JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas"

Transcripción

1 JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas

2 PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme continua? Cómo es su distribución? Con qué otro nombre se le llama a la distribución uniforme continua?

3 RESPUESTA A LA PREGUNTA #1 Una variable aleatoria uniforme discreta X toma los valores x 1, x 2,, x k, con probabilidades idénticas, entonces la distribución uniforme discreta está dada por: 1 ( x; k) = x = x1, x2 xk f,..., k Una variable aleatoria uniforme continua X es una función de densidad plana, y la probabilidad es uniforme en un intervalo cerrado, entonces la distribución uniforme continua está dada por: f ( x; A, B) 1 = B A 0 A x B otro caso

4 PREGUNTA #2 Reconozca en el siguiente problema: Cuál es la variable aleatoria? Cuál distribución de probabilidad está presente? Cuáles son los parámetros de los cuales depende la distribución de probabilidad? Una computadora contiene 20 circuitos integrados independientes, la probabilidad de que cualquier circuito integrado esté defectuoso es 0.1. La computadora trabaja solamente si no contiene circuitos defectuosos. Cuál es la probabilidad de que la computadora trabaje?

5 RESPUESTA A LA PREGUNTA #2 X = Cantidad de circuitos integrados defectuosos de la computadora Variables aleatoria binomial Distribución Binomial, es un experimento de Bernoulli Los parámetros de los cuales depende la distribución de probabilidad son: Número de pruebas (n = 20) Probabilidad de éxito en una prueba dada (p = 0.1)

6 PREGUNTA #3 Reconozca en el siguiente problema: Con cuál o cuáles distribuciones de probabilidad se deben trabajar para contestar las preguntas dadas? Cuáles son los parámetros de los que depende las distribuciones de probabilidad? Una computadora contiene 20 circuitos integrados independientes, la probabilidad de que cualquier circuito integrado esté defectuoso es 0.1. Cuál es la probabilidad de que el décimo circuito sea el primero que se encuentre defectuoso? Cuál es la probabilidad de que el onceavo circuito sea el quinto que se encuentre defectuoso?

7 RESPUESTA A LA PREGUNTA #3 Distribución geométrica: Probabilidad de éxito en una prueba dada (p = 0.1) Distribución binomial negativa: Número de éxitos que se desean (k = 5) Probabilidad de éxito en una prueba dada (p = 0.1)

8 PREGUNTA #4 Explique qué es el proceso de Bernoulli? Cite sus propiedades.

9 RESPUESTA A LA PREGUNTA #4 Consiste en pruebas repetidas, cada una con dos posibles resultados que se pueden etiquetar como éxito o fracaso. Propiedades: El experimento consiste en n pruebas que se repiten. Cada prueba produce un resultado que se puede clasificar como éxito o fracaso. La probabilidad de un éxito, que se denota con p, permanece constante en cada prueba. Las pruebas que se repiten son independientes.

10 PREGUNTA #5 Qué es una variable aleatoria multinomial? Qué es una variable aleatoria hipergeométrica? En qué se diferencia de una variable aleatoria binomial? Cite sus propiedades.

11 RESPUESTA A LA PREGUNTA #5 El experimento binomial se convierte en un experimento multinomial si cada prueba tiene más de dos resultados posibles. Si una prueba dada puede conducir a los k resultados posibles E 1, E 2,, E k con probabilidades p 1, p 2,, p k, entonces la distribución de probabilidad de las variables aleatorias X 1, X 2,, X k, que representan el número de ocurrencias para E 1, E 2,, E k en n pruebas independientes es n x1 x2 xk f ( x1, x2,..., xk ; p1, p2,..., pk, n) p1 p2... pk x1, x2,..., x = k k i= 1 x i k = n i= 1 p i = 1

12 RESPUESTA A LA PREGUNTA #5 Se interesa en el cálculo de probabilidades para el número de observaciones que caen en una categoría en particular. Pero a diferencia de la binomial, que son pruebas independientes, la hipergeométrica son pruebas dependientes. En general, interesa la probabilidad de seleccionar x éxitos de los k artículos considerados como éxito y n x fracasos de los N k artículos que se consideran fracasos cuando se selecciona una muestra aleatoria de tamaño n de N artículos. Se selecciona sin reemplazo una muestra aleatoria de tamaño n de N artículos. Los k de los N artículos se pueden clasificar como éxitos y N k se clasifican como fracasos.

13 PREGUNTA #6 Con cuál distribución de probabilidad se debe trabajar para modelar el siguiente problema? Cuáles son los parámetros de los que depende la distribución de probabilidad? En una bolsa se tienen 3 pelotas amarillas, 8 verdes y 2 negras. Se seleccionan sin reposición 5 pelotas de la bolsa.

14 RESPUESTA A LA PREGUNTA #6 Distribución hipergeométrcia multivariada: Tamaño de la población (N = 13) Tamaño de la muestra (n = 5) Cantidad de elementos de las k celdas (a 1 = 3, a 2 = 8, a 3 = 2)

15 PREGUNTA #7 La distribución binomial al tener pruebas independientes, el muestreo se debe efectuar sin reemplazo. Verdadero o falso? Justifique.

16 RESPUESTA A LA PREGUNTA #7 Falso. La distribución binomial al tener pruebas independientes, el muestreo se debe efectuar con reemplazo.

17 PREGUNTA #8 La distribución hipergeométrica al tener pruebas dependientes, el muestreo se debe efectuar sin reemplazo. Verdadero o falso? Justifique.

18 RESPUESTA A LA PREGUNTA #8 Verdadero. La distribución hipergeométrica al tener pruebas dependientes, el muestreo se debe efectuar sin reemplazo.

19 PREGUNTA #9 La distribución binomial es una distribución específica de la distribución binomial negativa. Verdadero o falso? Justifique.

20 RESPUESTA A LA PREGUNTA #9 Falso. La distribución binomial negativa es una distribución específica de la distribución binomial.

21 PREGUNTA #10 La distribución geométrica es una distribución específica de la distribución binomial negativa. Verdadero o falso? Justifique.

22 RESPUESTA A LA PREGUNTA #10 Verdadero. La distribución geométrica es una distribución específica de la distribución binomial negativa.

23 PREGUNTA #11 Cómo se llaman los experimentos que dan valores numéricos de una variable aleatoria X, el número de resultados que ocurren durante un intervalo dado o en una región específica? Cite sus propiedades.

24 RESPUESTA A LA PREGUNTA #11 Experimentos de Poisson, proceso de Poisson: El número de resultados que ocurren en un intervalo o región específica es independiente del número que ocurre en cualquier otro intervalo o región del espacio disjunto. No tiene memoria. La probabilidad de que ocurra un solo resultado durante un intervalo muy corto o en una región pequeña es proporcional a la longitud del intervalo o al tamaño de la región, y no depende del número de resultados que ocurren fuera de este intervalo o región. La probabilidad de que ocurra más de un resultado en tal intervalo corto o que caiga en tal región pequeña es insignificante

25 PREGUNTA #12 El número medio de resultados en un proceso de Poisson se calcula de μ = λt, donde t es el tiempo dado o región específica. Qué es el parámetro λ?

26 RESPUESTA A LA PREGUNTA #12 El parámetro λ es la tasa de ocurrencia, o sea, el número promedio de resultados por unidad de tiempo dado o región específica.

27 PREGUNTA #13 Con cuál distribución de probabilidad se debe trabajar para modelar el siguiente problema? Cuáles son los parámetros de los que depende la distribución de probabilidad? El número de mensajes transmitidos en un servidor de correo tiene un promedio de 5 mensajes por milisegundo.

28 RESPUESTA A LA PREGUNTA #13 Distribución de Poisson: Número promedio de resultados por unidad de tiempo dado o región específica (λ = 5) Intervalo de tiempo dado o región específica (t = 1ms)

29 PREGUNTA #14 Cuál distribución de probabilidad tiene una fuerte relación con la distribución de Poisson? Justifique.

30 RESPUESTA A LA PREGUNTA #14 Distribución Exponencial La distribución de Poisson se utiliza para calcular la probabilidad de números específicos de eventos durante un periodo o espacio particular. En muchas aplicaciones, el tiempo o la cantidad de espacio es la variable aleatoria. La distribución exponencial se utiliza como modelo para representar tiempo de funcionamiento o de espera. También expresa el tiempo que transcurre entre sucesos que se contabilizan mediante la distribución de Poisson.

31 PREGUNTA #15 Con cuál distribución de probabilidad se debe trabajar para modelar el siguiente problema? Cuáles son los parámetros de los que depende la distribución de probabilidad? Suponga que se define la variable aleatoria T que mide el tiempo de transmisión de un mensaje en milisegundos del servidor de correo del problema anterior.

32 RESPUESTA A LA PREGUNTA #15 Distribución Exponencial Número promedio de resultados por unidad de tiempo dado o región específica (λ = 5) ó Tiempo medio entre eventos (β = 1/5)

33 PREGUNTA #16 La distribución de Poisson puede relacionarse con la distribución gamma? Justifique.

34 RESPUESTA A LA PREGUNTA #16 Sí, la distribución gamma describe el tiempo o espacio que transcurre hasta que ocurre un número específico de eventos de Poisson.

35 PREGUNTA #17 Con cuál distribución de probabilidad se debe trabajar para modelar el siguiente problema? Cuáles son los parámetros de los que depende la distribución de probabilidad? El tiempo (en milisegundos) de respuesta de α peticiones ping a cierto servidor es una variable aleatoria con un tiempo medio de 1/5. En este servidor se dan dos maneras diferentes de respuesta, bajo las condiciones de respuesta A α = 10, pero bajo las B α = 5. Las condiciones de respuesta A se dan el 60% de las veces, y las B el 40% restante.

36 RESPUESTA A LA PREGUNTA #17 Distribución gamma: Número de eventos específicos que ocurren (α = 10 tipo A y α = 5 tipo B) Tiempo medio entre eventos (β = 1/5)

37 PREGUNTA #18 Con cuál distribución de probabilidad se debe trabajar para modelar el siguiente problema? Cuáles son los parámetros de los que depende la distribución de probabilidad? La duración de cada uno de 2 instrumentos electrónicos D 1 y D 2 presenta una distribución con medias 40 y 45, desviaciones estándar 36 y 9; respectivamente.

38 RESPUESTA A LA PREGUNTA #18 Distribución normal: Media (μ = 40 tipo D 1 y μ = 45 tipo D 2 ) Desviación estándar (σ = 36 tipo D 1 y σ = 9 tipo D 2 )

39 PREGUNTA #19 Sea X un número aleatorio entre 0 y 5. Cuál es la distribución de probabilidad de la variable aleatoria X? Cuáles son los parámetros de los que depende la distribución de probabilidad?

40 RESPUESTA A LA PREGUNTA #19 Distribución uniforme continua o rectangular: Límite inferior del intervalo (A = 0) Límite superior del intervalo (B = 5)

41 PREGUNTA #20 Sea X un número de la lotería nacional. Cuál es la distribución de probabilidad de la variable aleatoria X? Cuáles son los parámetros de los que depende la distribución de probabilidad?

42 RESPUESTA A LA PREGUNTA #20 Distribución uniforme discreta: Cantidad de observaciones puntuales con probabilidades idénticas (k = 100)

43 PREGUNTA #21 Mediante qué distribuciones se puede aproximar una distribución binomial? Cuáles son los requisitos?

44 RESPUESTA A LA PREGUNTA #21 Distribución de Poisson: Cuando n, p 0, y μ = np permanece constante, b(x;n,p) p(x;μ) Distribución normal: Cuando su gráfico de barras (o histograma) se puede trazar una curva normal. Cuando n, μ = np y σ 2 = npq, b(x;n,p) n(z;0,1)

45 PREGUNTA #22 Mediante qué distribuciones se puede aproximar una distribución hipergeométrica? Cuáles son los requisitos?

