Generación de variables aleatorias continuas Método de la transformada inversa

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Generación de variables aleatorias continuas Método de la transformada inversa"

Transcripción

1 Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013

2 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas: Transformada Inversa De aceptación-rechazo, o método de rechazo. De composición. Métodos mejorados según la distribución.

3 Método de la Transformada Inversa X: una variable aleatoria discreta con probabilidad de masa P(X = x j ) = p j, j = 0, 1,.... U U(0, 1): simulación de una v.a. con distribución uniforme. Método de la transformada inversa: x 0 si U < p 0 x 1 si p 0 U < p 0 + p 1 X =. x j. si p p j 1 U < p p j 1 + p j P(X = x j ) = P(p p j 1 U < p p j 1 + p j ) = p j.

4 Método de la Transformada Inversa F(x) = P(X x) : Función de distribución acumulada F es una función creciente, escalonada, que toma valores entre 0 y 1. Si se ordenan los valores de la variable en forma creciente: x 0 < x 1 < < x n <..., entonces j F(x j ) = p k = p 0 + p p j. k=0

5 Gráficamente p 3 1 y = F(x) p 2 p 1 p 0 x 0 x 1 x 2 x 3 x 4

6 1 p 3 p 0 + p 1 < U < p 0 + p 1 + p 2 F(x) p 2 p 1 p 0 x 0 x 1 x 2 x 3 x 4 X = x 2

7 Algoritmo Si la v.a. toma un número finito de valores, el algoritmo es el siguiente: Algorithm 1: Transformada Inversa Generar U U(0, 1); if U < p 0 then X x 0 y terminar. end if U < p 0 + p 1 then X x 1 y terminar. end if U < p 0 + p 1 + p 2 then X x 2 y terminar. end.

8 Algoritmo de la Transformada Inversa Si x 0 < x 1 < x 2 <..., entonces F (x j ) = j i=0 p i, y por lo tanto X x 0 si U < p 0 = F(x 0 ) X x j si F (x j 1 ) U < F (x j ) Se trata de hallar el intervalo [F(x j 1 ), F(x j )) donde se ubica U: U [F(x j 1 ), F(x j )) = Transformada Inversa

9 Ejemplo X : {1, 2, 3, 4}. p 0 = 0.20, p 1 = 0.15, p 2 = 0.25, p 3 = 0.40 Algorithm 2: Generar U; if U < 0.2 then X 1 y terminar. end if U < 0.35 then X 2 y terminar. end if U < 0.6 then X 3 else X 4 end

10 Ejemplo X : {1, 2, 3, 4}. p 0 = 0.20, p 1 = 0.15, p 2 = 0.25, p 3 = 0.40 p 3 1 y = F(x) p 2 p 1 p 0 x 0 x 1 x 2 x 3 x 4

11 Orden decreciente de p i Si se ordenan de manera decreciente las probabilidades de masa p 0, p 1,..., se puede obtener un algoritmo más eficiente: Algorithm 3: Ordenando p i Generar U; if U < 0.4 then X 4 y terminar. end if U < 0.65 then X 3 y terminar. end if U < 0.85 then X 1 else X 2 end

12 Ejemplo X : {1, 2, 3, 4}. p 0 = 0.20, p 1 = 0.15, p 2 = 0.25, p 3 = 0.40 p 3 1 y = F(x) p 2 p 1 p 0 x 0 x 1 x 2 x 3 x 4

13 Generación de variables aleatorias continuas con densidad Decimos que X es una v.a. continua con densidad si existe f : R R positiva tal que F(x) := P(X x) = x f (t) dt. Estudiaremos los siguientes métodos de generación para una tal X: Método de la transformada inversa. Método de aceptación y rechazo. Método de composición.

14 Método de la transformada inversa Propiedades de F (x) := x f (t) dt. F(x) es continua. F(x) es no decreciente. 0 F (x) 1, lim x F (x) = 0, lim x F (x) = 1

15 Método de la transformada inversa Teorema Si F es una función de distribución continua, inversible, y U U(0, 1), entonces X = F 1 (U) es una variable aleatoria con distribución F. P(X a) = P(F 1 (U) a) = P(F (F 1 )(U) F (a)) por ser inversible = P(U F(a)) = F(a)

16 Método de la transformada inversa

17 Método de la transformada inversa Es suficiente que F tenga inversa en (0, 1). Problemas: La inversa de F involucra funciones computacionalmente costosas. ( n f (x), log(x), etc.) La inversa de F no puede ser calculada explícitamente. (p. ej., distribución de la normal, de una gamma) Para ciertas distribuciones F pueden utilizarse otras estrategias, por ejemplo expresando a F como distribución del mínimo y/o del máximo de v. a. independientes. distribución de suma de variables aleatorias independientes distribución de una v. a. condicional a otra, o existen métodos específicos (p. ej., para X con distribución normal.) Veamos algunos ejemplos.

18 Aplicación del método de la transformada inversa Ejemplo Escribir un método para generar el valor de una v. a. X con función de densidad f (x) = x + 1, 0 x 2. 2 F(x) = x 2 + x, 0 x 2. 4 F no es inversible sobre R, pero sólo nos interesa encontrar una inversa F 1 : (0, 1) (0, 2). x x = u x = x = u o x = u Algorithm 4: Generar U; X 2 2 U

19 Aplicación del método de la transformada inversa Ejemplo Escribir un método para generar el valor de una v. a. X con función de densidad 1/4 0 x 2 f (x) = 1/2 2 < x < 3 0 c.c. 0 x 0 x/4 0 x 2 F(x) = x 1 2 < x < x 3 Generar U; if U < 1/2 then X 4U else X 2U + 1 end

20 Máximos y mínimos de v. a. independientes Consideremos X 1, X 2,..., X n v. a. independientes, con funciones de distribución F 1, F 2,..., F n, respectivamente. F i (a) = P(X i a). X = max{x 1, X 2,..., X n } F X (a) = F 1 (a) F 2 (a)... F n (a) Y = min{x 1, X 2,..., X n } 1 F Y (a) = (1 F 1 (a)) (1 F 2 (a))... (1 F n (a))

21 Máximos y mínimos de v. a. independientes Si X es tal que F X (x) = x n, 0 x 1, 0 en otro caso. F X (x) = x x x }{{} n entonces X = max{u 1, X 2,..., U n } con U 1, U 2,..., U n v. a. independientes, idénticamente distribuidas uniformes en [0,1]. Para generar X Algorithm 5: F X (t) = t n Generar U 1, U 2,..., U n ; X max{u 1, U 2,..., U n } no requiere cálculo de una raíz n-ésima. se generan n 1 uniformes adicionales. requiere de n 1 comparaciones.

22 Generación de una v. a. exponencial Si X E(λ), entonces c X también es exponencial. c X E( λ c ). Calculamos la inversa de la función de distribución de X E(1): F X (x) = 1 e x u = 1 e x 1 u = e x x = log e (1 u) Algorithm 6: X E(1) Generar U; X log(u) Algorithm 7: X E(λ) Generar U; X 1 λ log(u)

23 Generación de una v. a. Poisson X P(λ) Para generar una variable Poisson, vamos a usar información sobre una estructura mas compleja, el proceso de Poisson. Recordemos que En un proceso de Poisson homogéneo de parámetro λ, los tiempos de llegada entre eventos son v. a. exponenciales de media 1. λ el número de eventos en un intervalo de tiempo de longitud t es una v. a. Poisson de media λ t. N(1) es una v. a. Poisson de media λ. X 1 X 2 X 3 X n X n N(1) = max{n X 1 + X X n 1}

24 Generación de una v. a. Poisson X P(λ) Entonces, toda variable Poisson X de parámetro λ puede pensarse como la realización N(1) de un proceso de Poisson de media λ. X 1 X 2 X 3 X n X n N(1) = max{n X 1 + X X n 1}

25 Generación de una v. a. Poisson X P(λ) Empleando v.a. uniformes para generar las exponenciales, tenemos que N(1) = max{n X 1 + X X n 1} = max{n 1 λ (log(u 1) + log(u 2 ) + + log(u n )) 1} = max{n 1 λ (log(u 1 U 2 U n )) 1} = max{n log (U 1 U 2 U n ) λ} = max{n U 1 U 2 U n e λ } N(1) = min{n U 1 U 2 U n < e λ } 1

26 Generación de una v. a. Poisson X P(λ) Algorithm 8: Transformada Inversa Generar U 1 U(0, 1); if U 1 < e λ then X 0 y terminar. end Generar U 2 U(0, 1) if U 1.U 2 < e λ then X 1 y terminar. end Generar U 3 U(0, 1) if U 1.U 2.U 3 < e λ then X 2 y terminar. end.

27 Generación de una v. a. con distribución Gamma Si X 1,..., X n son v. a. exponenciales independientes, X i E(λ), entonces X = X X n es una v. a. gamma, de parámetros (n, λ). Por lo cual Algorithm 9: X γ(n, λ) F X (x) = P(X 1 + X X n x) Generar U 1,..., U n U(0, 1); X 1 λ log(u 1... U n ) = P( 1 λ (log(u 1 U 2 U n )) x) = P( 1 λ (log(u 1 U 2 U n )) x}

28 Generación de una v. a. con distribución Gamma Algorithm 10: Algoritmo: X γ(n, λ) Generar U 1,..., U n U(0, 1); X 1 λ log(u 1... U n ) Emplea n uniformes. Calcula un único logaritmo. Para generar n exponenciales independientes, hacen falta generar n uniformes y calcular n logaritmos.

29 Generación de exponenciales a partir de una distribución gamma Teorema Si X, Y E(λ), e independientes, entonces f X X+Y (x t) = 1 t I (0,t)(x), es decir, X condicional a X + Y = t es uniforme en (0, t). Para generar X, Y exponenciales independientes, de parámetro λ podemos aplicar el siguiente algoritmo: Algorithm 11: X, Y E(λ) Generar U 1, U 2 U(0, 1); t 1 λ log(u 1 U 2 ); Generar U 3 ; X t U 3 ; Y t X Calcula un único logaritmo. Emplea 1 uniforme adicional.

30 Generación de exponenciales a partir de una distribución gamma Para generar n exponenciales, se puede extender el método anterior generando una v. a. gamma, de parámetros (n, λ), n 1 v. a. uniformes, adicionales. Algorithm 12: Generar U 1,..., U n U(0, 1); t 1 λ log(u 1 U n ); Generar V 1,..., V n 1 y ordenarlos de menor a mayor; X 1 t V 1 ; X 2 t (V 2 V 1 );..; X n 1 t (V n 1 V n 2 ); X n t t V n 1

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 17 de abril, 2012 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Patricia Kisbye FaMAF 15 de abril, 2010 Generación de variables aleatorias continuas Decimos que X es una v.a. continua si

Más detalles

Generación de variables aleatorias discretas Método de la Transformada Inversa

Generación de variables aleatorias discretas Método de la Transformada Inversa Generación de variables aleatorias discretas Método de la Transformada Inversa Georgina Flesia FaMAF 9 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Generación de variables aleatorias discretas Método de la Transformada Inversa

Generación de variables aleatorias discretas Método de la Transformada Inversa Generación de variables aleatorias discretas Método de la Transformada Inversa Patricia Kisbye FaMAF 30 de marzo, 2010 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

Generación de variables aleatorias continuas

Generación de variables aleatorias continuas Generación de variables aleatorias continuas Se dice que una variable aleatoria X es continua, o más propiamente, absolutamente continua, si existe f : R R tal que F (x) := P (X x) = x f(t) dt. Al igual

Más detalles

Generación de variables aleatorias discretas Método de aceptación y rechazo Método de composición Método de la urna Método de tablas

Generación de variables aleatorias discretas Método de aceptación y rechazo Método de composición Método de la urna Método de tablas Generación de variables aleatorias discretas Método de aceptación y rechazo Método de composición Método de la urna Método de tablas Georgina Flesia FaMAF 11 de abril, 2013 Método de Aceptación y Rechazo

Más detalles

Generación de variables aleatorias discretas Método de aceptación y rechazo Método de composición Método de la urna Método de tablas

Generación de variables aleatorias discretas Método de aceptación y rechazo Método de composición Método de la urna Método de tablas Generación de variables aleatorias discretas Método de aceptación y rechazo Método de composición Método de la urna Método de tablas Georgina Flesia FaMAF 10 de abril, 2012 Método de Aceptación y Rechazo

Más detalles

Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson

Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 25 de abril, 2013 Método polar Con este método se generan dos variables normales independientes.

Más detalles

Hoja 4 Variables aleatorias multidimensionales

Hoja 4 Variables aleatorias multidimensionales Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )

Más detalles

Transformaciones y esperanza

Transformaciones y esperanza Capítulo 3 Transformaciones y esperanza 3.1. Introducción Por lo general estamos en condiciones de modelar un fenómeno en términos de una variable aleatoria X cuya función de distribución acumulada es

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Método de Box Muller. Método Polar Generación de eventos en Procesos de Poisson. Método de Box-Muller. Métodos de generación de v. a.

Método de Box Muller. Método Polar Generación de eventos en Procesos de Poisson. Método de Box-Muller. Métodos de generación de v. a. Método de Box Muller Método Polar Generación de eventos en Procesos de Poisson Si X e Y son normales estándar indepientes, entonces R 2 = X 2 + Y 2, tan(θ) = Y X determinan variables R 2 y Θ indepientes.

Más detalles

Generación de Variables Aleatorias

Generación de Variables Aleatorias Generación de Variables Aleatorias A continuación se exponen distintos métodos para generar algunas de las distribuciones más utilizadas. Método de la distribución inversa Teniendo una función de densidad

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Procesos de Poisson. 21 de marzo, FaMAF 1 / 25

Procesos de Poisson. 21 de marzo, FaMAF 1 / 25 Procesos de Poisson FaMAF 21 de marzo, 2013 1 / 25 Distribución exponencial Definición Una v.a. X con función de densidad dada por f λ (x) = λ e λx, x > 0, para cierto λ > 0 se dice una v.a. exponencial

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Validación de hipótesis de un proceso de Poisson no homogéneo

Validación de hipótesis de un proceso de Poisson no homogéneo Validación de hipótesis de un proceso de Poisson no homogéneo Georgina Flesia FaMAF 9 de junio, 2011 Proceso de Poisson no homogéneo H 0 ) Las llegadas diarias a un sistema ocurren de acuerdo a un Proceso

Más detalles

Generación de números aleatorios con distribución uniforme

Generación de números aleatorios con distribución uniforme Generadores de Números Aleatorios 1 Existen en la actualidad innumerables métodos para generar números aleatorios En la literatura disponible se pueden encontrar gran cantidad de algoritmos. Generación

Más detalles

Generación de eventos en Procesos de Poisson

Generación de eventos en Procesos de Poisson Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 26 de abril, 2012 Proceso de Poisson homogéneo N(t), t 0, es un proceso de Poisson homogéneo de razón λ, λ > 0, si: N(0) = 0 proceso comienza

Más detalles

Estimación por intervalos

Estimación por intervalos Capítulo 9 Estimación por intervalos 9.1. Introducción En este capítulo se desarrolla la estimación por intervalos donde el proceso de inferencia se realiza de la forma θ C, donde C = Cx) es un conjunto

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Modelos Básicos de Distribuciones Discretas y Continuas

Modelos Básicos de Distribuciones Discretas y Continuas Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos

Más detalles

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial

Más detalles

Simulación. La mayoría de los procesos de simulación tiene la misma estructura básica:

Simulación. La mayoría de los procesos de simulación tiene la misma estructura básica: Simulación La mayoría de los procesos de simulación tiene la misma estructura básica: 1 Indentificar una variable de interés y escribir un programa para simular dichos valores Generar una muestra independiente

Más detalles

Introducción a los Procesos de Poisson *

Introducción a los Procesos de Poisson * Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22

Más detalles

SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II

SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE 4. ESTADÍSTICA EXAMEN DE MATEMÁTICAS II Estadística (primer parcial). Septiembre de 4.- El coeficiente de determinación R nos determina a) el % de la varianza de Y

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Modelos Estocásticos I Primer Examen Parcial Respuestas

Modelos Estocásticos I Primer Examen Parcial Respuestas Modelos Estocásticos I Primer Examen Parcial Respuestas 1. Cierta especie de plantas produce un número N de semillas, donde N sigue una distribución de Poisson de parámetro λ. La probabilidad de que una

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Unidad 3. Probabilidad

Unidad 3. Probabilidad Unidad 3. Probabilidad Javier Santibáñez 17 de agosto de 2018 1. Introducción Definición 1. La probabilidad es una medida subjetiva del grado de creencia que se tiene acerca de que algo desconocido sea

Más detalles

Lista de Ejercicios (Parte 1)

Lista de Ejercicios (Parte 1) ACT-11302 Cálculo Actuarial III ITAM Lista de Ejercicios (Parte 1) Prof.: Juan Carlos Martínez-Ovando 15 de agosto de 2016 P0 - Preliminar 1. Deriva las expresiones de las funciones de densidad (o masa

Más detalles

TEMA 2.- VARIABLES ALEATORIAS

TEMA 2.- VARIABLES ALEATORIAS TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 16/17 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias. 2.2. Variables aleatorias discretas. Diagrama de barras. 2.3. Función de

Más detalles

Simulación III. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación III. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación III Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Comentario: generación de v.a. exponenciales Generación de v.a. normales Método de convolución:

Más detalles

Definición de variable aleatoria

Definición de variable aleatoria Variables aleatorias Instituto Tecnológico Superior de Tepeaca Agosto-Diciembre 2015 Ingeniería en Sistemas Computacionales M.C. Ana Cristina Palacios García Definición de variable aleatoria Las variables

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial

Más detalles

5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias. Jorge Eduardo Ortiz Triviño

5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias. Jorge Eduardo Ortiz Triviño 5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA

Más detalles

Notas de clase. Prof. Nora Arnesi

Notas de clase. Prof. Nora Arnesi Notas de clase Este material está sujeto a correcciones, comentarios y demostraciones adicionales durante el dictado de las clases, no se recomienda su uso a aquellos alumnos que no concurran a las mismas

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1) PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

Cálculo de Probabilidades y Estadística. Segunda prueba. 1 08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. Se eligen tres puntos A, B y C, al azar e independientemente, sobre una circunferencia. Determinar la distribución del valor

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi U3: Procesos Poisson Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi Analizar el siguiente proceso estocástico: Una fuente radioactiva emite partículas y sea X t : número de partículas

Más detalles

Introducción al Diseño de Experimentos.

Introducción al Diseño de Experimentos. Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta. 0 en otro caso.

1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta. 0 en otro caso. 18 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta { k (x f XY (x, y) = 2 + y 2 ) 20 x 30, 20 y 30 0 en otro caso. a) Cuál es el valor de

Más detalles

Tema 5: Funciones medibles. Variables aleatorias. Función de distribución.

Tema 5: Funciones medibles. Variables aleatorias. Función de distribución. Tema 5: Funciones medibles. Variables aleatorias. Función de distribución. El concepto de variable aleatoria formaliza las magnitudes numéricas asociadas a los resultados de una experimento aleatorio.

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir,

El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir, 1 CLASES DE ESTADÍSTICA II CLASE 4) MOMENTOS. FUNCIÓN GENERATRIZ DE MOMENTOS CONJUNTA. El concepto de Momentos ya se conocía en el análisis de una variable aleatoria y es bueno recordarlo ahora para generalizarlo

Más detalles

PROBABILIDAD Y ESTADÍSTICA ININ4010 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6

PROBABILIDAD Y ESTADÍSTICA ININ4010 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6 PROBABILIDAD Y ESTADÍSTICA ININ4 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6. Con base en probabilidades de la distribución normal a, 2 y 3 desviaciones, determine para una variable con μ = 5 y

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Ejercicios de Simulación

Ejercicios de Simulación Ejercicios de Simulación Investigación Operativa Ingeniería Informática, UC3M Curso 07/08 1. Escribe un código (por ejemplo en Matlab, Fortran, C,... ) que genere m secuencias de n números Bernoulli con

Más detalles

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones Part VI notables El proceso de Bernoulli En cada observación se clasifica el elemento de la población en una de las dos posibles categorías, correspondientes a la ocurrencia o no de un suceso. Llamaremos

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

PROCESOS DE MARKOV DE TIEMPO CONTINUO

PROCESOS DE MARKOV DE TIEMPO CONTINUO CHAPTER 3 PROCESOS DE MARKOV DE TIEMPO CONTINUO 3.1 Introducción En este capítulo consideramos el análogo en tiempo continuo de las Cadenas de Markov de tiempo discreto. Como en el caso de tiempo discreto,

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 10

Maestría en Bioinformática Probabilidad y Estadística: Clase 10 Maestría en Bioinformática Probabilidad y Estadística: Clase 10 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Mayo de 2010 Contenidos 1 Procesos aleatorios

Más detalles

INTRODUCCION A LA SIMULACION DE MODELOS. Simulación es la descripción de un sistema a través de modelos que se pueden aplicar a varias disciplinas.

INTRODUCCION A LA SIMULACION DE MODELOS. Simulación es la descripción de un sistema a través de modelos que se pueden aplicar a varias disciplinas. Tema N 1 Definiciones INTRODUCCION A LA SIMULACION DE MODELOS Simulación es la descripción de un sistema a través de modelos que se pueden aplicar a varias disciplinas. La simulación esencialmente es una

Más detalles

Repaso de Teoría de la Probabilidad

Repaso de Teoría de la Probabilidad Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos

Más detalles

Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y

Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y Profesores de TMDE Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y estadística Monograph 9 de septiembre de 23 Springer Índice general. Variables aleatorias

Más detalles

Material introductorio

Material introductorio Material introductorio Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Vanessa Gómez Verdejo Índice general. Variables aleatorias unidimensionales..................................

Más detalles

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple:

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: Percentiles 130 El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: el percentil es, por tanto, el valor de la variable aleatoria para el cual la función

Más detalles

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0.75(1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 011 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

no es función de distribución de un vector aleatorio (b) Mostrar que:

no es función de distribución de un vector aleatorio (b) Mostrar que: Probabilidades y Estadística (M) Práctica 4 2 cuatrimestre 2004 Vectores aleatorios e independencia de variables 1. (a) Demostrar que la función 1 e x y si x 0 e y 0 F (x, y) = 0 sino no es función de

Más detalles

Probabilidad, Variables Aleatorias y Distribuciones

Probabilidad, Variables Aleatorias y Distribuciones Prueba de Evaluación Continua Grupo B 8-X-5.- Un ladrón perseguido por la policía llega a un garaje que tiene dos puertas: una conduce al recinto A en la que hay coches de los que sólo tienen gasolina

Más detalles

Curso Propedéutico de Cálculo Sesión 6: Aplicaciones de la Integración

Curso Propedéutico de Cálculo Sesión 6: Aplicaciones de la Integración por Curso Propedéutico de Cálculo Sesión 6: de la Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema por 1 por 2 Esquema por 1 por 2 por Al contrario

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad ½ 0.75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

Laboratorio 2 Probabilidad y Estadística con MATLAB GENERACIÓN DE VARIABLES ALEATORIAS Y SIMULACIÓN

Laboratorio 2 Probabilidad y Estadística con MATLAB GENERACIÓN DE VARIABLES ALEATORIAS Y SIMULACIÓN Laboratorio 2 Probabilidad y Estadística con MATLAB GENERACIÓN DE VARIABLES ALEATORIAS Y SIMULACIÓN Introducción Muchos de los métodos de estadística computacional requieren la capacidad de generar variables

Más detalles

Universidad Autónoma de Madrid Probabilidad y Estadística

Universidad Autónoma de Madrid Probabilidad y Estadística Pendiente de la lección 1: Lección 6 Variables aleatorias ˆ Si Ω es infinito, Ω sería su área en P(A) = A / Ω. ˆ Vamos a lanzar un bolígrafo en un suelo con pequeñas baldosas blancas que tienen un dibujo

Más detalles

Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales)

Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) Depto. de Matemáticas Estadística (Ing. de Telecom.) Curso 2004-2005 Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) 1. Consideremos dos variables aleatorias independientes X 1 y X 2,

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4. a) Hallar las funciones de probabilidad marginal de X ydey : p X (x) y p Y (y) respectivamente.

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4. a) Hallar las funciones de probabilidad marginal de X ydey : p X (x) y p Y (y) respectivamente. PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. En la siguiente tabla se presenta la función de probabilidad conjunta del vector aleatorio discreto (X, Y ): Y \ X 1 2 3 4 1 0.10 0.05 0.02 0.02 2 0.05 0.20

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida

Más detalles

Introducción a las Funciones Logarítmicas MATE 3171

Introducción a las Funciones Logarítmicas MATE 3171 Introducción a las Funciones Logarítmicas MATE 3171 Logaritmos de base a Anteriormente repasamos que para 0 < a < 1 o a > 1, la función exponencial f(x) = a x es uno-a-uno, y por lo tanto tiene una función

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.

Más detalles

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

Cálculo de Probabilidades y Estadística. Segunda prueba. 1 08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. En una circunferencia de radio 1 se toman tres puntos, al azar e independientemente. Hallar la probabilidad de que el triángulo

Más detalles

Esperanza Condicional

Esperanza Condicional Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles

Más detalles

. Luego, para el período n + 1 los resultados estarán, en cualquier caso, en el conjunto {λ k n 0 } n+1. k= (n+1). Consideremos Y = λ U n

. Luego, para el período n + 1 los resultados estarán, en cualquier caso, en el conjunto {λ k n 0 } n+1. k= (n+1). Consideremos Y = λ U n Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Probabilidades MA, /5/9, Prof. Raúl Gouet Solución Control #. Considere una colonia de bacterias con población inicial

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes. 1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles