Distribuciones de Probabilidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Distribuciones de Probabilidad"

Transcripción

1 Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica y algunos de sus usos. Los eventos se pueden representar por medio de funciones que toman valores en los números reales. Para ilustrar esta idea considere el siguiente ejemplo. Ejemplo: Un ingeniero de producción está interesado en determinar la probabilidad de que un cierto artículo de una línea de producción este defectuoso. Para tratar de determinar esta probabilidad, toma al azar tres artículos. Determine el espacio muestral. Solución: El experimento consiste en tomar al azar tres artículos. Suponga que D denota una elección de un artículo defectuoso y N un artículo no defectuosos; así, { } El ingeniero está interesado en el número de defectuosos en los tres seleccionados, represente este número por medio de la letra X. Observe que cada punto muestral representa el evento de escoger defectuosos; por ejemplo, el punto, quiere decir que no se tomó ningún defectuoso, por lo tanto ; el punto quiere decir que los tres artículos están defectuosos, por lo tanto ; de esta manera los posibles valores de X serán 0, 1, 2, 3. Una Variable Aleatoria es una función definida en un espacio muestral S que asigna a cada resultado del experimento un valor real. Usualmente las denotamos con letras mayúsculas (X ; Y ; Z ; T; etc.). Así,

2 Utilizando esta notación de funciones, se tiene que X se puede pensar de la siguiente forma, Al conjunto de todos los posibles resultados de una variable aleatoria se le llamará Rango de la variable y es usualmente denotado Si una variable aleatoria solamente puede tomar un número finito o contable de valores, se dice que la variable aleatoria es discreta. Si una variable aleatoria puede tomar cualquier valor de un intervalo real, se dice que la variable aleatoria es continua. Ejemplos: Algunos ejemplos de variables aleatorias pueden ser: 1. X= # de artículos defectuosos en una muestra de tamaño n. 2. X= # de bacterias por unidad de área. 3. X= tiempo que tardan en atender en una ventanilla de un hospital. 4. X= ganancias en pesos de unas acciones. 5. X=calificaciones en un examen de admisión 6. X=Número de llamadas hasta que un cliente adquiere un producto

3 Ejemplo: Tres monedas no cargadas son lanzadas al tiempo. Hallar el espacio muestral S y analice la variable aleatoria X: el # de caras observadas. Solución: El espacio muestral está dado por: { } La variable aleatoria de interés es X: # caras en cada lanzamiento. En este caso los valores que se pueden observar en cuanto al número de caras son { }. Si se denota por el conjunto de todos los posibles valores que toma la v.a X, de tiene { }. Solución: Podemos escribir Donde,, etc.

4 Ejemplo: Se lanzan un par de dados no cargados. Hallar el espacio muestral y analizar las variables aleatorias X: suma de los 2 resultados y Y: diferencia entre los dos resultados. Solución: El espacio muestral para este experimento es: { } Para la variable aleatoria X, que corresponde a la suma de los dos resultados, la asignación para los diferentes pares de resultados se muestra así: En este caso X toma los valores de { variable aleatoria X, está dado por }. De esta manera, el rango de la { } Para la variable aleatoria Y: diferencia entre los dos resultados, se tiene que: Así: { } Diferentes variables implican espacios de valores diferentes

5 Otros ejemplos: Un grupo de n sujetos es sometido a cierto tratamiento y después de un tiempo se registra cuantos logran mejorar con dicho tratamiento. Sea X la variable aleatoria que cuenta cuantos sujetos mejoran con el tratamiento. Entonces el rango de X será { }. En una gran población se encuestan de manera aleatoria sujetos hasta encontrar el primero que responde afirmativamente a una pregunta de interés. Si X es la variable aleatoria que cuenta el número de sujetos encuestados hasta encontrar el primero que responde afirmativamente, entonces el rango de X está dado por { }. De la producción diaria de jabones se escoge uno al azar y se mide su PH. Sea X: el PH del jabón. El rango de la variable aleatoria X es cualquier valor entre 0 y 14. [ ]. El desgaste de una llanta en un periodo de un año es una variable aleatoria. Si X es la variable aleatoria que representa el desgaste en décimas de milímetros,, donde a representa la profundidad mínima de la llanta estando nueva. Estos ejemplos representan variables las cuales son observadas en dos tipos de escalas las cuales implican Conteos o Mediciones. A las primeras se les conoce como Variables Aleatorias Discretas, a las segundas como Variables Aleatorias Continuas. La diferencia principal entre ellas, es que para las primeras, el rango es un conjunto contable (discreto o numerable); en las segundas, el rango es un intervalo o la unión de intervalos reales. Es posible asignar una probabilidad de que la variable aleatoria tome un valor fijo. Para ilustrar esta posibilidad considere el ejemplo anterior del ingeniero de producción.

6 Ejemplo: Un ingeniero de producción está interesado en determinar la probabilidad de que un cierto artículo de una línea de producción este defectuoso. Para tratar de determinar esta probabilidad, toma al azar tres artículos. Bajo estas condiciones, halle la distribución de probabilidades de la variable X = # de defectuosos entre los tres tomados. Solución: La variable aleatoria puede tomar valores X = 0, 1, 2, 3 (es discreta). Observe que cada punto muestral tiene la misma posibilidad de ocurrir, por lo tanto tiene sentido asignar una probabilidad de a cada uno de ellos. Esta distribución de probabilidades se puede expresar por medio de la siguiente tabla: X Observe que la suma de probabilidades asignadas a la variable X es igual a uno y además todas ellas son positivas.

7 Función de probabilidad de una v.a. Discreta La función de distribución de probabilidad (que se abreviará de ahora en adelante como f.d.p) se define como: la cual satisface:,, para todos los valores de la v.a X Observe que la distribución de probabilidad de la v.a del ejemplo anterior satisface estas condiciones. Función de distribución acumulada (f.d.a o en inglés c.d.f) para variables aleatorias discretas Esta función es útil para determinar funciones de distribución de probabilidad de variables aleatorias discretas así como para determinar el valor probabilístico que se tiene cuando una variable aleatoria alcanza un valor fijo. Definición. La función de distribución acumulada, la cual se denota por, de una variable aleatoria discreta X, cuya función de distribución de probabilidad es, se define como,

8 Esta expresión quiere decir que para hallar la probabilidad de que la variable aleatoria X sea menor o igual a x se deben sumar todas las probabilidades asignadas a todos los valores de la variable menores o iguales a x. Ejemplo: Una póliza de seguro de viajes paga 1000 dólares al cliente en caso de robo o daño. Calcule la f.d.a de la variable aleatoria: pago por reclamación o daño, asumiendo que la probabilidad de robo o daño es. Solución: Sea X: Pago por reclamación por robo o daño. Los valores posibles de esta v.a. La f.d.p de esta v.a. es: X Usando esta f.d.p se puede hallar la f.d.a: { Gráficamente:

9 Note que la f.d.a de una v.a discreta es una función escalonada y el tamaño de los saltos de esta fuió so iguales a la proailidad de la v.a e ese puto. Propiedades: Si Ejemplo: Se lanza un dado no cargado. Sea X: resultado del lanzamiento del dado, halle la f.d.a. Solución: Si Si Si Si Si Si Si La distribución acumulada para X, puede escribirse como: { [

10 Tarea 014 Suponga que una v.a X tiene una f.d.p dada por, X Halle la función de distribución acumulada de la variable X y grafíquela Variables Aleatorias Continuas Una variable aleatoria se dice continua si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Por ejemplo: medición de la corriente de un alambre, longitud de partes desgastados en una pieza, tiempo de duración de una bombilla, tiempos de espera, estatura, masa. Definición: Sea X una variable aleatoria continua. La distribución acumulada para la variable aleatoria X, se define igual al caso discreto. Esta función resulta ser continua en Si existe una función tal que para todo x donde dicha derivada exista, entonces es llamada Función de Densidad de Probabilidad o f.d.p (en inglés p.d.f).

11 Por el teorema fundamental del cálculo se tiene que: Propiedades de f 1. ; La función de densidad es la derivada de la función de distribución. Si A = [a, b] con, entonces Por la propiedad 3, se tiene que: Es decir, la probabilidad en un punto es cero. De este resultado se tiene que: Como, entonces, el cálculo de probabilidad se reduce a calcular el área bajo en el rango de interés.

12 Cálculo de probabilidad para v.a. continuas. Propiedades de y Si

13 Ejemplo: Sea X una v.a. cuya función de densidad viene dada por función de distribución:, calcule su { Calculamos la función de distribución, obteniendo Por tanto, la función de distribución será: { Ejemplo: Sea X la duración en horas de cierto tipo de bombilla eléctrica. La f.d.p para X está dada por: { Calcule: a. b.

14 Solución: Primero hallemos el valor de a. Como: Entonces a. [ ] b. Tarea 015 Consulte la función: Valor esperado de una variable aleatoria. Identifique las propiedades del valor esperado.

15 Valor Esperado de una Variable Aleatoria Una variable aleatoria se dice continua si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad. El valor esperado de X, el cual denotaremos [ ], se define como: [ ] { [ ] es usualmente denotado como o µ. Ejemplo: Se lanza una moneda no cargada dos veces. Sea X: el número de caras obtenidas. Entonces son los valores posibles de esta variable aleatoria. La distribución de probabilidades para X será: X Para este ejemplo, la variable aleatoria de interés es X: número de caras obtenidas. Si la moneda se lanza dos veces, entonces: [ ]

16 Si la moneda se lanza tres veces, entonces: [ ] ( ) ( ) ( ) ( ) Propiedades del Valor Esperado Sea a, b números reales y sea X una variable aleatoria (Discreta o Continua). 1. [ ] 2. [ ] [ ] 3. Si es una función de variable aleatoria X entonces: [ ] { Nota: Sea. La Varianza de X, la cual se denota [ ] o o simplemente, se define como: [ ] [ ] [ ] [ ]

17 Propiedades de la Varianza Sea a, b números reales y sea X una variable aleatoria (Discreta o Continua). 1. [ ] [ ] [ ] 2. [ ] 3. [ ] [ ] A la raíz cuadrada de oo σ o. [ ] se le llama Desviación Estándar de X y se denotará Ejemplo: La demanda semanal de gas propano (en miles de galones) de una distribuidora en particular es una variable aleatoria X con p.d.p dada por: { [ ] a. Halle la f.d.a para X b. Calcule [ ] y [ ] c. Si [ ] d. Halle la [ ] puede verse como el remanente si no se recibe nuevo suministro

18 Solución: a. { [ ] b. [ ] [ ] ( ) [ ] [ ] [ ] [ ] [ ] [ ] c. [ ] [ ] o se puede urir la deada

19 Ejemplo: Una máquina de llenado de latas es revisada cada hora. Cada lata es sometida a un proceso para determinar el volumen de llenado y verificar si cumple o no los requisitos exigidos. Este proceso se continúa hasta encontrar la primera lata que no cumple con, los requisitos. Sea X: # latas revisadas hasta encontrar la primera que no cumple. Suponga que la proporción de latas que no cumplen las especiaciones es p. Halle [ ]. Solución: Defina los eventos: N: La lata no cumple los requisitos S: La lata si cumple los requisitos El espacio muestral para este experimento está dado por: { } con { } [ ]

20 Ejemplo: La distribución de la cantidad de grava (en toneladas) que se vende una casa de materiales para construcción en una semana específica es una v.a continua X con f.d.p igual a: { a. Halle la La f.d.a de las ventas para cualquier x b. Halle [ ]. [ ]

21 c. Halle [ ] [ ] [ ] ( ) Ejemplo: La variable aleatoria X habla del nivel de seguridad de máquinas centrales de una compañía financiera. La v.a. X puede tomar los valores 30, 40, 50 y 60. Luego de revisar el nivel de seguridad de las máquinas centrales de la compañia, se calcularon las siguientes probabilidades 0.4, 0.2,0.1 y 0.3. Represente en una tabla la función de probabilidad, y la función de distribución de probabilidad,, y determine las siguientes probabilidades: a. b. c. d. e. f. Finalmente encuentre la [ ] y [ ].

22 Solución: Fundición de probabilidad (f.d.p). X Fundición de probabilidad (f.d.a). X a. = 0 b. = c. = d. e. f. =

23 Calculando [ ] X [ ] para el caso discreto la esperanzamatematica es Realice la tabla para poder calcular la varianza y calcule y [ ].

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

CAPÍTULO 6: VARIABLES ALEATORIAS

CAPÍTULO 6: VARIABLES ALEATORIAS Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6.

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6. Distribuciones Discretas de Probabilidad 1 Contenido 1. Variables Aleatorias. 2. Distribuciones Discretas de Probabilidad. 3. Valor Esperado y Varianza. Propiedades. 4. Distribución de Probabilidad Binomial.

Más detalles

1. Experimentos aleatorios

1. Experimentos aleatorios 1. Eperimentos aleatorios La eperimentación es útil porque si se supone que llevamos a cabo ciertos eperimentos bajo condiciones esencialmente idénticas se llegará a los mismos resultados. En estas circunstancias,

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

La distribución bionomial negativa se emplea para determinar el enésimo éxito en la enésima oportunidad o evento

La distribución bionomial negativa se emplea para determinar el enésimo éxito en la enésima oportunidad o evento La distribución bionomial negativa se emplea para determinar el enésimo éxito en la enésima oportunidad o evento Hay que considera que esta distribución es lo contrario de la distribución binomial ya que

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Independencia condicional Como hemos dicho, las probabilidades condicionales tienen las mismas propiedades que las probabilidades no condicionales. Un ejemplo más es el siguiente:

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Algunas veces la ocurrencia de un evento A puede afectar la ocurrencia posterior de otro evento B; por lo tanto, la probabilidad del evento B se verá afectada por el hecho de que

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN BIBLIOGRAFIA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos G. Probabilidad

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidades y stadística Computación Facultad de Ciencias actas y Naturales Universidad de uenos ires na M ianco y lena J Martínez 004 Variables aleatorias continuas jemplo: Con el in de realizar un

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.

Más detalles

1. Teoría de conjuntos

1. Teoría de conjuntos Introducción a la probabilidad Universidad de Puerto Rico ET 3041 Prof. Héctor D. Torres ponte 1. Teoría de conjuntos Definición 1.1. La colección de todos los posibles resultados de un experimento se

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD JUAN JOSÉ HERNÁNDEZ OCAÑA

DISTRIBUCIÓN DE PROBABILIDAD JUAN JOSÉ HERNÁNDEZ OCAÑA DISTRIBUCIÓN DE PROBABILIDAD VARIABLES DISCRETAS Variable aleatoria UNA VARIABLE ALEATORIA ES AQUELLA DONDE LOS RESULTADOS SE PRESENTAN AL AZAR VARIABLE ALEATORIA DISCRETA Es aquella característica que

Más detalles

Muestreo y Distribuciones en el Muestreo

Muestreo y Distribuciones en el Muestreo Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Disponible en el sitio OCW de la Universidad Nacional de Córdoba.

Disponible en el sitio OCW de la Universidad Nacional de Córdoba. OCW - UNC OpenCourseWare I UNC Curso: Estadística I U 4. Variables Aleatorias Autora: Rosanna Casini Cómo citar el material: Disponible en el sitio OCW de la Universidad Nacional de Córdoba. Casini, Rosanna

Más detalles

Capítulo 1. Teoría de la probabilidad Teoría de conjuntos

Capítulo 1. Teoría de la probabilidad Teoría de conjuntos Capítulo 1 Teoría de la probabilidad 1.1. Teoría de conjuntos Definición 1.1.1 El conjunto S de todos los posibles resultados de un experimento aleatorio es llamado el espacio muestral. Un espacio muestral

Más detalles

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD TEMA 20: DEFINICIONES BASICAS DE PROBABILIDAD 1. EXPERIMENTO Un experimento

Más detalles

6 Variables aleatorias independientes

6 Variables aleatorias independientes 6 Variables aleatorias independientes Edgar Acuna ESMA 4 Edgar Acuna Dos variables aleatorias son independientes si para todo a b P[

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

Tema 4 Variables Aleatorias

Tema 4 Variables Aleatorias Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL GUIA DE ACTIVIDADES. UNIDAD I Introducción a la Teoría de Probabilidad. Sistemas Determinísticos: Sistemas que interactúan de

Más detalles

ESTADÍSTICA I, curso Problemas Tema 4

ESTADÍSTICA I, curso Problemas Tema 4 ESTADÍSTICA I, curso 007-008 Problemas Tema 4 1. En un problema de una prueba aplicada a niños pequeños se les pide que hagan corresponder tres dibujos de animales con la palabra que identifica a ese animal.

Más detalles

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos: 1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización

Más detalles

4. CONCEPTOS BASICOS DE PROBABILIDAD

4. CONCEPTOS BASICOS DE PROBABILIDAD 4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

SESION 12 LA DISTRIBUCIÓN BINOMIAL

SESION 12 LA DISTRIBUCIÓN BINOMIAL SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

TALLER 3 ESTADISTICA I

TALLER 3 ESTADISTICA I TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

3 PROBABILIDAD Y DISTRIBUCION NORMAL

3 PROBABILIDAD Y DISTRIBUCION NORMAL 3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Ideas básicas de probabilidad. objetivo Inferencia estadística.

Ideas básicas de probabilidad. objetivo Inferencia estadística. 40 Ideas básicas de probabilidad. objetivo Inferencia estadística. Experimento aleatorio (ε) Diremos que un fenómeno es un experimento aleatorio, cuando el resultado de una repetición es incierto pero

Más detalles

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad

Más detalles

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL Variable discreta.- Es aquella que casi siempre asume solamente un conjunto

Más detalles