DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π
|
|
- Adolfo Vázquez Ramírez
- hace 9 meses
- Vistas:
Transcripción
1 DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal y Gauss y Laplace contemporáneos de él la dedujeron independientemente. En sus orígenes la curva normal se aplico para estudiar la distribución de los errores, es decir las desviaciones respecto al promedio aritmético de hay que también se le conozca como curva normal del error. Es una distribución importante en el sentido de que matemáticamente es un modelo de comportamiento común que frecuentemente encontramos en los fenómenos sociales, económicos, físicos, etc. Lo característico de este tipo de distribución es que su función de densidad es simétrica es decir que la media, mediana y moda de ella coinciden en el mismo valor. La curva normal tiene las siguientes propiedades: 1) La moda que es el punto sobre el eje horizontal donde la curva tiene su máximo, ocurre en x = a la media aritmética. 2) La curva es simétrica alrededor de su eje vertical donde se tiene la media. 3) La curva tiene sus puntos de inflexión en x = a la media aritmética mas ó menos su desviación estándar, es cóncava hacia abajo si X es mayor que su media aritmética la desviación estándar o si x es menor que su media aritmética + su desviación estándar, y es cóncava hacia arriba en cualquier otro punto. 4) La curva normal se acerca al eje horizontal en forma asintótica en cualquiera de las dos direcciones, alejándose de la media. 5) El área total bajo la curva y arriba del eje horizontal es igual a 1. Modelo matemático: f ( x ) = 1 σ 2 π e ( x μ)2 / 2(σ)2 Donde f (x) = Manera para denotar la función. σ² = Varianza. π = μ = Media de la distribución. e = Como podemos observar la expresión matemática de la distribución de probabilidad de la variable normal depende de la media y de la desviación estándar, así como los valores de densidad de la variable X quedan representados por: n ( x ; μ, σ² ).
2 AREAS NOTABLES Si se levantan perpendiculares a una distancia de una, dos y tres veces la desviación estándar de la media a cada uno de los lados, el área comprendida entre las dos perpendiculares, la curva y el eje horizontal es aproximadamente igual a 0.68, 0.95, y respectivamente, o sea que corresponden al 68% %, 95%, y 99.7% del área total. Es importante recalcar que más que una distribución, se tiene una familia de distribuciones donde cada par de valores μ y σ² determinan una función de densidad distinta. La función de densidad de una variable aleatoria normal es complicada y por lo tanto, difícil de calcular probabilidades en ella, el problema aumenta si añadimos la necesidadd de generar tablas, teniendo en cuenta que se tendría que generar una tabla diferente para cada par de valores de μ y σ². La solución de este problema seria transformar sus probabilidades a las de un miembro particular de la familia normal de densidades, que recibe el nombre de Distribución Normal Estándar, el proceso mediante el cual se obtiene se le llama estandarización. USO DE LAS TABLAS DE AREAS BAJO LA CURVA NORMAL a) P ( z = 3.2 ) Área pedida = Área comprendida entre z = 0 y z = 3.2
3 a) P ( z = 2.85) = = 49.93% Área pedida = Área comprendida entre z = 0 y z = 2.85 = = 49.78% c) P ( 1 Z 2) Área pedida = (Área entre z = 0 y z = 1) + (Área entre z = 0 y z = 2) = = = 81.85% d) P ( 1 Z 1.5) Área pedida = (Área entre z = 0 y z = 1.5) (Área entre z = 0 y z = 1) = = = 9.19%
4 e) P (1.65 Z 2.62) Área pedida =(Área entre z =0 y z =2.62) (Área entre z = 0 y z = 1.65) = = = = 4.5% f) P ( 1.0 Z 1.0) Área pedida = (Área entre z = 0 y z = 1) + (Área entre z = 0 y z = 1) = = = 68.26% DISTRIBUCIÓN NORMAL ESTÁNDAR. Aunque las distribuciones normales pueden tener medias y desviaciones estándar cualesquiera; es muy importante el caso donde la media es igual a 0 y la desviación estándar es igual a 1, esta distribución se conoce como distribución normal estándar de hecho se trata de una distribución de datos Z que tiene forma normal. Su gran utilidad ha hecho que se construyan tablas que muestran el área bajo la curva limitada por dos ordenadas cualesquiera. Estas tablas pueden ser usadas en todo conjunto de datos distribuidos normalmente, luego de haber sido estandarizados. El cuerpo de la tabla proporciona las áreas bajo la curva y un valor especifico de la variable aleatoria Z. El modelo matemático para obtener los puntajes estándar es:
5 Z ( μ ) = X σ Los valores de z nos permiten con la ayuda de las tablas determinar el área correspondiente entre dos valores cualesquiera de X sin embargo las tablas de áreas por si solas únicamente proporcionan el área entre el promedio y un valor dado de X. Utilizando la distribución normal estandarizada se calculan las áreas bajo la curva normal y el eje de las abscisas esto es con el propósito de no tener que integrar la función normal en cada ocasión que se desee. Como la curva es totalmente simétrica se calculan las áreas para la mitad de la curva, ya que la otra mitad se comporta igual, es decir se calcula el área entre μ = 0 (origen) y el valor de z deseado. Ejemplo 1: Determine el área comprendida bajo la curva normal estandarizada entre z 1 = 0 y z 2 = Primero se localiza el numero 2.1 en la columna que esta mas a la izquierda, luego se encuentra el numero 0.05 en el renglón superior de la tabla; el área que se busca corresponde al numero que aparece en la intersección de esa fila y columna y que este caso es o sea %. Ejemplo 2: Tenemos un conjunto formado por los alumnos de la Escuela Secundaria Justo Sierra, los cuales hacen un total de 450, a los cuales se hizo una medición de su estatura, dando como resultados una media μ = 1.62 metros y una desviación estándar σ = 0.3 metros. Determine cuantos alumnos tienen una estatura entre 1.62 y 1.66 metros. z = / 0.3 = 0.04 / 0.3 = 1.33 En las tablas de áreas bajo la curva normal la intersección del renglón marcado con 1.3 en la primera columna y con 0.3 en la columna 5, nos da un valor de que constituye el área correspondiente. Por tanto aproximadamente el % de los alumnos tenían una estatura entre 1.62 y 1.66 metros o sea 450 (0.4082) = 184 aproximadamente. Ejemplo 3: Si el cociente intelectual de niños de educación básica, según la medida de cierto examen, tiene una media de 100 y una desviación típica de 12. En una clase de 30, cuántos se espera que tengan un CI de 120 o más?
6 z = /12 = 20 / 12 = 1.67 Área pedida = (Área a la derecha de z 0 ) (Área ente z 0 y z = 1.67) = Área pedida = = La proporción de alumnos con CI mayor que 120 es , por tanto se espera que en el grupo de 30 haya un total de 30( ) = alumnos con esta característica. Ejemplo 5: La media de una prueba de aprovechamiento de vigencia nacional es 50 con una desviación estándar de 10, las calificaciones siguen una distribución normal. Cual es la probabilidad de que un individuo elegido al azar tenga una calificación? a). Inferior a 30. b). Superior a 65. a). Inferior a 30. z = 30 50/10 = 20 / 10 = 2 Área pedida = (Área a la izquierda de z 0 ) (Área entre z 0 y z = 2) = Área pedida = = = 2.28 % b). Superior a 65. z = 65 50/10 = 15 / 10 = 1.5
7 Área pedida = (Área a la derecha de z 0 ) (Área ente z 0 y z = 1.5) = Área pedida = = = 6.68 % ANEXO 1 VALORES DE e λ λ λ l e l e
8 ANEXO 2 Tabla de áreas bajo la curva normal (1) Z Área Z Área Z Área Z Área Z Área
9 Tabla de áreas bajo la curva normal (2) Z Área Z Área Z Área Z Área Z Área
10
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
( x) Distribución normal
Distribución normal por Oliverio Ramírez La distribución de probabilidad más importante es sin duda la distribución normal (o gaussiana), la cual es de tipo continuo. La distribución de probabilidad para
Distribuciones Continuas
Capítulo 5 Distribuciones Continuas Las distribuciones continuas mas comunes son: 1. Distribución Uniforme 2. Distribución Normal 3. Distribución Eponencial 4. Distribución Gamma 5. Distribución Beta 6.
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved
Capítulo 37 Distribución de probabilidad normal 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved La distribución de probabilidad uniforme Hasta ahora hemos
Distribución normal. Resumen. Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 5, Mayo Open Access, Creative Commons.
Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 5, Mayo 2011. Open Access, Creative Commons. Distribución normal Autor: Fernando Quevedo Ricardi (1) Filiación: (1) Departamento de
DISTRIBUCION NORMAL ESTANDAR
Probabilidad Cap 6 DISTRIBUCION NORMAL ESTANDAR Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 La distribución normal estándar 2 Variable aleatoria normal estandarizada Podemos
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
conocida comúnmente, como la Campana de Gauss ".
CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que
3 PROBABILIDAD Y DISTRIBUCION NORMAL
3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
MATEMÁTICAS APLICADAS A LAS CC. SS. I
DISTRIBUCIÓN NORMAL Carl Friedrich Gauss (1777-1855), físico y matemático alemán, uno de los pioneros en el estudio de las propiedades y utilidad de la curva normal. MATEMÁTICAS APLICADAS A LAS CC. SS.
VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.
VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo
Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010
Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una
5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD
Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina
Habilidades Matemáticas. Alejandro Vera
Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos
3 ANALISIS DESCRIPTIVO DE LOS DATOS
3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3
Cap. 6 Distribuciones de Probabilidad Normal SPSS & Excel
Cap. 6 Distribuciones de robabilidad Normal SSS & Excel 6.1 Distribución de probabilidad normal 6.2 Distribución normal estándar 6.3 Aplicaciones de las distribuciones normales 6.4 Notación Variable aleatoria
Tema 6. Variables aleatorias continuas. Distribución Normal
Tema 6. Variables aleatorias continuas. Distribución Normal Indice 1. Distribuciones de probabilidad continuas.... 2 2. Distribución Normal... 5 2.1. Distribución Normal estándar N(0,1).... 5 2.1.1 Utilización
CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA
CONTROL DE CALIDAD UNIDAD IV TEORÍA DE DIMENSIÓN ESTADÍSTICA 1 (4.1) DISTRIBUCIÓN NORMAL 2 4.1.1- ASPECTOS GENERALES: Al graficarse los diferentes valores obtenidos de una variable X se obtiene una distribución
Estadística para la toma de decisiones
Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Distribución Normal: Ejemplos y ejercicios resueltos.
Distribución Normal: Ejemplos y ejercicios resueltos. Una distribución normal de media µ y desviación típica σ se designa por N (µ, σ). Su gráfica es la campana de Gauss: El área del recinto determinado
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
La Distribución Normal
La Distribución Normal Alejandro Vera Trejo La Distribución ib ió Normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD Ejercicios rouestos 1. Los datos originales a menudo necesitan ser codificados (transformados) ara facilitar el cálculo. Qué consecuencias tienen en el cálculo de la media
Distribuciones de Probabilidad
Distribuciones de Probabilidad Parte 3: La Distribución Normal La campana de Gauss La campana de Gauss, curva de Gauss o curva normales una función de probabilidad continua, simétrica, cuyo máximo coincide
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números
IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo
DISTRIBUCIÓN NORMAL CAPÍTULO 16
CAPÍTULO 6 DISTRIBUCIÓN NORMAL Cuando los datos están distribuidos con frecuencias ascendentes-descendentes aproimadamente simétricas, se le llama distribución normal. Cuando se trata de una variable discreta,
Tema 7. Variables Aleatorias Continuas
Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
Teoría de errores -Hitogramas
FÍSICA I Teoría de errores -Hitogramas Autores: Pablo Iván ikel - e-mail: pinikel@hotmail.com Ma. Florencia Kronberg - e-mail:sil_simba@hotmail.com Silvina Poncelas - e-mail:flo_kron@hotmail.com Introducción:
Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.
Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución
La distribución de Probabilidad normal, dada por la ecuación:
La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada
Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas
Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando
T. 2 Modelos teóricos de distribución de probabilidad
T. 2 Modelos teóricos de distribución de probabilidad 1. La distribución binomial 2. La distribución o curva normal El conocimiento acumulado en Psicología ha permitido evidenciar como algunas variables
Matemáticas Aplicadas a las Ciencias Sociales II Soluciones
Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón
JUNIO Opción A
Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.
INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares
Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:
Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres
CAPÍTULO 6: VARIABLES ALEATORIAS
Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1
GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación
Representación gráfica de esta función de densidad
Distribución normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Se ha usado en una gran variedad de aplicaciones prácticas en las
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 6 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas
( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE
Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
DISTRIBUCION JI-CUADRADA (X 2 )
DISTRIBUCION JI-CUADRADA (X 2 ) En realidad la distribución ji-cuadrada es la distribución muestral de s 2. O sea que si se extraen todas las muestras posibles de una población normal y a cada muestra
1. El plano cartesiano
1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de coordenadas rectangulares, que se caracteriza por: Estar
Distribución normal estándar. Juan José Hernández Ocaña
Distribución normal estándar Juan José Hernández Ocaña Tipos de variables jujo386@hotmail.com Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades.
TEMA 3: Probabilidad. Modelos. Probabilidad
TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un
UNIDAD 7 Medidas de dispersión
UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada
MATEMÁTICAS - 1º BACHILLERATO CCSS - DISTRIBUCIÓN NORMAL ˆ EJERCICIO 42. (a) P (X > 215) = P ( )
MATEMÁTICAS - 1º BACHILLERATO CCSS - DISTRIBUCIÓN NORMAL ˆ EJERCICIO 0 Supón que en cierta población pediátrica, la presión sistólica de la sangre en reposo se distribuye normalmente con media de 11 mm
Examen Final A Total puntos: /100. Buena suerte y éxito! Utilice la siguiente información para responder a las preguntas 1 al 5.
Universidad de Puerto Rico, Recinto de Río Piedras Instituto de Estadística y Sistemas Computarizados de Información Estadísticas para administración de empresas (ESTA 3041) Nombre: Número de estudiante:
ANÁLISIS GRANULOMÉTRICOS - REPRESENTACIONES GRÁFICAS PARÁMETROS ESTADÍSTICOS
ANÁLISIS GRANULOMÉTRICOS - REPRESENTACIONES GRÁFICAS PARÁMETROS ESTADÍSTICOS REPRESENTACIONES GRÁFICAS Los análisis texturales presentados como gráficas simplifican la comparación entre las muestras y
Modelos de distribuciones discretas y continuas
Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro
Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.
Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...
UNIDAD Nº 4 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD
UNIDAD Nº DISTRIBUCIONES CONTINUAS DE PROBABILIDAD Reportaje a Steve Hanke, Ex? Asesor de Domingo Cavallo. El Gobierno no continúa las reformas, y todo es confusión. El especialista en convertibilidad
ANALISIS DE FRECUENCIA EN HIDROLOGIA
ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos
Instituto de Matemática y Física 1 Universidad de Talca
Instituto de Matemática y Física 1 Universidad de Talca 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de
9 APROXIMACIONES DE LA BINOMIAL
9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X
ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales
ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
Medidas de variabilidad (dispersión)
Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las
Distribuciones de probabilidad
Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento
EJERCICIOS DISTRIBUCIONES MUESTRALES
EJERCICIOS DISTRIBUCIONES MUESTRALES 1. Se desea tomar una muestra aleatoria de tamaño n = 200 de la población estudiantil de la FES-C, que vamos a suponer asciende a N = 12000 estudiantes, con el objeto
Cuáles son las características aleatorias de la nueva variable?
Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que
Estadística Grupo V. Tema 10: Modelos de Probabilidad
Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos
DISTRIBUCIÓN NORMAL ESTÁNDAR
DISTRIBUCIÓN NORMAL ESTÁNDAR INTRODUCCIÓN Las distribuciones de probabilidad están relacionadas con la distribución de frecuencias. De hecho, podemos pensar en la distribución de probabilidad como una
El modelo de la curva normal. Concepto y aplicaciones
Métodos de Investigación en Educación 1º Psicopedagogía Grupo Mañana Curso 2009-2010 2010 MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN Tema 7 El modelo de la curva normal. Concepto y aplicaciones Objetivos Comprender
La distribución normal
La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Resumen teórico de los principales conceptos estadísticos
Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 6: Distribuciones estadísticas teóricas Resumen teórico Resumen teórico de los principales conceptos estadísticos
Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio
Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p
Considerar la siguiente colección de datos {10, 12, 12, 12, 10, 30, 0, 0, 0, 0, 0, 30, 30} para contestar las preguntas del 1al 5.
PONTIFICIA UNIVERSIDAD CATÒLICA DEPARTAMENTO DE FÌSICA - MATEMÀTICA Nombre: Fecha: Núm. Registro Prof. MATH 298 Sec. Examen Final Parte I. Seleccione la respuesta correcta (3 puntos cada uno) Considerar
Distribuciones Bidimensionales.
Distribuciones Bidimensionales. 1.- Variables Estadísticas Bidimensionales. Las variables estadísticas bidimensionales se representan por el par (X, Y) donde, X es una variable unidimensional, e Y es otra
CUÁL SERIA LA PREDICCION OPTIMA DEL ESTADO DEL TIEMPO AL DIA SIGUIENTE?
TEOREMA DE BAYES Explica como considerar matemáticamente la nueva información en la toma de decisiones. P( AΙB) = P( A B) P( B) = P( A) P( BΙA) P( B) PROBLEMA: En cierto lugar llueve el 40% de los días
MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
Estudio de satisfacción de los usuarios del servicio Transmilenio
1 Estudio de satisfacción de los usuarios del servicio Transmilenio Leidy Tatyanna Roa Moreno Corporación Universitaria Iberoamericana Bogotá 2 Resumen Transmilenio S.A., es una empresa del distrito capital
Estadísticas aplicadas a la. Javier Toro, Ph.D. Psicólogo Clínico
Estadísticas aplicadas a la psicología Javier Toro, Ph.D. Psicólogo Clínico MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central son aquellas que identifican el punto en la distribución respecto
Estadística Aplicada
Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.
1. Se elige al azar un número entero positivo del 1 al 19. Cuál es la probabilidad que el número sea múltiplo de tres o de cinco? A. B. C. D.
1. Se elige al azar un número entero positivo del 1 al 19. Cuál es la probabilidad que el número sea múltiplo de tres o de cinco? A. B. C. D. Primera forma: número de caso posibles = {1, 2, 3, 4, 5, 6,
Distribución Normal Curva Normal distribución gaussiana
Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en
La gráfica de la ecuación y = x 2
INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación y = x 2 Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a
TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES
TEMA 7 EL MODELO DE LA CURVA NORMAL. CONCEPTO Y APLICACIONES 1. Puntuaciones diferenciales y puntuaciones típicas 2. La curva normal 3. Cálculo de áreas bajo la curva normal 3.1. Caso 1: Cálculo del número
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Apuntes de Estadística
Apuntes de Estadística La Estadística es la ciencia que se encarga de recoger, organizar, describir e interpretar datos referidos a distintos fenómenos para, posteriormente, analizarlos e interpretarlos.
1 CÁLCULO DE PROBABILIDADES
1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que
IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,
7. Distribución normal
7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o
Funciones en explícitas
Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.