46 RESPUESTA A LA PREGUNTA #22 Distribución binomial: Cuando n es pequeño comparado con N, la naturaleza de los N artículos cambia muy poco en cada prueba. La cantidad k/n juega el papel del parámetro binomial p. Distribución normal: Cuando su gráfico de barras (o histograma) se puede trazar una curva normal.

47 PREGUNTA #23 Cuáles son los nombres que recibe la distribución normal? Por qué?

48 RESPUESTA A LA PREGUNTA #23 Distribución campana: Por la forma que tiene Distribución gaussiana: En honor de Karl Friedrich Gauss

49 PREGUNTA #24 Cite las propiedades de la curva normal.

50 RESPUESTA A LA PREGUNTA #24 Propiedades de la curva normal: La moda, que es el punto sobre el eje horizontal donde la curva es un máximo, ocurre en x = µ. La curva es simétrica alrededor de un eje vertical a través de la media µ. La curva tiene sus puntos de inflexión en x = µ ± σ, es cóncava hacia abajo si µ - σ < X < µ + σ, y es cóncava hacia arriba en cualquier otro punto. La curva se aproxima al eje horizontal de manera asintótica conforme se aleja de la media en cualquier dirección. El área total bajo la curva y sobre el eje horizontal es igual a 1.

51 PREGUNTA #25 Cómo es la forma de la curva normal cuando su varianza es pequeña? Cómo es la forma de la curva normal cuando su varianza es grande?

52 RESPUESTA A LA PREGUNTA #25 La forma de la curva normal cuando su varianza es pequeña es alargada y delgada. La forma de la curva normal cuando su varianza es grande es chata y gorda.

53 PREGUNTA #26 Cómo se puede obtener la probabilidad entre un intervalo dado de la distribución normal, para cualquier valor que se asigne a los parámetros μ y σ?

54 RESPUESTA A LA PREGUNTA #26 Se puede transformar un conjunto de observaciones de cualquier variable aleatoria normal X a un nuevo conjunto de observaciones de una variable aleatoria normal Z con μ = 0 y σ 2 = 1, por medio de: Z µ = X σ

55 PREGUNTA #27 La distribución exponencial y la distribución chicuadrada son distribuciones específicas de la distribución gamma. Verdadero o falso? Justifique.

56 RESPUESTA A LA PREGUNTA #27 Verdadero. La distribución exponencial y la distribución chi-cuadrada son distribuciones específicas de la distribución gamma.

57 PREGUNTA #28 La distribución chi-cuadrada depende de los parámetros α y β (ambos valores son mayores que 0), como su distribución madre. Verdadero o falso? Justifique.

58 RESPUESTA A LA PREGUNTA #28 Falso. La distribución chi-cuadrada depende sólo del parámetro v (entero positivo), llamado grados de libertad.

59 PREGUNTA #29 Por qué es importante estudiar la distribución chicuadrada?

60 RESPUESTA A LA PREGUNTA #29 La distribución chi-cuadrada juega un papel muy importante en la inferencia estadística. Es un componente importante de la prueba de hipótesis y la estimación estadística.

61 PREGUNTA #30 En qué casos se aplica la distribución logarítmica normal?

62 RESPUESTA A LA PREGUNTA #30 La distribución logarítmica normal se aplica en casos donde una transformación de logarítmico natural tiene como resultado una distribución normal.

63 PREGUNTA #31 En dónde se aplica la distribución de Weibull?

64 RESPUESTA A LA PREGUNTA #31 La distribución de Weibull se aplica con una razón de falla más general aplicable por desgaste y no de manera aleatoria, ya que describe los tiempos de falla de componentes cuando sus razones de falla crecen o decrecen con el tiempo.

65 PREGUNTA #32 Cuáles son los parámetros de que depende la distribución de Weibull?

66 RESPUESTA A LA PREGUNTA #32 Distribución de Weibull: α y β, α > 0 y β > 0.

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

Clase 7: Algunas Distribuciones Continuas de Probabilidad

Clase 7: Algunas Distribuciones Continuas de Probabilidad Clase 7: Algunas Distribuciones Continuas de Probabilidad Distribución Uniforme Continua Una de las distribuciones continuas más simples en Estadística es la Distribución Uniforme Continua. Esta se caracteriza

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Clase 6: Algunas Distribuciones de Probabilidad Discreta

Clase 6: Algunas Distribuciones de Probabilidad Discreta Clase 6: Algunas Distribuciones de Probabilidad Discreta Distribución Uniforme discreta La más simple de todas las distribuciones de probabilidad discreta es una donde la v.a. toma cada uno de sus valores

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

5. MODELOS PROBABILISTICOS.

5. MODELOS PROBABILISTICOS. 5. MODELOS PROBABILISTICOS. 5.1 Experimento de Bernoulli Un modelo probabilístico, es la forma que pueden tomar un conjunto de datos obtenidos aleatoriamente. Pueden ser modelos probabilísticos discretos

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

Distribuciones de probabilidad con R Commander

Distribuciones de probabilidad con R Commander Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

Un experimento binomial posee las siguientes características: 1. El experimento consiste de n ensayos repetidos.

Un experimento binomial posee las siguientes características: 1. El experimento consiste de n ensayos repetidos. Experimento Binomial Experimento que consiste en ensayos independientes repetidos, cada uno con dos posibles resultados que se denominan éxito y fracaso, donde la probabilidad de éxito es la misma en cada

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Condiciones para una distribución binomial

Condiciones para una distribución binomial ESTADÍSTICA INFERENCIAL FUNCIONES DE PROBABILIDAD DISCRETAS: BINOMIAL y POISSON EJERCICIOS RESUELTOS DE FUNCIÓN DE PROBABILIDAD BINOMIAL USANDO TABLAS y EXCEL Prof.: MSc. Julio R. Vargas A. Fórmulas de

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística alperin@fcnym.unlp.edu.ar http://www.fcnym.unlp.edu.ar/catedras/estadistica

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Maestría en Administración Universidad Nacional Autónoma de México DISTRIBUCIONES DE PROBABILIDAD Introducción Una distribución de probabilidad indica toda la gama de valores

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana.

Histograma del puntaje de vocabulario y la aproximación por una curva gaussiana. 35 Curvas de densidad Existe alguna manera de describir una distribución completa mediante una única expresión? un diagrama tallo-hoja no es práctico pues se trata de demasiados datos un histograma elimina

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

1 - TEORIA DE ERRORES : distribución de frecuencias

1 - TEORIA DE ERRORES : distribución de frecuencias - TEORIA DE ERRORES : distribución de frecuencias CONTENIDOS Distribución de Frecuencias. Histograma. Errores de Apreciación. Propagación de errores. OBJETIVOS Representar una serie de datos mediante un

Más detalles

DISTRIBUCIÓN NORMAL CAPÍTULO 16

DISTRIBUCIÓN NORMAL CAPÍTULO 16 CAPÍTULO 6 DISTRIBUCIÓN NORMAL Cuando los datos están distribuidos con frecuencias ascendentes-descendentes aproimadamente simétricas, se le llama distribución normal. Cuando se trata de una variable discreta,

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta Distribución Normal La distribución normal (O Gaussiana) se define como sigue: En donde y >0 son constantes arbitrarias. Esta función es en realidad uno de las más importantes distribuciones de probabilidad

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: STATGRAPHICS Re. 4/d/yyyy Pruebas de Hipótesis (Una Muestra) Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: 1. la media μ de una distribución normal.. la desiación

Más detalles

Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones.

Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones. PROBABILIDAD Y ESTADÍSTICA Sesión 2 2 MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS DISCRETOS 2.1 Definición de variable aleatoria discreta 2.2Función de probabilidad y de distribución 2.3 Valor esperado

Más detalles

Control Estadístico de Procesos (SPC) para NO estadísticos.

Control Estadístico de Procesos (SPC) para NO estadísticos. Control Estadístico de Procesos (SPC) para NO estadísticos. - Sesión 3ª de 4 - Impartido por: Jaume Ramonet Fernández Ingeniero Industrial Superior PMP (PMI ) Consultoría y Formación Actitud requerida

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidades y stadística Computación Facultad de Ciencias actas y Naturales Universidad de uenos ires na M ianco y lena J Martínez 004 Variables aleatorias continuas jemplo: Con el in de realizar un

Más detalles

Habilidades Matemáticas. Alejandro Vera

Habilidades Matemáticas. Alejandro Vera Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos

Más detalles

Modelos Estadísticos de Crimen

Modelos Estadísticos de Crimen Universidad de los Andes Modelos Estadísticos de Crimen 27 de Mayo de 2015 Motivacion Conocer la densidad de probabilidad del crimen sobre una ciudad, a distintas horas del día, permite Modelos Estadísticos

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Distribuciones Dis de Probabilidad Pr Contínuas Jhon Jairo Jair Pa P dilla a Aguilar, Aguilar PhD. PhD

Distribuciones Dis de Probabilidad Pr Contínuas Jhon Jairo Jair Pa P dilla a Aguilar, Aguilar PhD. PhD Distribuciones de Probabilidad Contínuas Jhon Jairo Padilla Aguilar, PhD. Introducción En esta sección se estudiarán algunas distribuciones de probabilidad contínuas que son bastante utilizadas en ingeniería

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

Proceso de llegadas de Poisson

Proceso de llegadas de Poisson Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

Distribuciones de Probabilidad Normal [Gaussiana]

Distribuciones de Probabilidad Normal [Gaussiana] Distribuciones de Probabilidad Normal [Gaussiana] Distribución Normal o Gaussiana Una variable aleatoria X es llamada variable aleatoria normal (guassiana) si su pdf está dado por, 1 2 2 x / 2 f X x e

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Guía del Capítulo 3. SISTEMAS DE PARTÍCULAS. A un sistema particulado se le efectúa un análisis por tamizado dando los siguientes resultados:

Guía del Capítulo 3. SISTEMAS DE PARTÍCULAS. A un sistema particulado se le efectúa un análisis por tamizado dando los siguientes resultados: Guía del Capítulo 3. SISTEMAS DE PARTÍCULAS Problema 3.1 A un sistema particulado se le efectúa un análisis por tamizado dando los siguientes resultados: Mallas Tyler Masa (g) -28 +35 5-35 +48 8-48 +65

Más detalles

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística

Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Fuente de los comics: La Estadística en Comic. LarryGonicky Woollcatt Smith. Ed. ZendreraZariquiey, 1999 ESTADÍSTICA ESTADÍSTICA

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE CIENCIAS FINANCIERAS Y CONTABLES SILABO

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE CIENCIAS FINANCIERAS Y CONTABLES SILABO ASIGNATURA: ESTADÍSTICAS CÓDIGO: CCC211 I. DATOS GENERALES: 1.1. DEPARTAMENTO ACADEMICO : MATEMÁTICA 1.2. ESCUELA PROFESIONAL : CONTABILIDAD 1.. ESPECIALIDAD : CONTABILIDAD 1.. NOMBRE DE CARRERA : CONTADOR

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

ANALISIS DE FRECUENCIA

ANALISIS DE FRECUENCIA ANALISIS DE FRECUENCIA HIDROLOGÍA Determinística: enfoque en el cual los parámetros se calculan en base a relaciones físicas para procesos dinámicos del ciclo hidrológico. Estocástico: Enfoque en el cual

Más detalles

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B).

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B). Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, curso 2006 2007. Ejercicio 1. Dados cuatro sucesos A, B, C y D, la probabilidad de que ocurra al menos uno

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Curso. Análisis Estadístico de Datos Climáticos

Curso. Análisis Estadístico de Datos Climáticos Curso I-1 Análisis Estadístico de Datos Climáticos Distribuciones de Probabilidad Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Montevideo, Uruguay 2011 I-2 DISTRIBUCIONES DE PROBABILIDAD

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles