1. Variables Aleatorias Discretas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Variables Aleatorias Discretas"

Transcripción

1 Tema 4: Variables Aleatorias Modelos de Probabilidad 1. Variables Aleatorias Discretas Lo que pretendemos en este tema es transformar el problema de la asignación de probabilidades a otro consistente en el empleo de ciertas funciones reales de variable real, de forma que la probabilidad de cierto suceso aleatorio vendrá dada por el cálculo de ciertos valores de dichas funciones Definición de Variable aleatoria Sea Ω el espacio muestral asociado a un fenómeno aleatorio. Una variable aleatoria es una función X : Ω X que asocia a cada suceso elemental un número real. El conjunto X se le llamará espacio muestral de la variable aleatoria X y es el conjunto de todos los valores posibles de X. Diremos que una variable aleatoria es discreta si su espacio muestral es un conjunto discreto, es decir, un conjunto finito o bien un conjunto infinito pero numerable. Si el espacio muestral de la variable es infinito no numerable, como el conjunto de puntos de un intervalo real, diremos que la variable aleatoria es continua. En principio trataremos con variables aleatorias discretas. Ejemplo 1.1 Si lanzamos una moneda al aire dos veces y X es el número de caras obtenidas X transforma el espacio muestral original Ω = {(c, c), (x, c), (c, x), (x, x)} en X = {0, 1, 2} Función de Probabilidad La función puntual de probabilidad va a asignar probabilidad a cada punto del espacio muestral de X. Si X es una variable aleatoria discreta, la Función Puntual de Probabilidad o simplemente la Función de Probabilidad es la función que asigna probabilidad a cada uno de los puntos muestrales de X. Es decir, p : X [0, 1] x p(x) = P (X = x) De la definición se derivan las siguientes propiedades de la función de probabilidad: 1. Para cada punto muestral x del espacio muestral X ha de ser 0 p(x) 1 2. La suma de las probabilidades de todos los puntos de X ha de ser igual a 1. Es decir, x X p(x) = 1 Tema 4 Curso Página: 1

2 3. Si A X, podemos calcular la probabilidad del suceso A sumando las probabilidades de los puntos de A, es decir, P (A) = x A p(x) Ejemplo 1.2 Si X =número de caras al tirar dos veces una moneda, su función de probabilidad es 1/4, si x = {0, 2}; p(x) = 1/2, si x = 1; 0, si x / {0, 1, 2}. Se observa claramente como dicha definición cumple con las condiciones anteriores por lo que es una verdadera función de probabilidad. Si A es el suceso Obtener a lo sumo una cara, 1.3. Actividades P (A) = P (X = 0) + P (X = 1) = = Estudiar si las funciones siguientes pueden ser funciones puntuales de probabilidad a) p(x) = 1 si x = 0, 1, 2, 3, 4 y p(x) = 0 en el resto 5 b) p(x) = k si x = 10, 9,..., 9, 10 y p(x) = 0 en el resto c) p(x) = 2x + 1 si x = 1, 2, 3, 4 y p(x) = 0 en el resto Sea X una variable aleatoria con función de probabilidad p(x). Sean los sucesos X > 0 y X [1, 3]. Calcular las probabilidades de dichos sucesos, suponiendo que p(x) fuera cada uno de los casos anteriores Función de Distribución Se define la Función de Distribución de la variable aleatoria discreta X como F (x) = y x p(y) La función F (x), en este caso, acumula la probabilidad asociada al punto muestral x a la de los puntos muestrales menores que x. Si denotamos mediante X x al suceso que consiste en obtener un valor de la variable X menor o igual al valor x, entonces F (x) = P (X x) Ejemplo 1.3 La función de distribución F (x) de la variable X=número de caras al tirar dos veces una moneda es la siguiente. 0 si x < 0; 1/4, si x [0, 1); F (x) = 3/4, si x [1, 2); 1, si x 2. Tema 4 Curso Página: 2

3 2. Esperanza y Varianza de una variable aleatoria discreta Con estos parámetros, que definimos a continuación, pretendemos describir una variable aleatoria respecto a sus características de centralización y dispersión Esperanza Matemática o Media Teórica La Esperanza o Media Teórica de una v.a. E(X) indica un valor teórico al que tendería el valor medio de n realizaciones de X, cuando n tiende a infinito. Para aclarar esto supongamos que X es nuestra ganancia cuando jugamos a un juego de lotería en el que podemos ganar un millón de euros con cierta probabilidad o perder lo invertido en el billete. En una realización concreta ganaremos o perderemos y la esperanza de X sería el valor al que tendería el valor medio de mi ganancia cuando juego un número grande de veces. Se define mediante la siguiente expresión: E(X) = x X xp(x) Ejemplo 2.1 Supongamos que en un juego ganamos 10 euros si al tirar un dado sacamos un cinco o un seis, ganamos 5 si sale un 2 o un 3 o un 4 y perdemos 25 si sale un 1. Si llamamos X a la ganancia obtenida en una jugada, la función de probabilidad de X es 2, si x = 10; 6 3, si x = 5; p(x) = 6 1, si x = 25; 6 0, si x / {10, 5, 25}. cuya esperanza vale: E(X) = = 10 6 que sería el valor medio de nuestras ganancias a largo plazo (en un gran número de jugadas). Ejemplo 2.2 La esperanza de la variable del ejemplo (1.1) vale E(X) = = 1 esto significa que en un gran número de experiencias, el valor medio del número de caras tendería a Varianza y Desviación Típica La varianza de una variable aleatoria X, que representaremos por V (X), y la Desviación Típica, D(X), indicarán el grado de dispersión de los valores de la variable respecto a la esperanza matemática. La Desviación Típica será la raíz cuadrada positiva de la varianza, D(X) = V (X) y tiene la ventaja de que se expresa en la misma unidad que la Tema 4 Curso Página: 3

4 propia variable. Variables con desviación típica pequeña indicará que hay alta probabilidad de observar valores próximos a la esperanza matemática o media teórica E(X). Si denotamos E(X) mediante µ y V (X) mediante σ 2 Definimos V (X) = σ 2 = E((X µ) 2 ) = E(X 2 ) µ 2 y podemos calcularla mediante la siguiente expresión: V (X) = σ 2 = x X x 2 p(x) µ 2 = x X x 2 p(x) ( x X xp(x)) 2 Ejemplo 2.3 La varianza de la variable del ejemplo (1.1) es σ 2 = = 1 2 y su desviación típica es D(X) = σ = Actividades Calcular la esperanza y la varianza en los casos en donde sea posible de las actividades de la sección Modelo Binomial Imaginemos un experimento con dos resultados posibles A y A y P (A) = p conocido. Supongamos que repetimos dicho experimento n veces en idénticas condiciones y de forma que el resultado de una prueba o repetición es independiente del resultado de otra. Sea ahora X=número de éxitos en n repeticiones (pruebas) idénticas e independientes El espacio muestral de la variable es X = {0, 1,..., n} y la función puntual de probabilidad es: { ( n ) p(x) = x p x (1 p) n x, si x X = {0, 1,..., n}; 0, si x / X. En este caso la esperanza y la varianza valen: E(X) = np V (X) = np(1 p) Si la variable X tiene una distribución de probabilidad como la del modelo Binomial de parámetros n =número de pruebas y P (A) = p, lo indicaremos poniendo X B(n, p) Tema 4 Curso Página: 4

5 Actividades 1. Supongamos que tiramos al aire un dado equilibrado 20 veces. Si llamamos X = Nº de seises obtenidos, reconocer que esta variable sigue un modelo Binomial de parámetros n = 20 y p = 1. Sean los sucesos A = Obtener exactamente 4 seises 6 y B= Obtener al menos 4 seises. Expresar las probabilidades de dichos sucesos en términos de la función de probabilidad y la función de distribución de dicha variable. Los valores concretos de probabilidad serán obtenidos con R-Commander. 2. Aporta cinco situaciones experimentales en donde la v.a. X siga una distribución Binomial Modelo de Poisson Supongamos que conocemos el número medio de veces que ocurre el suceso A en una unidad de soporte continuo (tiempo, espacio, volumen, longitud, superficie,...) y que vamos a denotar mediante λ. Decimos que la variable X =número de veces que ocurre A en un intervalo unidad cuyo espacio muestral es X = {0, 1, 2,...}, sigue una distribución de Poisson (también llamada Ley de los Sucesos Raros) de parámetro λ si su función de probabilidad está dada por: { e λ λ x, si x X = {0, 1, 2,...}; p(x) = x! 0, en otro caso. En este caso: E(X) = λ V (X) = λ Si X es una variable cuya distribución de probabilidad es como la del modelo de Poisson, lo indicaremos poniendo X P(λ) donde λ = E(X) es el número medio de veces que ocurre A en un intervalo unidad. Además las probabilidades Binomiales cuando n es grande y p es pequeño se aproximan a las probabilidades de Poisson, haciendo λ = np. Es decir, ( n x )p x (1 p) n x e λ λx, si n, λ = np x! Lo anterior significa que podemos aproximar probabilidades binomiales mediante probabilidades de Poisson cuando n sea suficientemente grande y p pequeño. Tema 4 Curso Página: 5

6 Ejemplo 2.4 En un núcleo urbano de n = personas la probabilidad de infección de cada una de ellas es p = , el número X = Número de infectados sigue un modelo Binomial X B(100000, ) que podemos aproximar a un modelo de Poisson de parámetro λ = np = 2. La probabilidad exacta, según el modelo Binomial, de que en un determinado momento haya más de un infectado es P (X > 1) = 1 P (X = 0) P (X = 1) = = Mientras que aproximando la misma probabilidad por el modelo de Poisson se obtiene P (X > 1) = 1 P (X = 0) P (X = 1) = = (Todas las probabilidades anteriores se calcularon mediante R) Actividades 1. Supongamos que el número medio de microorganismos de cierto tipo visibles al microscopio en cierto volumen v es λ = 7. Expresa en términos de la función de probabilidad o de la función de distribución de la variable X= Nº de microorganismos visibles en el volumen v los sucesos siguientes: a) Observar más de 9 microorganismos b) Observar como mucho 5 microorganismos c) Observar entre 5 y 9 microorganismos 2. Definir cinco situaciones experimentales que se ajusten a un modelo de Poisson. Establecer el parámetro λ en cada caso. 3. Definir cinco situaciones experimentales que se ajusten a un modelo de Binomial pero con aproximación razonablemente buena al modelo de Poisson. Establecer en cada caso los correspondientes parámetros. 3. Variables aleatorias continuas Cuando X es una variable aleatoria continua, por ejemplo X es la medida de cierta magnitud como peso, longitud, área, volumen, tiempo, etc, lo que significa que puede tomar cualquier valor de cierto intervalo de la recta real, no es posible asignar probabilidad punto a punto, sino a intervalos. Es decir, el espacio muestral de una variable aleatoria continua va a ser un intervalo de la recta real o incluso toda la recta real y en este caso los sucesos de interés no son los puntos muestrales aislados sino los intervalos de puntos muestrales, es decir, los sucesos del tipo X (a, b) donde a y b son valores cualesquiera. Para ello necesitamos una función que asigne probabilidad a dichos sucesos. Esta función, llamada función de densidad o curva de densidad, es una función que siempre se halla por encima del eje OX, el área que encierra a lo largo de todo el eje OX vale 1 y la probabilidad que asigna al suceso X (a, b) es el área comprendida entre los valores a y b. Un ejemplo de función de densidad lo vemos en la siguiente gráfica. Tema 4 Curso Página: 6

7 Recordemos que cuando describíamos una muestra de una variable estadística continua lo hacíamos mediante un histograma para agrupar los valores observados en clases de intervalo. El área del rectángulo que se levanta encima de una clase de intervalo representa la frecuencia relativa de dicha clase. Si dado un gran número de observaciones se construye un histograma se obtiene una gráfica que intuitivamente tiende a una curva cuando aumenta el número de observaciones y a la vez se reduce la amplitud de los intervalos. La siguiente sucesión de histogramas se han obtenido mediante muestras de gran tamaño de la variable X y aumentando el número de clases de intervalo para disminuir la amplitud de los mismos, mientras que la curva final representa la función de densidad de X. Normal Distribution: µ = 110, σ = 10 Density Density Density Density Muestras_normales$obs Muestras_normales$obs Muestras_normales$obs x 4. Función de Densidad Si X es continua, la función de densidad de X es una función f(x) que describe cómo se distribuye la probabilidad a lo largo de su espacio muestral, de modo que la probabilidad de que la variable tome un valor dentro de un determinado intervalo es precisamente el área que encierra la función f(x) en dicho intervalo. la Función de Densidad es la función que cumple las siguientes propiedades: f : R R + 1. El área comprendida por debajo de la curva y a lo largo de todo el eje OX vale P (a < X b) = P (a X < b) = P (a < X < b) = P (a X b) y se corresponde con el valor del área limitada bajo la curva f(x) y entre a y b. OJO!: las cuatro probabilidades anteriores son iguales en variables continuas pero no en variables discretas. Tema 4 Curso Página: 7

8 3. Denominamos Función de Distribución de la variable X a la función tal que F : R [0, 1] x F (x) := P (X x) Es decir, la función de distribución asigna a cada x R el área que queda a la izquierda de x bajo la curva de densidad. 4. Usando la Función de Distribución podemos calcular P (a < X b) = P (a X < b) = P (a < X < b) = P (a X b) = F (b) F (a) La siguiente figura ilustra las propiedades anteriores Ejemplo 4.1 Supongamos un instrumento nos ofrece medidas al azar en el intervalo (0, 2). Supongamos que dichas medidas son los valores de una variable aleatoria X con función de densidad f(x) que se representa mediante la expresión f(x) = x si 0 < x < 1, f(x) = 2 x si 1 < x < 2 y f(x) = 0 en el resto y por la siguiente gráfica: Podemos comprobar que esta función es una curva de densidad, puesto que se mantiene siempre por encima del eje OX y el área que encierra a lo largo del mismo vale 1. Si queremos ahora calcular la probabilidad de que X tome valores entre los puntos D y H, tendríamos que calcular el área bajo la curva entre los puntos D y H, es decir la el área sombreada con color rosa. Así pues, P [D < X < H]= área rosa Actividades Usando el ejemplo anterior: 1. Calcular la probabilidad de que el instrumento nos de una medida mayor que Calcular la probabilidad de que el instrumento nos de medidas que no se aleje de 1 en más de Calcular los puntos D y H del ejemplo anterior. Tema 4 Curso Página: 8

9 5. Descripción de variables aleatorias continuas Al igual que las variables aleatorias discretas, las variables aleatorias continuas pueden describirse usando parámetros de centralización, dispersión o de otras características. Por ejemplo, igual que se define la esperanza de X cuando X es discreta sumando valores por probabilidades, también es posible definir E(X) cuando X es continua, salvo que el procedimiento de cálculo implica usar herramientas desconocidas en este nivel, como es la integral definida. Igual ocurre con el cálculo de la varianza o de otros parámetros más complejos. Es por ello que convendremos en describir una variable aleatoria continua X mediante sus dos parámetros más importantes, que son la esperanza de X o media teórica E(X), que también simbolizaremos mediante la letra griega µ, y la desviación típica D(X), que también simbolizaremos mediante la letra griega σ. µ = E(X) es un valor medio (teórico) de la variable y se interpreta como el valor límite o al que tenderían las medias muestrales obtenidas mediante muestras de tamaños muy grandes. La varianza de la variable V (X), que simbolizaremos mediante σ 2 es un parámetro de dispersión pero más se usa la desviación típica σ = D(X) = V (X) que se expresa en la misma unidad que mide la variable X. Ambos parámetros orientan de cómo se concentra el área limitada por la curva de densidad alrededor de la media. Cuando los valores alrededor de la media concentran más área significará que dichos valores tienen mayor probabilidad de ser observados y esto ocurre más cuando la desviación típica sea menor. Por otro lado, podemos hablar de otro parámetro de centralización como es la mediana de la variable X, que simbolizaremos mediante Me(X), que es el punto que divide el área por debajo de la curva en dos mitades iguales. Cuando la curva de densidad es simétrica respecto al punto a, se tiene E(X) = Me(X) = a El siguiente gráfico muestra densidades del mismo tipo pero con distintos valores de media y de varianza. Observar como al variar la media se modifica el centro de la gráfica mientras que al variar la varianza se modifica la concentración del área alrededor de la media, a mayor varianza mayor dispersión y menor concentración del área alrededor de la media. Ejemplo 5.1 Siguiendo con el ejemplo 4.1, podemos apreciar que la densidad es simétrica respecto al punto X = 1, en este caso µ = E(X) = Me(X) = 1. Haciendo los cálculos Tema 4 Curso Página: 9

10 pertinentes D(X) = σ = 0.40 aunque éste parámetro no lo calcularemos en este curso. 6. Modelo Normal La distribución de probabilidad continua más frecuente en experimentos aleatorios, donde se observan magnitudes en poblaciones homogéneas es la Distribución Normal, también llamada Campana de Gauss. Definición 6.1 Decimos que la variable aleatoria X sigue una distribución Normal con E(X) = µ y D(X) = σ si su función de densidad viene dada por que indicaremos poniendo f(x) = 1 2πσ e 1 2 ( x µ σ )2 ; x R X N (µ, σ) La anterior función es una muestra de la complejidad que pueden tener las curvas de densidad a la hora de ser usadas en la práctica para calcular probabilidades. La alternativa es usar programas estadísticos, como R o R-Commander, para resolver los problemas de probabilidad asociados a un modelo de probabilidad como éste. La gráfica de la densidad f(x) es una figura como la que sigue, en la que pueden apreciarse algunas propiedades como las siguientes: y que son: 1. f(x) es simétrica respecto al punto x = µ. 2. f(x) tiene puntos de inflexión en x = µ ± σ 3. La curva se acerca de forma asintótica al eje OX en los valores distantes al punto central µ, es decir, cuanto más nos alejamos de µ más se pega la densidad al eje OX. Tema 4 Curso Página: 10

11 4. Los intervalos de mayor probabilidad se concentran alrededor de la media µ. Concretamente, si X sigue una distribución normal de media µ y desviación típica σ, que lo indicaremos poniendo X N (µ, σ) se tiene: P (µ σ < X < µ + σ) = P (µ 2σ < X < µ + 2σ) = P (µ 3σ < X < µ + 3σ) = tal y como se muestra en la siguiente figura. 7. Aproximación de la distribución Binomial a la Normal La densidad Normal también es posible usarla para calcular probabilidades aproximadas. Concretamente la distribución Binomial B(n, p) puede ser aproximada mediante una distribución normal N (µ = np, σ = np(1 p)) cuando n es grande y p es cercano a 0.5. Es decir, si X B(n, p), entonces X aprox. N (µ = np, σ = np(1 p)) Ejemplo 7.1 Supongamos que la probabilidad de nacer niño es la misma que la de nacer niña y que deseamos calcular la probabilidad de que en 1000 nacimientos se produzcan más de 450 niñas. Si llamamos X= Nº de niñas en 1000 nacimientos, entonces X B(n = 1000, p = 0.5) aprox. N (µ = 500, σ = 250 = 15.81) Calcular mediante el software R la probabilidad deseada 450 P (X > 450) = 1 P (X 450) = p(x) = Tema 4 Curso Página: 11 x=0

12 donde p(x) = ( ) 1000 x 0.5 x x Sin embargo, aproximando por el modelo normal es, usando R: P (X > 450) = Bibliografía 1. Tema 2, sección 2 del texto Estadística para Ciencias Agropecuarias. Autor: Di Riezo, J. A. 2. Capítulo 5, sección 3 y Capítulo 1, sección 4 del texto Estadística Aplicada Básica. Autor: D. S. Moore Tema 4 Curso Página: 12

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Distribución. PROBABILIDAD Tema 2.2: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Distribución. PROBABILIDAD Tema 2.2: Variables aleatorias discretas Denición de Variable aleatoria PROBABILIDAD Tema 2.2: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL

ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL ANEXO.- DISTRIBUCIÓN BINOMIAL. DISTRIBUCIÓN NORMAL. VARIABLES ALEATORIAS Consideremos el experimento de lanzar 3 monedas. Tenemos que su espacio muestral es E CCC, CCX, CXC, XCC, CXX, XCX, XXC, XXX Donde

Más detalles

Tema 2 Modelos de probabilidad

Tema 2 Modelos de probabilidad Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6) TEMA Nº 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Ser capaz de definir correctamente una o más variables aleatorias sobre los resultados de un experimento aleatorio y determinar

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 6 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

Tema 13. Distribuciones de Probabilidad Problemas Resueltos

Tema 13. Distribuciones de Probabilidad Problemas Resueltos Tema 3. Distribuciones de Probabilidad Problemas Resueltos Distribución de Probabilidad. Una variable aleatoria discreta, X, se distribuye como se indica en la siguiente tabla: ( ) a) Halla el valor de

Más detalles

ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas

ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas ESTADÍSTICA INFERENCIAL Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas que toman estrictamente valores enteros,

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Tema 4: Modelos probabilísticos

Tema 4: Modelos probabilísticos Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Bioestadística. Curso Capítulo 3

Bioestadística. Curso Capítulo 3 Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................

