VARIABLES ALEATORIAS DISCRETAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VARIABLES ALEATORIAS DISCRETAS"

Transcripción

1 VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus

2 Variables Aleatorias Variables Aleatorias Definición: Una variable aleatoria es una función del espacio muestral a la ĺınea de los reales. X : Ω R Ω ω 2 ω 1 ω 4 ω 5 ω R IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 1

3 Variables Aleatorias Variables Aleatorias Ejemplo: Al lanzar dos monedas, Ω = {ss, sa, as, aa}. Suponga que X es una variable aleatoria que corresponde al número de águilas. X(ss) = 0, X(sa) = X(as) = 1, X(aa) = 2 Ω {as} {aa} {ss} {sa} X P(X = 0) = 1 4, P(X = 1) = 1 2, P(X = 2) = 1 4 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 2

4 Variables Aleatorias Variables Aleatorias Notación: Usualmente, letras mayúsculas tales como X, Y, Z, U, V, representan variables aleatorias. Letras minúsculas tales como x, y, z, u, v, w, representan valores particulares de las variables aleatorias. Así que podemos hablar de P(X = x). IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 3

5 Variables Aleatorias Variables Aleatorias Ejemplo: Sea X la suma de los resultados al lanzar dos dados. Entonces tenemos que X ([6, 5]) = 11. Además: P(X = x) = 1/36 si x = 2 2/36 si x = 3. 6/36 si x = 7. 2/36 si x = 11 1/36 si x = 12 0 cualquier otro valor IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 4

6 Ejemplo: Lanzar una moneda. Variables Aleatorias X = { 0 si {s} 1 si {a} Ejemplo: Lanzar un dado. Y = { 0 si {1,3, 5} 1 si {2,4, 6} Para nuestros propósitos, tanto X como Y son lo mismo, dado que: P(X = 0) = P(Y = 0) = 1 2 P(X = 1) = P(Y = 1) = 1 2 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 5

7 Variables Aleatorias Discretas Variables Aleatorias Discretas Definición: Si el número de los posibles valores de una Variable Aleatoria X es finito ó contablemente infinito, entonces X es una variable aleatoria discreta. Ejemplo: Lanzar tres moneda, obtener el número posible de águilas. Se trata de una variable discreta. Ejemplo: Seleccionar en forma aleatoria un punto en [0,1]. Se trata de una variable no discreta. IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 6

8 Función de Probabilidad Función de Probabilidad Definición: Si X es una variable aleatoria discreta, entonces la Función de Probabilidad se define para cada posible x como: f(x) = P(X = x) Definición: El conjunto de todas las parejas [x, f(x)] es la Distribución de Probabilidad. Note que: f(x) 0 x f(x) = 1 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 7

9 Función de Probabilidad Función de Probabilidad Ejemplo: Lanzar 2 monedas. Sea X el número de soles. f(x) = 1/4 para x = 0 1/2 para x = 1 1/4 para x = 2 0 para otro valor IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 8

10 Función de Distribución Acumulada (fda) Función de Distribución Acumulada (fda) Definición: Si X es una variable aleatoria discreta, y función de probabilidad f(x) entonces la fda de X es definida para toda x como F(x) = P(X x), entonces: F(x) = i f(x i ), x i x Ejemplo: Lanzar dos monedas. Sea X el número de soles. 0 si x < 0 1/4 si 0 x < 1 F(x) = 3/4 si 1 x < 2 1 si 2 x IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 9

11 Representación Gráfica Representación Gráfica f(x) 1 F(x) X X Función de Probabilidad y Función de Distribución Acumulada IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 10

12 Propiedades de la fda Propiedades de la fda F(x) es no decreciente en x, esto es, si x 1 < x 2 implica que: F(x 1 ) < F(x 1 ) lim F(x) = 1 x lim F(x) = 0 x IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 11

13 Propiedades de la fda Propiedades de la fda Teorema: P(X > x) = 1 F(x) Demostración: 1 = P(X x) + P(X > x) = F(x) + P(X > x) Teorema: x 1 < x 2 P(x 1 < X x 2 ) = F(x 2 ) F(x 1 ) Demostración: P(x 1 < X x 2 ) = P(X > x 1 X x 2 ) = P(X > x 1 ) + P(X x 2 ) P(X > x 1 X x 2 ) = 1 F(x 1 ) + F(x 2 ) 1 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 12

14 Valor Esperado Valor Esperado Definición: El valor esperado ó la media ó el valor promedio de una variable aleatoria discreta X es : µ = E[X] = x xf(x) La media ó valor esperado nos da una indicación de la tendencia central de una variable aleatoria. IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 13

15 Valor Esperado Valor Esperado Ejemplo: Si al lanzar una moneda cargada, sea la VAD X el número de águilas, P(X = 0) = 0.4, P(X = 1) = 0.6, entonces: E[X] = x xp(x = x) = = 0.6 Ejemplo: Al lanzar un dado, X = 1,2,...,6, cada x con una probabilidad de 1 6. Entonces: E[X] = x xf(x) = = 3.5 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 14

16 Valor Esperado Valor Esperado Ejemplo 1 : Un inspector de calidad hace un muestreo un lote que contiene siete componentes; de los cuales tres son defectuosos. El inspector toma una muestra de tres componentes. Encuentre el valor esperado del número de componentes buenos en esta muestra. Sea X el número de componentes buenos. probabilidad de X es: f(x) = ( ) ( 4 3 x ( x ) ), x = 0,1,2, 3. La distribución de 1 Walpole & Myers; Prob. y Estadística para Ings. IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 15

17 Valor Esperado Al realizar los cálculos de la distribución de probabilidad de X, obtenemos: f(0) = 1, f(1) =12, f(2) = , f(3) = entonces el valor esperado de X es: ( ) ( ) ( ) ( ) µ = E[X] = = 12 7 = 1.7 Esto es, que la muestra descrita, contendría un promedio de 1.7 componentes buenos. IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 16

18 Valor Esperado de Funciones Valor Esperado de Funciones Teorema: Al realizar un cambio de variable lineal Y = ax + b, donde a y b son constantes, el valor esperado de la nueva variable esta dado por: E[Y ] = ae[x] + b Teorema: El valor esperado de una función de una variable aleatoria discreta, por ejemplo g(x), es: E[g(X)] = x g(x)f(x) Ejemplo: E [ (3X 1) 2] = x (3x 1)2 f(x) IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 17

19 Valor Esperado de Funciones Valor Esperado de Funciones Ejercicio: Sea X un VAD con la siguiente distribución de probabilidad: 1/6 para x = 3 1/2 para x = 6 f(x) = 1/3 para x = 9 0 para otro valor Encuentre E[g(X)], donde g(x) = (2X + 1) 2. Nota: E[g(X)] también se puede simbolizar como µ g (X) IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 18

20 Momentos Momentos Definición: El momento k de una variable aleatoria discreta X es: E[X k ] = x x k f(x) Definición: El momento central k de una variable aleatoria discreta X es: E [ (X µ) k] = (x µ) k f(x) x IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 19

21 Varianza Varianza La varianza de la variable aleatoria discreta X es el segundo momento central. Var(X) = E [ (X µ) 2] = x (x E[X]) 2 f(x) La varianza es un parámetro que describe la disperción de la VA. Notación: σ 2 = σ 2 X = Var(X) = V(X). Definición: La desviación estándar de la variable aleatoria discreta X es: σ X = + Var(X) IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 20

22 Varianza Varianza Teorema: Demostración: Var(X) = E[X 2 ] (E[X]) 2 Var(X) = E [ (X µ) 2] = E[X 2 2µX + µ 2 ] = E[X 2 ] 2µE[X] + µ 2 = E[X 2 ] µ 2 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 21

23 Varianza Varianza Ejemplo: Si al lanzar una moneda cargada, sea la VAD X el número de águilas, P(X = 0) = 0.3, P(X = 1) = 0.7, entonces: E[X] = x xp(x = x) = = 0.7 Cabe recalcar E[X] = 0.7, de hecho, para cualquier k. E[X k ] = 0 k k 0.7 = 0.7 Así que: Var(X) = E[X 2 ] (E[X]) 2 = = 0.21 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 22

24 Varianza Varianza Ejercicio: Sea la VAD X el no. de partes defectuosas al sacar una muestra de tres de una ĺınea de producción, con la siguiente distribución de probabilidad: 0.51 para x = para x = 1 f(x) = 0.10 para x = para x = 3 0 para otro valor IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 23

25 Varianza Varianza Ejercicio: Sea la VAD X el no. de partes defectuosas al sacar una muestra de tres de una ĺınea de producción, con la siguiente distribución de probabilidad: 0.51 para x = para x = 1 f(x) = 0.10 para x = para x = 3 0 para otro valor µ =0(0.51) + 1(.38) + 2(0.1) + 3(0.01) = 0.61 E[X 2 ] =0(0.51) + 1(.38) + 4(0.1) + 9(0.01) = 0.87 Var(X) =0.87 (0.61) 2 = IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 24

26 Varianza de una Función Lineal Varianza de una Función Lineal Teorema: Var(aX + b) = a 2 Var(X) Ejemplo: En el caso anterior de la moneda cargada. E[X] = 0.7; Var(X) = 0.21 Sea Y = g(x) = 4X + 5, entonces: E[Y ] = E[4X + 5] = 4E[X] + 5 = 7.8 Var(Y ) = Var(4X + 5) = 16 Var(X) = 3.36 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 25

27 Varianza de una Función Varianza de una Función Teorema: Sea X una VAD con distribución de probabilidad f(x). La varianza de la variable aleatoria g(x) es: σ 2 g(x) = E { [g(x) µ g(x) ] 2} = x [g(x) µ g(x) ] 2 f(x) La utilidad de este teorema se destaca cuando g(x) no es una transformación lineal de X. IPN UPIICSA c 2004 Juan C. Gutiérrez Matus 26

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Tema 2: Magnitudes aleatorias

Tema 2: Magnitudes aleatorias Facultad de Economía y Empresa 1 Prácticas Tema.- Magnitudes aleatorias Tema : Magnitudes aleatorias DEMANDA La demanda de cierto artículo es una variable aleatoria con la siguiente distribución: Número

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Tema 4: Variable aleatoria. Métodos Estadísticos

Tema 4: Variable aleatoria. Métodos Estadísticos Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como

Más detalles

Unidad Temática 3 UT3-1: Variable Aleatoria

Unidad Temática 3 UT3-1: Variable Aleatoria Autoevaluación UT3 Unidad Temática 3 UT3-1: Variable Aleatoria Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza.

Más detalles

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?

X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo? Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja

Más detalles

En muchos estudios no estamos interesados en saber cual evento ocurrió, sino en

En muchos estudios no estamos interesados en saber cual evento ocurrió, sino en Capítulo 3 Variable Aleatoria 3.. Introducción En muchos estudios no estamos interesados en saber cual evento ocurrió, sino en el número de veces que ha ocurrido un evento. Por ejemplo, al lazar dos monedas,

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Variables aleatorias múltiples

Variables aleatorias múltiples Chapter 4 Variables aleatorias múltiples 4.. Distribución conjunta y marginal Definición 4.. Un vector aleatorio n-dimensional es una función que va de un espacio muestral S a un espacio euclediano n-dimensional

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

03 Variables aleatorias y distribuciones de probabilidad

03 Variables aleatorias y distribuciones de probabilidad 03 Variables aleatorias y distribuciones de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Variables aleatorias discretas: función

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

Vectores aleatorios. Estadística I curso 2008 2009

Vectores aleatorios. Estadística I curso 2008 2009 Vectores aleatorios Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 En numerosas ocasiones estudiamos más de una variable asociada a

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

TEOREMA DEL LÍMITE CENTRAL

TEOREMA DEL LÍMITE CENTRAL Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Unidad III Variables Aleatorias Unidimensionales

Unidad III Variables Aleatorias Unidimensionales Unidad III Variables Aleatorias Unidimensionales En el capítulo anterior se examinaron los conceptos básicos de probabilidad con respecto a eventos que se encuentran en un espacio muestral. Los experimentos

Más detalles

VARIABLE ALEATORIA. Una variable aleatoria discreta es el modelo teórico de una variable estadística discreta (con valores sin agrupar).

VARIABLE ALEATORIA. Una variable aleatoria discreta es el modelo teórico de una variable estadística discreta (con valores sin agrupar). VARIABLE ALEATORIA VARIABLE ALEATORIA DISCRETA VARIABLE ALEATORIA CONTINUA DISTRIBUCIÓN DE PROBABILIDAD. PROBABILIDAD INDUCIDA. FUNCIÓN DE DISTRIBUCIÓN EN VARIABLE DISCRETA FUNCIÓN DE DISTRIBUCIÓN EN VARIABLE

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Tema 4 Variables Aleatorias

Tema 4 Variables Aleatorias Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Descriptiva y Probabilidad

Descriptiva y Probabilidad Estadística Descriptiva y Probabilidad (Teoría y problemas) 3 a Edición Autores I. Espejo Miranda F. Fernández Palacín M. A. López Sánchez M. Muñoz Márquez A. M. Rodríguez Chía A. Sánchez Navas C. Valero

Más detalles

Teoría de la decisión

Teoría de la decisión Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

3 PROBABILIDAD Y DISTRIBUCION NORMAL

3 PROBABILIDAD Y DISTRIBUCION NORMAL 3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.

Más detalles

03 Variables aleatorias y distribuciones de probabilidad

03 Variables aleatorias y distribuciones de probabilidad 03 Variables aleatorias y distribuciones de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Variables aleatorias discretas: función

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS.

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Estadística Tema 4 Curso /7 Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Objetivos Conceptos: Conocer los siguientes modelos discretos de probabilidad: uniforme, binomial, geométrico y Poisson. De cada

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

03 Variables aleatorias y distribuciones de probabilidad. Contenido. Variable aleatoria

03 Variables aleatorias y distribuciones de probabilidad. Contenido. Variable aleatoria 03 Variables aleatorias y distribuciones de probabilidad Contenido Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Variable aleatoria Sea Ω un espacio muestral.

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 2.1. Variables aleatorias: funciones de distribución,

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

4. CONCEPTOS BASICOS DE PROBABILIDAD

4. CONCEPTOS BASICOS DE PROBABILIDAD 4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad

Más detalles

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA Deberán apoyarse en los ejercicios resueltos en clase marcados con el símbolo E Los conceptos de probabilidad, fenómeno aleatorio, determinista,

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Tema 5 Variables aleatorias: distribuciones de probabilidad y características.

Tema 5 Variables aleatorias: distribuciones de probabilidad y características. Tema 5 Variables aleatorias: distribuciones de probabilidad y características. 1. Introducción Según se ha reflejado hasta el momento, el espacio muestral asociado a un experimento aleatorio puede ser

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES 9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES Objetivo Introducir la idea de la distribución conjunta de dos variables discretas. Generalizar las ideas del tema 2. Introducir la distribución normal

Más detalles