Distribuciones de Probabilidad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Distribuciones de Probabilidad"

Transcripción

1 Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica y algunos de sus usos. Los eventos se pueden representar por medio de funciones que toman valores en los números reales. Para ilustrar esta idea considere el siguiente ejemplo. Ejemplo: Un ingeniero de producción está interesado en determinar la probabilidad de que un cierto artículo de una línea de producción este defectuoso. Para tratar de determinar esta probabilidad, toma al azar tres artículos. Determine el espacio muestral. Solución: El experimento consiste en tomar al azar tres artículos. Suponga que D denota una elección de un artículo defectuoso y N un artículo no defectuosos; así, { } El ingeniero está interesado en el número de defectuosos en los tres seleccionados, represente este número por medio de la letra X. Observe que cada punto muestral representa el evento de escoger defectuosos; por ejemplo, el punto, quiere decir que no se tomó ningún defectuoso, por lo tanto ; el punto quiere decir que los tres artículos están defectuosos, por lo tanto ; de esta manera los posibles valores de X serán 0, 1, 2, 3. Una Variable Aleatoria es una función definida en un espacio muestral S que asigna a cada resultado del experimento un valor real. Usualmente las denotamos con letras mayúsculas (X ; Y ; Z ; T; etc.). Así,

2 Utilizando esta notación de funciones, se tiene que X se puede pensar de la siguiente forma, Al conjunto de todos los posibles resultados de una variable aleatoria se le llamará Rango de la variable y es usualmente denotado Si una variable aleatoria solamente puede tomar un número finito o contable de valores, se dice que la variable aleatoria es discreta. Si una variable aleatoria puede tomar cualquier valor de un intervalo real, se dice que la variable aleatoria es continua. Ejemplos: Algunos ejemplos de variables aleatorias pueden ser: 1. X= # de artículos defectuosos en una muestra de tamaño n. 2. X= # de bacterias por unidad de área. 3. X= tiempo que tardan en atender en una ventanilla de un hospital. 4. X= ganancias en pesos de unas acciones. 5. X=calificaciones en un examen de admisión 6. X=Número de llamadas hasta que un cliente adquiere un producto

3 Ejemplo: Tres monedas no cargadas son lanzadas al tiempo. Hallar el espacio muestral S y analice la variable aleatoria X: el # de caras observadas. Solución: El espacio muestral está dado por: { } La variable aleatoria de interés es X: # caras en cada lanzamiento. En este caso los valores que se pueden observar en cuanto al número de caras son { }. Si se denota por el conjunto de todos los posibles valores que toma la v.a X, de tiene { }. Solución: Podemos escribir Donde,, etc.

4 Ejemplo: Se lanzan un par de dados no cargados. Hallar el espacio muestral y analizar las variables aleatorias X: suma de los 2 resultados y Y: diferencia entre los dos resultados. Solución: El espacio muestral para este experimento es: { } Para la variable aleatoria X, que corresponde a la suma de los dos resultados, la asignación para los diferentes pares de resultados se muestra así: En este caso X toma los valores de { variable aleatoria X, está dado por }. De esta manera, el rango de la { } Para la variable aleatoria Y: diferencia entre los dos resultados, se tiene que: Así: { } Diferentes variables implican espacios de valores diferentes

5 Otros ejemplos: Un grupo de n sujetos es sometido a cierto tratamiento y después de un tiempo se registra cuantos logran mejorar con dicho tratamiento. Sea X la variable aleatoria que cuenta cuantos sujetos mejoran con el tratamiento. Entonces el rango de X será { }. En una gran población se encuestan de manera aleatoria sujetos hasta encontrar el primero que responde afirmativamente a una pregunta de interés. Si X es la variable aleatoria que cuenta el número de sujetos encuestados hasta encontrar el primero que responde afirmativamente, entonces el rango de X está dado por { }. De la producción diaria de jabones se escoge uno al azar y se mide su PH. Sea X: el PH del jabón. El rango de la variable aleatoria X es cualquier valor entre 0 y 14. [ ]. El desgaste de una llanta en un periodo de un año es una variable aleatoria. Si X es la variable aleatoria que representa el desgaste en décimas de milímetros,, donde a representa la profundidad mínima de la llanta estando nueva. Estos ejemplos representan variables las cuales son observadas en dos tipos de escalas las cuales implican Conteos o Mediciones. A las primeras se les conoce como Variables Aleatorias Discretas, a las segundas como Variables Aleatorias Continuas. La diferencia principal entre ellas, es que para las primeras, el rango es un conjunto contable (discreto o numerable); en las segundas, el rango es un intervalo o la unión de intervalos reales. Es posible asignar una probabilidad de que la variable aleatoria tome un valor fijo. Para ilustrar esta posibilidad considere el ejemplo anterior del ingeniero de producción.

6 Ejemplo: Un ingeniero de producción está interesado en determinar la probabilidad de que un cierto artículo de una línea de producción este defectuoso. Para tratar de determinar esta probabilidad, toma al azar tres artículos. Bajo estas condiciones, halle la distribución de probabilidades de la variable X = # de defectuosos entre los tres tomados. Solución: La variable aleatoria puede tomar valores X = 0, 1, 2, 3 (es discreta). Observe que cada punto muestral tiene la misma posibilidad de ocurrir, por lo tanto tiene sentido asignar una probabilidad de a cada uno de ellos. Esta distribución de probabilidades se puede expresar por medio de la siguiente tabla: X Observe que la suma de probabilidades asignadas a la variable X es igual a uno y además todas ellas son positivas.

7 Función de probabilidad de una v.a. Discreta La función de distribución de probabilidad (que se abreviará de ahora en adelante como f.d.p) se define como: la cual satisface:,, para todos los valores de la v.a X Observe que la distribución de probabilidad de la v.a del ejemplo anterior satisface estas condiciones. Función de distribución acumulada (f.d.a o en inglés c.d.f) para variables aleatorias discretas Esta función es útil para determinar funciones de distribución de probabilidad de variables aleatorias discretas así como para determinar el valor probabilístico que se tiene cuando una variable aleatoria alcanza un valor fijo. Definición. La función de distribución acumulada, la cual se denota por, de una variable aleatoria discreta X, cuya función de distribución de probabilidad es, se define como,

8 Esta expresión quiere decir que para hallar la probabilidad de que la variable aleatoria X sea menor o igual a x se deben sumar todas las probabilidades asignadas a todos los valores de la variable menores o iguales a x. Ejemplo: Una póliza de seguro de viajes paga 1000 dólares al cliente en caso de robo o daño. Calcule la f.d.a de la variable aleatoria: pago por reclamación o daño, asumiendo que la probabilidad de robo o daño es. Solución: Sea X: Pago por reclamación por robo o daño. Los valores posibles de esta v.a. La f.d.p de esta v.a. es: X Usando esta f.d.p se puede hallar la f.d.a: { Gráficamente:

9 Note que la f.d.a de una v.a discreta es una función escalonada y el tamaño de los saltos de esta fuió so iguales a la proailidad de la v.a e ese puto. Propiedades: Si Ejemplo: Se lanza un dado no cargado. Sea X: resultado del lanzamiento del dado, halle la f.d.a. Solución: Si Si Si Si Si Si Si La distribución acumulada para X, puede escribirse como: { [

10 Tarea 014 Suponga que una v.a X tiene una f.d.p dada por, X Halle la función de distribución acumulada de la variable X y grafíquela Variables Aleatorias Continuas Una variable aleatoria se dice continua si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Por ejemplo: medición de la corriente de un alambre, longitud de partes desgastados en una pieza, tiempo de duración de una bombilla, tiempos de espera, estatura, masa. Definición: Sea X una variable aleatoria continua. La distribución acumulada para la variable aleatoria X, se define igual al caso discreto. Esta función resulta ser continua en Si existe una función tal que para todo x donde dicha derivada exista, entonces es llamada Función de Densidad de Probabilidad o f.d.p (en inglés p.d.f).

11 Por el teorema fundamental del cálculo se tiene que: Propiedades de f 1. ; La función de densidad es la derivada de la función de distribución. Si A = [a, b] con, entonces Por la propiedad 3, se tiene que: Es decir, la probabilidad en un punto es cero. De este resultado se tiene que: Como, entonces, el cálculo de probabilidad se reduce a calcular el área bajo en el rango de interés.

12 Cálculo de probabilidad para v.a. continuas. Propiedades de y Si

13 Ejemplo: Sea X una v.a. cuya función de densidad viene dada por función de distribución:, calcule su { Calculamos la función de distribución, obteniendo Por tanto, la función de distribución será: { Ejemplo: Sea X la duración en horas de cierto tipo de bombilla eléctrica. La f.d.p para X está dada por: { Calcule: a. b.

14 Solución: Primero hallemos el valor de a. Como: Entonces a. [ ] b. Tarea 015 Consulte la función: Valor esperado de una variable aleatoria. Identifique las propiedades del valor esperado.

15 Valor Esperado de una Variable Aleatoria Una variable aleatoria se dice continua si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad. El valor esperado de X, el cual denotaremos [ ], se define como: [ ] { [ ] es usualmente denotado como o µ. Ejemplo: Se lanza una moneda no cargada dos veces. Sea X: el número de caras obtenidas. Entonces son los valores posibles de esta variable aleatoria. La distribución de probabilidades para X será: X Para este ejemplo, la variable aleatoria de interés es X: número de caras obtenidas. Si la moneda se lanza dos veces, entonces: [ ]

16 Si la moneda se lanza tres veces, entonces: [ ] ( ) ( ) ( ) ( ) Propiedades del Valor Esperado Sea a, b números reales y sea X una variable aleatoria (Discreta o Continua). 1. [ ] 2. [ ] [ ] 3. Si es una función de variable aleatoria X entonces: [ ] { Nota: Sea. La Varianza de X, la cual se denota [ ] o o simplemente, se define como: [ ] [ ] [ ] [ ]

17 Propiedades de la Varianza Sea a, b números reales y sea X una variable aleatoria (Discreta o Continua). 1. [ ] [ ] [ ] 2. [ ] 3. [ ] [ ] A la raíz cuadrada de oo σ o. [ ] se le llama Desviación Estándar de X y se denotará Ejemplo: La demanda semanal de gas propano (en miles de galones) de una distribuidora en particular es una variable aleatoria X con p.d.p dada por: { [ ] a. Halle la f.d.a para X b. Calcule [ ] y [ ] c. Si [ ] d. Halle la [ ] puede verse como el remanente si no se recibe nuevo suministro

18 Solución: a. { [ ] b. [ ] [ ] ( ) [ ] [ ] [ ] [ ] [ ] [ ] c. [ ] [ ] o se puede urir la deada

19 Ejemplo: Una máquina de llenado de latas es revisada cada hora. Cada lata es sometida a un proceso para determinar el volumen de llenado y verificar si cumple o no los requisitos exigidos. Este proceso se continúa hasta encontrar la primera lata que no cumple con, los requisitos. Sea X: # latas revisadas hasta encontrar la primera que no cumple. Suponga que la proporción de latas que no cumplen las especiaciones es p. Halle [ ]. Solución: Defina los eventos: N: La lata no cumple los requisitos S: La lata si cumple los requisitos El espacio muestral para este experimento está dado por: { } con { } [ ]

20 Ejemplo: La distribución de la cantidad de grava (en toneladas) que se vende una casa de materiales para construcción en una semana específica es una v.a continua X con f.d.p igual a: { a. Halle la La f.d.a de las ventas para cualquier x b. Halle [ ]. [ ]

21 c. Halle [ ] [ ] [ ] ( ) Ejemplo: La variable aleatoria X habla del nivel de seguridad de máquinas centrales de una compañía financiera. La v.a. X puede tomar los valores 30, 40, 50 y 60. Luego de revisar el nivel de seguridad de las máquinas centrales de la compañia, se calcularon las siguientes probabilidades 0.4, 0.2,0.1 y 0.3. Represente en una tabla la función de probabilidad, y la función de distribución de probabilidad,, y determine las siguientes probabilidades: a. b. c. d. e. f. Finalmente encuentre la [ ] y [ ].

22 Solución: Fundición de probabilidad (f.d.p). X Fundición de probabilidad (f.d.a). X a. = 0 b. = c. = d. e. f. =

23 Calculando [ ] X [ ] para el caso discreto la esperanzamatematica es Realice la tabla para poder calcular la varianza y calcule y [ ].

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 23 de junio de 2016 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3. Ejercicios.....................................

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales: Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es una variable aleatoria.

Más detalles

CAPÍTULO 6: VARIABLES ALEATORIAS

CAPÍTULO 6: VARIABLES ALEATORIAS Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos

Más detalles

Cap. Distribuciones de. probabilidad. discreta. Distribuciones de probabilidad. discreta Pearson Prentice Hall. All rights reserved

Cap. Distribuciones de. probabilidad. discreta. Distribuciones de probabilidad. discreta Pearson Prentice Hall. All rights reserved Cap 6 36 Distribuciones de Distribuciones de probabilidad discreta probabilidad discreta Variables aleatorias Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

1. Experimentos aleatorios

1. Experimentos aleatorios 1. Eperimentos aleatorios La eperimentación es útil porque si se supone que llevamos a cabo ciertos eperimentos bajo condiciones esencialmente idénticas se llegará a los mismos resultados. En estas circunstancias,

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6.

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6. Distribuciones Discretas de Probabilidad 1 Contenido 1. Variables Aleatorias. 2. Distribuciones Discretas de Probabilidad. 3. Valor Esperado y Varianza. Propiedades. 4. Distribución de Probabilidad Binomial.

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Cap. 3 : Variables aleatorias

Cap. 3 : Variables aleatorias Cap. 3 : Variables aleatorias Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 16 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de sistemas,

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

Distribuciones de Probabilidad Discretas

Distribuciones de Probabilidad Discretas Distribuciones de Probabilidad Discretas Algunos experimentos a pesar de ser realizados con objetos totalmente diferentes, tienen en esencia las mismas características; por ejemplo, de la misma forma que

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:

Más detalles

Unidad 1. a. Probabilidades y Estadística

Unidad 1. a. Probabilidades y Estadística Unidad 1 a. Probabilidades y Estadística 1 IN3401 SEMESTRE OTOÑO, 2012 ESTADÍSTICA DESCRIPTIVA (Continuación) 2 Medidas de Tendencia Central Media Geométrica 3 La media geométrica proporciona una medida

Más detalles

VARIABLES ALEATORIAS INTRODUCCIÓN

VARIABLES ALEATORIAS INTRODUCCIÓN DOCENTE: SERGIO ANDRÉS NIETO DUARTE CURSO: ESTADÍSTICA DE LA PROBABILIDAD VARIABLES ALEATORIAS INTRODUCCIÓN Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son

Más detalles

6-1 y. Sec Distribuciones de probabilidad discreta Pearson Prentice Hall. All rights reserved

6-1 y. Sec Distribuciones de probabilidad discreta Pearson Prentice Hall. All rights reserved Sec. 6-1 y 3 6-2 Distribuciones de probabilidad discreta Variables aleatorias Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio Su valor se determina al

Más detalles

1. Variables Aleatorias Discretas

1. Variables Aleatorias Discretas Tema 4: Variables Aleatorias Modelos de Probabilidad 1. Variables Aleatorias Discretas Lo que pretendemos en este tema es transformar el problema de la asignación de probabilidades a otro consistente en

Más detalles

Tema 4: Modelos probabilísticos

Tema 4: Modelos probabilísticos Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN BIBLIOGRAFIA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos G. Probabilidad

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DISCRETA

DISTRIBUCIONES DE PROBABILIDAD DISCRETA Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Combinando métodos descriptivos y probabilidades En este capítulo vamos

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas jemplo: Con el in de realizar un control de calidad en una ábrica de baterías, se mide el tiempo de duración de baterías elegidas al azar y se deine la va : tiempo de duración

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Dagoberto Salgado Horta Variables aleatorias y distribuciones de probabilidad - 1 TALLER VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD

Dagoberto Salgado Horta Variables aleatorias y distribuciones de probabilidad - 1 TALLER VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD Dagoberto Salgado Horta Variables aleatorias y distribuciones de probabilidad - 1 TALLER VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD 1. Sea X la variable aleatoria nivel de colesterol, en mg/dl,

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX} 1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Algunas veces la ocurrencia de un evento A puede afectar la ocurrencia posterior de otro evento B; por lo tanto, la probabilidad del evento B se verá afectada por el hecho de que

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Examen Final A Total puntos: /100. Buena suerte y éxito! Utilice la siguiente información para responder a las preguntas 1 al 5.