Más detalles

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS. VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Variables aleatorias

Variables aleatorias Capítulo 5 Variables aleatorias 5.1. Introducción Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son valores numéricos. Por ejemplo, si el experimento consiste

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer... TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones

Más detalles

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Límite Área de Estadística e Investigación Operativa Mariano Amo Salas y Licesio J. Rodríguez-Aragón

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 6: Distribuciones estadísticas teóricas Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

Estadística Grupo V. Tema 10: Modelos de Probabilidad

Estadística Grupo V. Tema 10: Modelos de Probabilidad Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos

Más detalles

Tema 6: Modelos probabilísticos

Tema 6: Modelos probabilísticos Tema 6: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #3 Tema: Distribución Discreta Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /2016 Objetivos: Definir la función de probabilidad

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

1. Muestreo e Inferencia Estadística

1. Muestreo e Inferencia Estadística Tema 6: Introducción a la Inferencia Estadística Objetivos Introducir los conceptos elementales en esta parte de la asignatura. Tratar con muestras aleatorias y su distribución muestral en ejemplos de

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SS. I

MATEMÁTICAS APLICADAS A LAS CC. SS. I DISTRIBUCIÓN NORMAL Carl Friedrich Gauss (1777-1855), físico y matemático alemán, uno de los pioneros en el estudio de las propiedades y utilidad de la curva normal. MATEMÁTICAS APLICADAS A LAS CC. SS.

Más detalles

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX} 1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,

Más detalles

Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso F. San Segundo.

Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso F. San Segundo. Teorema Central del Límite. Cálculo Numérico y Estadística. Grado en Química. U. de Alcalá. Curso 2014-2015. F. San Segundo. Variables de Bernouilli. Una de las familias de variables aleatorias más básicas

Más detalles

VARIABLES ALEATORIAS INTRODUCCIÓN

VARIABLES ALEATORIAS INTRODUCCIÓN DOCENTE: SERGIO ANDRÉS NIETO DUARTE CURSO: ESTADÍSTICA DE LA PROBABILIDAD VARIABLES ALEATORIAS INTRODUCCIÓN Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son

Más detalles

6.3. Distribuciones continuas

6.3. Distribuciones continuas 144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM

Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy

Más detalles

Estadística con. Práctica 3: Probabilidad. Introducción. 1. Modelos discretos. M. Iniesta Universidad de Murcia

Estadística con. Práctica 3: Probabilidad. Introducción. 1. Modelos discretos. M. Iniesta Universidad de Murcia Estadística con Práctica 3: Probabilidad Introducción En esta práctica vamos a tratar con los modelos de probabilidad más comunes, puesto que ellos pueden describir la mayoría de situaciones eperimentales.

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Cap. Distribuciones de. probabilidad. discreta. Distribuciones de probabilidad. discreta Pearson Prentice Hall. All rights reserved

Cap. Distribuciones de. probabilidad. discreta. Distribuciones de probabilidad. discreta Pearson Prentice Hall. All rights reserved Cap 6 36 Distribuciones de Distribuciones de probabilidad discreta probabilidad discreta Variables aleatorias Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio

Más detalles

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved

Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved Capítulo 37 Distribución de probabilidad normal 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved La distribución de probabilidad uniforme Hasta ahora hemos

Más detalles

UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES

UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES VARIABLE ALEATORIA DISCRETA. Definición. Se dice que una v.a es discreta si el conjunto de todos los valores que puede tomar es un conjunto,

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST. Tema

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

Clase Auxiliar Descripción Informal de un Modelo. 2. Probabilidades

Clase Auxiliar Descripción Informal de un Modelo. 2. Probabilidades 1 Clase Auxiliar 1 1. Descripción Informal de un Modelo Se describen las componentes del modelo, las variables descriptivas y las interacciones entre componentes. Las componentes y sus variables deben

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 23 de junio de 2016 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3. Ejercicios.....................................

Más detalles

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

VARIABLES ALEATORIAS

VARIABLES ALEATORIAS VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento

Más detalles

CAPÍTULO 6: VARIABLES ALEATORIAS

CAPÍTULO 6: VARIABLES ALEATORIAS Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Apuntes de Clases. Modelos de Probabilidad Discretos

Apuntes de Clases. Modelos de Probabilidad Discretos 2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DISCRETA

DISTRIBUCIONES DE PROBABILIDAD DISCRETA Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Combinando métodos descriptivos y probabilidades En este capítulo vamos

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles