ALEATORIOS Considere las siguientes situaciones: 1. Se cuenta el número de naves que arriban a un puerto, por día. 2. Se le pregunta a un consumidor

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Generalidades 1. Sea X una variable aleatoria continua con función densidad dada por

Generalidades 1. Sea X una variable aleatoria continua con función densidad dada por Generalidades 1. Sea X una variable aleatoria continua con función dendad dada por kt f ( t ) = 0 1 t en otro caso Determine a) el valor de la constante k b) E(X) y V(X) c) la función de distribución acumulada

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

TALLER N 4 DE ESTADÍSTICA

TALLER N 4 DE ESTADÍSTICA UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 4 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo (heibubu@hotmail.com) Integrante 2 : Rodrigo

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44

Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Procesos de Poisson Fabián Mancilla U. de Santiago de Chile fabian.mancillac@usach.cl Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Introducción En este curso estudiaremos algunos modelos probabiĺısticos

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Universidad Nacional Abierta Matemática III (734) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Matemática III (734) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Segunda Prueba Integral Lapso 2 009-2 734-1/5 Universidad Nacional Abierta Matemática III (734) Vicerrectorado Académico Cód. Carrera: 610-612 - 613 Fecha: 12-12 - 2 009 MODELO DE RESPUESTAS Objetivos

Más detalles

4. Modelos Multivariantes

4. Modelos Multivariantes 4. Curso 2011-2012 Estadística Distribución conjunta de variables aleatorias Definiciones (v. a. discretas) Distribución de probabilidad conjunta de dos variables aleatorias X, Y Función de distribución

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Jueves, 3 de Noviembre de La parte escrita del examen representa el 40 % de la nota y el cuestionario el 60 % restante.

Jueves, 3 de Noviembre de La parte escrita del examen representa el 40 % de la nota y el cuestionario el 60 % restante. Univ. de Alcalá. Estadística 2016-17 Dpto. de Fíca y Matemáticas Biología Jueves, 3 de Noviembre de 2016 N o : studentnumber currentstudent INSTRUCCIONES (LEER ATENTAMENTE). La parte escrita del examen

Más detalles

Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad Licenciatura en Informática IFM - 0429 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. es una representación gráfica que permite visualizar un experimento de pasos múltiples.

DISTRIBUCIONES DE PROBABILIDAD. es una representación gráfica que permite visualizar un experimento de pasos múltiples. es una representación gráfica que permite visualizar un experimento de pasos múltiples. Considere un experimento que consiste en lanzar dos monedas. Defina los resultados experimentales en términos de

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Lista de Ejercicios (Parte 1)

Lista de Ejercicios (Parte 1) ACT-11302 Cálculo Actuarial III ITAM Lista de Ejercicios (Parte 1) Prof.: Juan Carlos Martínez-Ovando 15 de agosto de 2016 P0 - Preliminar 1. Deriva las expresiones de las funciones de densidad (o masa

Más detalles

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 3 DE 2008

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 3 DE 2008 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE 9- TIPO DURACIÓN

Más detalles

Prueba de hipótesis para la diferencia de medias

Prueba de hipótesis para la diferencia de medias Estadística Técnica Prueba de hipótesis para la diferencia de medias Cladera Ojeda, Fernando Conceptos previos Inferencia estadística Población Muestra Parámetro Estadístico Hipótesis estadística Pruebas

Más detalles

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS Primera edición. de esta edición. Fondo Editorial. Universidad San Ignacio de Loyola

Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS Primera edición. de esta edición. Fondo Editorial. Universidad San Ignacio de Loyola Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS 2014. Primera edición de esta edición Fondo Editorial Universidad San Ignacio de Loyola Av. La Fontana 750, La Molina Teléfono: 317-1000 anexo 3705

Más detalles

Examen Extraordinario de Estadística I, 22 de Junio de Grados en ADE, DER-ADE, ADE-INF, FICO, ECO, ECO-DER.

Examen Extraordinario de Estadística I, 22 de Junio de Grados en ADE, DER-ADE, ADE-INF, FICO, ECO, ECO-DER. Examen Extraordinario de Estadística I, de Junio de 1. Grados en ADE, DER-ADE, ADE-INF, FICO, ECO, ECO-DER. NORMAS: 1 Entregar cada problema en un cuadernillo distinto, aunque esté en blanco. Realizar

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

POISSON JUAN JOSÉ HERNÁNDEZ OCAÑA

POISSON JUAN JOSÉ HERNÁNDEZ OCAÑA POISSON JUAN JOSÉ HERNÁNDEZ OCAÑA Distribución de Poisson Cuando una variable discreta se usa para estimar la cantidad de sucesos u ocurrencia en un determinado intervalo de tiempo o espacio es necesario

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico Solución. Curso 016 Ejercicio 1 Suponemos que hay independencia en la concurrencia o no entre las personas. Dado este supuesto y las características

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

PRÁCTICA I. Ejercicios Teóricos

PRÁCTICA I. Ejercicios Teóricos PRÁCTICA I TEORÍA DE LA DECISIÓN BAYESIANA Ejercicios Teóricos Ejercicio. En el caso de dos categorías, en la regla de decisión de Bayes el error condicional está dado por la ecuación (7). Incluso si las

Más detalles

Métodos Estadísticos para la Empresa

Métodos Estadísticos para la Empresa DEPARTAMENTO DE ECONOMÍA APLICADA ESTADÍSTICA Y ECONOMETRÍA Programa de la asignatura: Métodos Estadísticos para la Empresa Segundo Curso Curso Académico 2011/2012 Facultad de Economía y Empresa Grado

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

TALLER 3 ESTADISTICA I

TALLER 3 ESTADISTICA I TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral

Más detalles

DISTRIBUCIÓN DE POISSON

DISTRIBUCIÓN DE POISSON DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad

Más detalles