Variables aleatorias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Variables aleatorias"

Transcripción

1 Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales, tal que para cada intervalo en los reales, la probabilidad de que X tome un valor en el intervalo es igual a la integral sobre ese mismo intervalo

2 Por ejemplo: A la función f se le llama función de densidad de probabilidad o simplemente densidad de probabilidad

3 Alternativamente: Se define la función de densidad de probabilidad (pdf), f(x), de una variable aleatoria continua X como aquella que satisface: es decir, la probabilidad de que x caiga entre x y x+dx,

4 La densidad de probabilidad, f(x), debe satisfacer que:

5 Comentario: las distribuciones continuas asignan probabilidad cero a valores individuales, es decir, si X es una variable continua Pr(X=a)=0 Esto no implica el evento X=a sea imposible!

6 Ejemplo: Distribución uniforme

7 Comentario: La densidad de probabilidad NO es la probabilidad de X cerca de x. Es la integral de f la que da la probabilidad

8 Ejemplo: Suponga que la función de densidad de probabilidad (pdf) está dada por: Cuál es el valor de c? Determine :

9 Similarmente al caso discreto, se define la función de distribución cumulativa (cdf) F(x): De modo que Además:,

10 Comentarios: Variables aleatorias - La función de distribución cumulativa F(x) Es una función no decreciente con x - Una función de distribución cumulativa es siempre continua por la derecha: para cada valor de x

11 Ejemplo: Sea X una variable aleatoria con distribución uniforme en el intervalo [a,b]. Cuál es la función de distribución cumulativa

12 Comentario: Una variable aleatoria discreta puede tratarse como una variable aleatoria continua y asignarse la correspondiente densidad de probabilidad. Si X es una variable discreta que toma los valores x 1,...,x n con probabilidades p 1,...,p n, entonces la densidad de probabilidad continua puede escribirse como

13 Varias variables aleatorias Es común encontrar problemas que dependen de más de una variable aleatoria. Los resultados que hemos visto pueden extenderse a dos o más variables aleatorias. Veamos el caso de dos variables.

14 Varias variables aleatorias Distribucion conjunta discreta. Sean X y Y dos variables aleatorias y consideremos el par ordenado (X,Y). Si existe un número contable de diferentes valores (x i,y i ) para el par (X,Y), entonces X, Y tienen una distribución discreta. Definición: La función de probabilidad conjunta de X,Y se define como la función f tal que para cada punto (x i,y i ) en el plano xy,

15 Varias variables aleatorias Con Si (x i,y i ) NO es uno de los valores posibles del par (X,Y) entonces f(x i,y i ) = 0. Además,

16 Varias variables aleatorias Similarmente al caso continuo para una variable tenemos ahora que: donde f(x,y) es la función de densidad de probabilidad conjunta que satisface: y

17 Varias variables aleatorias

18 Varias variables aleatorias Caso especial: variables independientes. Es frecuente encontrar casos donde las variables aleatorias X, Y no dependen una de otra. En este caso la densidad de probabilidad puede escribirse como Pr(X=x i,y=y i )=g(x i )h(y i ), donde g(x i ) y h(y i ) son las densidades de probabilidad de X y Y. Similarmente para el caso continuo:

19 Varias variables aleatorias Sobre el tema de variables aleatorias independientes, supongamos que nos interesa saber la densidad de probabilidad de la suma de variables independientes. Sea Y = X 1 + X 2, donde X 1, X 2 son variables aleatorias independientes con densidades de probabilidad f 1 y f 2. La densidad de probabilidad de Y está dada por (convolución)

20 Varias variables aleatorias

21 Varias variables aleatorias

22 Varias variables aleatorias

23 Varias variables aleatorias

24 Varias variables aleatorias Distribución cumulativa conjunta La distribución cumulativa conjunta para dos variables aleatorias X y Y está definida como la función F tal que para todos los valores de x e y de modo que

25 Varias variables aleatorias Si X e Y tienen una densidad de probabilidad conjunta f(x,y) entonces De aquí que

26 Varias variables aleatorias Distribución marginal Frecuentemente en un problema de varias variables, digamos 2 variables, estamos interesados en la distribución de una sóla de las variables. Dicha distribución se obtiene a través de la distribución conjunta y se le llama distribución marginal. Por ejemplo, para el caso discreto, si X e Y son variables aleatorias con función de distribución conjunta f(x,y), entonces la distribución marginal f 1 está dada por

27 Varias variables aleatorias Por ejemplo, para el caso discreto, si X y Y son variables aleatorias con distribución conjunta f(x,y), entonces la distribución marginal f 1 está dada por Similarmente para el caso continuo:

28 Varias variables aleatorias Distribución condicional Así como en el cálculo de probabilidades era de interés conocer la probabilidad de un evento dado que otro había sucedido, ahora nos preguntamos por la distribución de una variable X dado que otra, Y, ha tomado un valor Y=y. La distribución de la probabilidad condicional viene dada por:

29 Varias variables aleatorias Distribución condicional Para n variables: donde f 2 es la distribución marginal de X 1,... X k

30 Varias variables aleatorias Ley de la probabilidad total y teorema de Bayes Para n variables: donde Y el teorema de Bayes para variables aleatorias es: y

31 Funciones de variables aleatorias Frecuentemente se requiere la distribución de una función de las variables aleatorias. Por ejemplo, si X es una variable aleatoria, quisieramos saber la distribución de 1/X, o bien para dos variables X 1,X 2, cuál es la probabilididad de exp(x 1 +X 2 )?

32 Varias variables aleatorias Funciones de variables aleatorias o bien

33 Algunas propiedades de las distribuciones Las distribuciones de probabilidad tienen toda la información estadística de las variables aleatorias en cuestión. En muchas ocasiones algunas propiedades de las distribuciones nos dan suficiente información estadística de las variables aleatorias. Los llamados valores esperados (o promedios o momentos) son cantidades estadísticas simples que nos dan información de las variables aleatorias.

34 Valor esperado, valor promedio, promedio, valor medio, media, o primer momento La propiedad más utilizada para caracterizar una distribución de variables aleatorias es el llamado valor medio. Si X es una variable aleatoria el valor esperado E[X] está definido como f(x) es la función de probabilidad (discreto) o densidad de probabilidad (continuo)

35 En general, para una función de variables aleatorias, tenemos

36 Una propiedad: Variables aleatorias También, si f(x) y g(x) son funciones de probabilidad discretas (o bien, continuas) tenemos que: donde a y b son constantes (números reales)

37 Varianza (que tan dispersos son los valores de una variable aleatoria respecto al valor medio) Sea X es una variable aleatoria, su varianza está dada por: donde

38 Se pueden demostrar las siguientes igualdades para la varianza (a y b constantes):

39 Generalización: k-ésimo momento Este se define como: donde

40 Similarmente, el k-ésimo momento central viene definido por

41 Comentario: Los momentos centrales y tienen nombre: skewness y kurtosis

42 Función generadora (generatriz) de probabilidad donde f n =Pr(X=x n ) y x n toma valores enteros no negativos

43 de modo que, por ejemplo, el primer momento está dado por

44

45 Otro tipo de función generadora (generatriz) es la función generadora de momentos Para una variable aleatoria X y un número real t, esta función se define como: La función generadora existe para todo valor de t siempre que X esté acotada y M X (t=0)=e(1)=1

46 Entonces, el n-ésimo momento de X está dado por: De esta forma, por ejemplo,

47 Ejemplo: función generadora de una densidad de distribución Gaussiana está dada por:

48 Caso especial: suma de variables independientes Si X 1,...,X n son variables independientes y S n =X X n, entonces

49 Un poco más general: si ahora S n está dada por la suma de variables independientes de la forma: S n =c 1 X c n X n, entonces la función generatriz viene dada por:

50 Covarianza y correlación Estas dos cantidades nos dicen que tanto están relacionadas/(dependen entre sí) dos variables aleatorias. Covarianza: sean X e Y variables aleatorias con valores bien definidos y La covarianza se define como

51 Covarianza y correlación Se puede mostrar que la covarianza se puede escribir como: De aquí que, si X e Y son variables independientes por lo que

52 Covarianza y correlación En cuanto a la correlación, ésta se define como Se puede demostra que: y

53 Si hay una dependencia lineal entre las variables X e Y, digamos Y=aX + b, tenemos que Corr[X,Y] =1, si a es una constante positiva y Corr[X,Y]=-1, si a es una constante negativa

54 Comentarios: Variables aleatorias a) El hecho de que haya una relación entre dos variables aleatorias, digamos Y=X*X, no implica que ambas variables esten correlacionadas b) Si las variables son independientes => pero no en el otro sentido, i.e, si no implica que las variables sean independientes

55 Si X e Y son variables aleatorias con varianza finita entonces Si las variables son independientes tenemos que es un caso particular de

56 Teorema del límite central Sean X 1,...,X n n variables aleatorias independientes cada una descrita (estadísticamente) por funciones de probabilidad f i (x) con valores medios y varianzas. Entonces la variable Tiene las siguientes propiedades

57 1-El valor esperado está dado por 2-La varianza viende dada por 3-Para la función de probabilidad de Z tiene a una distribución normal (Gaussiana) con media y varianza dada en 1 y 2. Nota:las funciones f i (x) pueden ser todas distintas

58 Comentarios: 1) Si las X i siguen la misma distribución, para la distribución de Z se aproxima a una distribución normal con valor medio y varianza 2) Si una variable aleatoria está dada por podemos hacer entonces ln(y) sigue una distribución log-normal

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera

Más detalles

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales: Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Variables aleatorias Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es

Más detalles

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA 1 CLASES DE ESTADÍSTICA II CLASE ) ESPERANZA ABSOLUTA. ESPERANZA CONDICIONAL. ESPERANZA ABSOLUTA El cálculo de valores esperados o esperanzas a nivel de dos variables aleatorias es una generalización matemática

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Independencia condicional Como hemos dicho, las probabilidades condicionales tienen las mismas propiedades que las probabilidades no condicionales. Un ejemplo más es el siguiente:

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Tema 4: Variable Aleatoria Bidimensional

Tema 4: Variable Aleatoria Bidimensional Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones

Más detalles

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable

Más detalles

1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional

1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional 1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional 4.1. Variable aleatoria bidimensional Las Variables Aleatorias Bidimensionales o N-Dimensionales surgen cuando es necesario trabajar en espacios

Más detalles

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Esperanza Matemática. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Esperanza Matemática. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides speranza Matemática UCR CCI CI-135 Probabilidad y stadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Media de una Variable Aleatoria Sea una variable aleatoria con distribución de probabilidad f().

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño

5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño 5. TEOREMA FUNDAMENTAL: Formulación y Demostración Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ 1 CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias Universidad de Chile Facultad De Ciencias Físicas y Matemáticas MA3403 - Probabilidades y Estadística Prof. Auxiliar: Alberto Vera Azócar. albvera@ing.uchile.cl Vectores Aleatorios 1. Vectores Aleatorios

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Lista de Ejercicios (Parte 1)

Lista de Ejercicios (Parte 1) ACT-11302 Cálculo Actuarial III ITAM Lista de Ejercicios (Parte 1) Prof.: Juan Carlos Martínez-Ovando 15 de agosto de 2016 P0 - Preliminar 1. Deriva las expresiones de las funciones de densidad (o masa

Más detalles

Estadística Descriptiva y Probabilidad FORMULARIO

Estadística Descriptiva y Probabilidad FORMULARIO Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

VECTORES ALEATORIOS. 1 Introducción. 2 Vectores aleatorios

VECTORES ALEATORIOS. 1 Introducción. 2 Vectores aleatorios VECTORES ALEATORIOS 1 Introducción En la vida real es muy frecuente enfrentarnos a problemas en los que nos interesa analizar varias características simultáneamente, como por ejemplo la velocidad de transmisión

Más detalles

1. Experimentos aleatorios

1. Experimentos aleatorios 1. Eperimentos aleatorios La eperimentación es útil porque si se supone que llevamos a cabo ciertos eperimentos bajo condiciones esencialmente idénticas se llegará a los mismos resultados. En estas circunstancias,

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Cuáles son las características aleatorias de la nueva variable?

Cuáles son las características aleatorias de la nueva variable? Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que

Más detalles

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n ) El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x,, x n ) / x 1,x,, x n } A cada uno de los números reales x 1,x,, x n que conforman la

Más detalles

Funciones de Variables Aleatorias. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Funciones de Variables Aleatorias. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Funciones de Variables Aleatorias UCR ECCI CI-135 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción En los métodos estadísticos estándar, el resultado de la prueba

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Conceptos Fundamentales Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Análisis de datos en física de partículas Experimento en física de partículas: Observación de n sucesos de un cierto tipo (colisiones

Más detalles

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Martingalas. Es decir, condicionando al pasado, la ganancia neta esperada luego del turno siguiente es cero. Esto es, el juego es justo.

Martingalas. Es decir, condicionando al pasado, la ganancia neta esperada luego del turno siguiente es cero. Esto es, el juego es justo. Martingalas Vamos a estudiar una clase de procesos que pueden verse como la fortuna de un jugador que juega repetidamente un juego justo. Así que pensemos que M n es la fortuna del jugador luego de jugar

Más detalles

Capítulo 1. Teoría de la probabilidad Teoría de conjuntos

Capítulo 1. Teoría de la probabilidad Teoría de conjuntos Capítulo 1 Teoría de la probabilidad 1.1. Teoría de conjuntos Definición 1.1.1 El conjunto S de todos los posibles resultados de un experimento aleatorio es llamado el espacio muestral. Un espacio muestral

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. SEÑALES ALEATORIAS Y RUIDO. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. PROBABILIDAD. 1 2. VARIABLES ALEATORIAS.

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria. Teorema de los valores extremos.

Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria. Teorema de los valores extremos. Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria.. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 Índice

Más detalles

Ruido en los sistemas de comunicaciones

Ruido en los sistemas de comunicaciones Capítulo 2 Ruido en los sistemas de comunicaciones Cuando una señal se transmite a través de un canal de comunicaciones hay dos tipos de imperfecciones que hacen que la señal recibida sea diferente de

Más detalles

3.4: DISTRIBUCIONES DE PROBABILIDAD CONJUNTAS

3.4: DISTRIBUCIONES DE PROBABILIDAD CONJUNTAS Cátedra: 3.4: DISTRIBUCIONES DE PROBABILIDAD CONJUNTAS Hasta ahora el estudio se ha referido a variables restringidas a espacios muestrales unidimensionales en los que se registran los resultados de un

Más detalles

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial

Más detalles

Tema 1: Estadística descriptiva. Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1

Tema 1: Estadística descriptiva. Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1 Tema 1: Estadística descriptiva Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1 Introducción Objetivo: estudiar una característica o variable en una población. Ejemplos:

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

REVISION DE CONCEPTOS BÁSICOS

REVISION DE CONCEPTOS BÁSICOS REVISION DE CONCEPTOS BÁSICOS Objetivos Introducir, de manera muy general, algunos de los conceptos matemáticos y estadísticos que se utilizan en el análisis de regresión. La revisión no es rigurosa y

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2 Curso de nivelación Estadística y Matemática Cuarta clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2016 Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

INSTRUCCIONES. Lee cuidadosamente cada pregunta antes de contestarla

INSTRUCCIONES. Lee cuidadosamente cada pregunta antes de contestarla INSTRUCCIONES 1. Las cuestiones respondidas correctamente valen un punto. Hay una única respuesta correcta para cada cuestión. Las respuestas fallidas tienen una penalización de 0. puntos, por tanto, es

Más detalles

Probabilidad Condicional

Probabilidad Condicional Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería

Más detalles

X Y

X Y Capítulo 2 Distribuciones bivariantes Hasta ahora hemos estudiado herramientas que nos permiten describir las características de un único carácter Sin embargo, en muchos casos prácticos, es necesario estudiar

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si

Más detalles

El Teorema de la Convergencia Dominada

El Teorema de la Convergencia Dominada Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Distribución binomial

Distribución binomial Distribución binomial Cuando la Distribución de Benoulli se preguntaba Que pasara si sucede un único evento? la binomial esta asociada a la pregunta " Cuantas veces hay que realizar la prueba para que

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

03 Variables aleatorias y distribuciones de probabilidad

03 Variables aleatorias y distribuciones de probabilidad 03 Variables aleatorias y distribuciones de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Variables aleatorias discretas: función

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013

Más detalles

4. Modelos Multivariantes

4. Modelos Multivariantes 4. Curso 2011-2012 Estadística Distribución conjunta de variables aleatorias Definiciones (v. a. discretas) Distribución de probabilidad conjunta de dos variables aleatorias X, Y Función de distribución

Más detalles

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas

Más detalles

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones DESIGUALDADES 4.1.- AXIOMAS DE ORDEN. Cualquier conjunto o Campo de números que satisface los siguientes 4 Axiomas se dice que es un conjunto de números ORDENADO. El conjunto o Campo de los números reales

Más detalles

Funciones elementales

Funciones elementales Tema Funciones elementales.1. Función real de variable real Una función real de variable real es cualquier aplicación f : D R! R. Se dice que el conjunto D es el dominio de f. El rango de f es el conjunto

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Tercera clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2015 Agenda 1 Variable aleatoria Continua Valor esperado de una variable

Más detalles

6 Variables aleatorias independientes

6 Variables aleatorias independientes 6 Variables aleatorias independientes Edgar Acuna ESMA 4 Edgar Acuna Dos variables aleatorias son independientes si para todo a b P[

Más detalles

Forma binomial de números complejos (ejercicios)

Forma binomial de números complejos (ejercicios) Forma binomial de números complejos (ejercicios) Objetivos. Mostrar que los números reales x se pueden identificar con números complejos de la forma (x, 0), y cada número complejo (x, y) se puede escribir

Más detalles

Tema 7. Variables Aleatorias Continuas

Tema 7. Variables Aleatorias Continuas Presentación y Objetivos. Tema 7. Variables Aleatorias Continuas En este tema se propone el estudio de las variables aleatorias continuas más importantes, desde la más simple incrementando el grado de

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

ESTADÍSTICA. Se trata de una variable aleatoria binormal con n=5, probabilidad= ¼. B(5, ¼); La probabilidad es P= P(x=3) +P(x=4) + P(x=5):

ESTADÍSTICA. Se trata de una variable aleatoria binormal con n=5, probabilidad= ¼. B(5, ¼); La probabilidad es P= P(x=3) +P(x=4) + P(x=5): ESTADÍSTICA AYUDAS PARA EL TEST (1ºParcial) 1) La suma de probabilidades de todos los casos posibles de un experimento tiene que ser igual a uno. 2) La probabilidad de aprobar este test (5 preguntas, cada

Más detalles