Examen Final A Total puntos: /100. Buena suerte y éxito! Utilice la siguiente información para responder a las preguntas 1 al 5. Universidad de Puerto Rico, Recinto de Río Piedras Instituto de Estadística y Sistemas Computarizados de Información Estadísticas para administración de empresas (ESTA 3041) Nombre: Número de estudiante:

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Unicatólica 15 de agosto de 2016 Variables aleatorias Se dice que hemos definido una variable aleatoria para un experimento aleatorio cuando hemos asociado un valor numérico a cada resultado del experimento.

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

La distribución bionomial negativa se emplea para determinar el enésimo éxito en la enésima oportunidad o evento

La distribución bionomial negativa se emplea para determinar el enésimo éxito en la enésima oportunidad o evento La distribución bionomial negativa se emplea para determinar el enésimo éxito en la enésima oportunidad o evento Hay que considera que esta distribución es lo contrario de la distribución binomial ya que

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL GUIA DE ACTIVIDADES. UNIDAD I Introducción a la Teoría de Probabilidad. Sistemas Determinísticos: Sistemas que interactúan de

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved Capítulo 37 Distribución de probabilidad normal 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved La distribución de probabilidad uniforme Hasta ahora hemos

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Independencia condicional Como hemos dicho, las probabilidades condicionales tienen las mismas propiedades que las probabilidades no condicionales. Un ejemplo más es el siguiente:

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera

Más detalles

Tema 6: Modelos probabilísticos

Tema 6: Modelos probabilísticos Tema 6: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos

Más detalles

Variables aleatorias

Variables aleatorias Ejemplo: Suponga que un restaurant ofrecerá una comida gratis al primer cliente que llegue que cumpla años ese día. Cuánto tiene que esperar el restaurant para que la primera persona cumpliendo años aparezca?

Más detalles

N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A

N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A DISTRIBUCIÓN DE PROBABILIDAD Consiste en todos los

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6) TEMA Nº 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Ser capaz de definir correctamente una o más variables aleatorias sobre los resultados de un experimento aleatorio y determinar

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS. VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales: Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Variables aleatorias Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es

Más detalles

Variables aleatorias

Variables aleatorias Capítulo 5 Variables aleatorias 5.1. Introducción Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son valores numéricos. Por ejemplo, si el experimento consiste

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

VARIABLES ALEATORIAS

VARIABLES ALEATORIAS VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento

Más detalles

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos: 1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

(b) V ar X directamente usando la definición. (d) V ar X usando la fórmula abreviada.

(b) V ar X directamente usando la definición. (d) V ar X usando la fórmula abreviada. Ejercicios y Problemas adicionales. Capítulo II 1. La función de masa de probabilidad de X= número de defectos importantes en un elestrodoméstico seleccionado al azar, de un cierto tipo, es x 0 1 2 3 4.

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidades y stadística Computación Facultad de Ciencias actas y Naturales Universidad de uenos ires na M ianco y lena J Martínez 004 Variables aleatorias continuas jemplo: Con el in de realizar un

Más detalles

Tema 1: Estadística descriptiva. Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1

Tema 1: Estadística descriptiva. Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1 Tema 1: Estadística descriptiva Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1 Introducción Objetivo: estudiar una característica o variable en una población. Ejemplos:

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Material introductorio

Material introductorio Material introductorio Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Vanessa Gómez Verdejo Índice general. Variables aleatorias unidimensionales..................................

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #3 Tema: Distribución Discreta Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /2016 Objetivos: Definir la función de probabilidad

Más detalles

PROBABILIDAD. Unidad I Ordenamiento de la Información

PROBABILIDAD. Unidad I Ordenamiento de la Información 1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k

1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k 1. Estadística Definición: La estadística es un ciencia inductiva que permite inferir características cualitativas y cuantitativas de un conjunto mediante los datos contenidos en un subconjunto del mismo.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ) 1 1 x + 1 Sea la función f definida

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles