ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua"

Transcripción

1 ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua

2 DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa: ni Frecuencia acumulada: Fi Frecuencia acumulada relativa: Ni Ejercicio 1 x i Recuento f i F i n i N i 27 I II III III I

3 DISTRIBUCIÓN DE FRECUENCIAS AGRUPADAS = INTERVALOS Límites de clases : Li y Ls Amplitud de clase: ai Marca de clase: Ci Ejercicio 2 c i f i F i n i N i [0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35, 40) [40, 45) [45, 50)

4 PARÁMETRO ESTADÍSTICO Posición Centralización: Media Mediana Moda No centralizados: Quartiles Deciles Percentiles Dispersión Rango o Recorrido Desviación Media Varianza Desvío Estándar

5 Parámetros de Posición De Centralización: Media Mediana Moda

6 MEDIA Propiedades de la media aritmética La suma de las desviaciones de todas las puntuaciones de una distribución respecto a la media de la misma igual a cero. La media aritmética de los cuadrados de las desviaciones de los valores de la variable con respecto a un número cualquiera se hace mínima cuando dicho número coincide con la media aritmética. Si a todos los valores de la variable se les suma un mismo número, la media aritmética queda aumentada en dicho número. Si todos los valores de la variable se multiplican por un mismo número la media aritmética queda multiplicada por dicho número. Observaciones sobre la media aritmética La media se puede hallar sólo para variables cuantitativas. La media es independiente de las amplitudes de los intervalos. La media es muy sensible a las puntuaciones extremas. La media no se puede calcular si hay un intervalo con una amplitud indeterminada.

7 MEDIA ARITMÉTICA PARA DATOS AGRUPADOS Ejercicio 3 x i f i x i f i [10, 20) [20, 30) [30,40) [40, 50) [50, [60,70) [70, 80)

8 MEDIANA ME Cálculo de la Me Ordenamos los datos de menor a mayor. Serie con número impar de medidas la Me es la puntuación central de la misma. 2, 3, 4, 4, 5, 5, 5, 6, 6 Me= 5 Serie con número par de puntuaciones la Me es la media entre las dos puntuaciones centrales. 7, 8, 9, 10, 11, 12 Me= 9.5 Cálculo de la mediana para datos agrupados La mediana se encuentra en el intervalo donde la frecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas. Es decir tenemos que buscar el intervalo en el que se encuentre. L i-1 es el límite inferior de la clase donde se encuentra la mediana. N/2 es la semisuma de las frecuencias absolutas. F i-1 es la frecuencia acumulada anterior a la clase mediana. a i es la amplitud de la clase.

9 Ejercicio 4: f i F i [60, 63) 5 5 [63, 66) [66, 69) [69, 72) [72, 75) /2=50 Clase modal: (66, 69)

10 MODA MO La moda es el valor que tiene mayor frecuencia absoluta. Se puede hallar la Mo para variables cualitativas y cuantitativas. Hallar la moda de la distribución: 2, 3, 3, 4, 4, 4, 5, 5 M o = 4 Si en un grupo hay dos o varias puntuaciones con la misma frecuencia y esa frecuencia es la máxima, la distribución es bimodal o multimodal, es decir, tiene varias modas. Ej.: 1, 1, 1, 4, 4, 5, 5, 5, 7, 8, 9, 9, 9 M o = 1, 5, 9 Cuando todas las puntuaciones de un grupo tienen la misma frecuencia, no hay moda. 2, 2, 3, 3, 6, 6, 9, 9 Si dos puntuaciones adyacentes tienen la frecuencia máxima, la moda es el promedio de las dos puntuaciones adyacentes. 0, 1, 3, 3, 5, 5, 7, 8 Mo = 4

11 CÁLCULO DE LA MODA PARA DATOS AGRUPADOS Todos los intervalos tienen la misma amplitud. L i-1 es el límite inferior de la clase modal. f i es la frecuencia absoluta de la clase modal. f i--1 es la frecuencia absoluta inmediatamente inferior a la en clase modal. f i-+1 es la frecuencia absoluta inmediatamente posterior a la clase modal. a i es la amplitud de la clase. También se utiliza otra fórmula de la moda que da un valor aproximado:

12 Ejercicio 5: f i [60, 63) 5 [63, 66) 18 [66, 69) 42 [69, 72) 27 [72, 75) 8 100

13 Los intervalos tienen amplitudes distintas. En primer lugar tenemos que hallar las alturas. La clase modal es la que tiene mayor altura. La fórmula de la moda aproximada cuando existen distintas amplitudes es:

14 Ejercicio 6 f i h i [0, 5) 15 3 [5, 7) [7, 9) 12 6 [9, 10)

15 Parámetros de Dispersión Rango o Recorrido Desviación Media Varianza Desvío Estándar

16 DESVIACIÓN MEDIA Desviación respecto a la media: es la diferencia entre cada valor de la variable estadística y la media aritmética. D i = Desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media. Desviación media para datos agrupados

17 Ejercicio 7 x i f i x i f i x - x x - x f i [10, 15) [15, 20) [20, 25) [25, 30) [30, 35)

18 VARIANZA Es la media aritmética del cuadrado de las desviaciones respecto a la media de una distribución estadística. Varianza para datos agrupados

19 Propiedades de la varianza La varianza será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales. Si a todos los valores de la variable se les suma un número la varianza no varía. Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número. Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzas se puede calcular la varianza total. Si todas las muestras tienen el mismo tamaño: Si las muestras tienen distinto tamaño:

20 Ejercicio 8 x i f i x i f i x i2 f i [10, 20) [20, 30) [30,40) [40, 50) [50, [60,70) [70, 80)

21 DESVÍO ESTÁNDAR σ Es la raíz cuadrada de la varianza. Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación. Para datos agrupados:

22 Propiedades del desvío estándar Será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales. Si a todos los valores de la variable se les suma un número el desvío estándar no varía. Si todos los valores de la variable se multiplican por un número el desvío estándar queda multiplicada por dicho número. Si tenemos varias distribuciones con la misma media y conocemos sus respectivos desvíos puede calcular el desvío estándar total. Si todas las muestras tienen el mismo tamaño: Si las muestras tienen distinto tamaño:

23 COEFICIENTE DE VARIACIÓN Y PUNTUACIONES TÍPICAS Coeficiente de variación es la relación entre la desviación típica de una muestra y su media. se suele expresar en porcentajes: Permite comparar las dispersiones de dos distribuciones distintas, siempre que sus medias sean positivas. Se calcula para cada una de las distribuciones y los valores que se obtienen se comparan entre sí. La mayor dispersión corresponderá al valor del coef de variación mayor.

24 Ejercicio 9 Una distribución tiene x = 140 y σ = y otra x = 150 y σ = 25. Cuál de las dos presenta mayor dispersión? La primera distribución presenta mayor dispersión.

25 Puntuaciones típicas: z Puntuaciones diferenciales Resultan de restarles a las puntuaciones directas la media aritmética x i = X i X Puntuaciones típicas Son el resultado de dividir las puntuaciones diferenciales entre el desvío estándar. Este proceso se llama tipificación. Observaciones sobre puntuaciones típicas La media aritmética de las puntuaciones típicas es 0. El desvío estándar de las puntuaciones típicas es 1. Las puntuaciones típicas son adimensionales. Se utilizan para comparar los valores obtenidas en distintas distribuciones.

26 Ejercicio 10 En una clase hay 15 alumnos y 20 alumnas. El peso medio de los alumnos es 58.2 kg y el de las alumnas y 54.4 kg. Los desvíos estándar de los dos grupos son, respectivamente, 3.1 kg y 5.1 kg. El peso de José es de 70 kg y el de Ana es 65 kg. Cuál de ellos puede, dentro del grupo de alumnos de su sexo, considerarse más grueso? José es más grueso respecto de su grupo.

27 INFERENCIA ESTADÍSTICA Estudia cómo sacar conclusiones generales para toda la población a partir del estudio de una muestra, y el grado de fiabilidad o significación de los resultados obtenidos.

28 MUESTREO PROBABILÍSTICO Consiste en elegir una muestra de una población al azar. Hay varios tipos de muestreo: Muestreo aleatorio simple Muestreo aleatorio sistemático Muestreo aleatorio estratificado

29 INTERVALOS DE CONFIANZA Es un intervalo en el que sabemos que está el parámetro con un nivel de confianza determinado. : nivel de significación. 1- : nivel de confianza. z: coeficiente de confiabilidad. k: valor crítico = z /2 µ Valores críticos P(z>z /2 ) = /2 P(-z /2 <z< z /2 ) = 1-1 -α α/2 z α/

30 ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN INTERVALO DE CONFIANZA PARA LA MEDIA El intervalo de confianza, para la media de una población, con un nivel de confianza de 1- α, siendo x la media de una muestra de tamaño n y σ la desviación típica de la población, es: El error máximo de estimación es: Cuanto mayor sea el tamaño de la muestra, n, menor es el error. Cuanto mayor sea el nivel de confianza, 1-α, mayor es el error.

31 Tamaño de la muestra: Si aumentamos el nivel de confianza, aumenta el tamaño de la muestra. Si disminuimos el error, tenemos que aumentar el tamaño de la muestra. Depende de: Tamaño de σ. Grado deseado de confiabilidad. Amplitud del intervalo deseado. Si se desea un intervalo que se extienda d unidades hacia uno u otro lado del estimador, entonces: d = coef. de confiabilidad x error estándar

32 Ejercicio 11 El tiempo que tardan las cajeras de un supermercado en cobrar a los clientes sigue una ley normal con media desconocida y desviación típica 0,5 minutos. Para una muestra aleatoria de 25 clientes se obtuvo un tiempo medio de 5,2 minutos. a)calcula el intervalo de confianza al nivel del 95% para el tiempo medio que se tarda en cobrar a los clientes. b) Indica el tamaño muestral necesario para estimar dicho tiempo medio con un error de ± 0,5 minutos y un nivel de confianza del 95%. n 4

33 PRUEBA DE HIPÓTESIS Una hipótesis es una afirmación acerca de una o mas poblaciones, generalmente se refiere a los parámetros de las poblaciones acerca de las cuales se hace la afirmación. 1-Hipótesis de investigación. 2-Hipótesis estadísticas.

34 PRUEBA DE HIPÓTESIS: 9 PASOS 1-Datos. 2-Suposiciones. 3- Hipótesis. 4-Estadística de Prueba. 5-Distribución de la Estadística de Prueba. 6- Regla de Decisión. 7-Estadística de Prueba Calculada. 8-Decisión Estadística. 9- Conclusión.

35 1-Datos: Comprender la naturaleza de los datos que forman la base de los procedimientos de prueba, determina la prueba particular que debe usarse. 2-Suposiciones: acerca de la normalidad de la distribución de la población, igualdad de las varianzas e independencia de las muestras. 3- Hipótesis: se trabaja con 2 hipótesis que deben enunciarse explícitamente. H 0 : debe probarse, se establece con el propósito de ser rechazada. H A 4-Estadística de Prueba: es alguna estadística que puede calcularse a partir de los datos de la muestra. Sirve como productor de decisiones. Según su magnitud se rechaza o no la H 0 Est. de prueba= Est. Relevante parámetro supuesto error estándar de la est, relevante

36 5-Distribución de la Estadística de Prueba: Es necesario especificar la distribución de probabilidad de la estadística de prueba. Por Ej.: la estadística de prueba z sigue una distribución normal si la Ho es verdadera y se satisfacen las suposiciones. 6- Regla de Decisión: Todos los valores posibles que la estadística de prueba puede tener son puntos sobre el eje horizontal de la gráfica de la distribución de la estadística y se dividen en dos grupos: Región de rechazo: estos valores tienen menor probabilidad de suceder si Ho es verdadera. Región de aceptación: Tienen mayor probabilidad de suceder si Ho es verdadera. Si el valor de la estadística de prueba que se calcula es uno de los valores de la región de rechazo, entonces se rechaza Ho. Si cae dentro de la región de aceptación, Ho no se rechaza.

37 Región de rechazo µ Región de aceptación Región de rechazo La decisión de que valores van hacia la zona de rechazo y cuáles a la de aceptación, se toma en base al nivel de significación deseado = es la probabilidad de rechazar Ho. ERROR TIPO I: Cuando se rechaza una Ho verdadera. ERROR TIPO II: Cuando se acepta una Ho falsa. es la probabilidad de cometer un error tipo I, para evitarlo se hace pequeña. β es la probabilidad de cometer un error tipo II, sobre β no se tiene control.

38 7-Estadística de Prueba Calculada: A partir de los datos de la muestra se calcula la estadística de prueba y se compara con las regiones de aceptación o rechazo. 8-Decisión Estadística: Consiste en el rechazo o no de la Ho 9- Conclusión: Si H 0 se rechaza, se concluye que H A es verdadera. Si H 0 no se rechaza, se concluye que H 0 puede ser verdadera.

39 Ejercicio 12 En el estudio sobre determinada enzima se tomó una muestra de 10 individuos, se calcula la media muestral = 22. Se sabe que la variable de interés presenta una distribución aproximadamente normal, con una varianza de 45. Se está planteando la siguiente pregunta: puede concluirse que la concentración media de la enzima en esta población es distinta de 25? Con base en el conocimiento que se tiene sobre las pruebas de hipótesis puede concluirse que la concentración media de la enzima es distinta de 25 si puede rechazarse la Ho de que la media es igual a 25. Utilice el procedimiento de prueba de hipótesis de 9 pasos para tomar una decisión. 1)Datos: n=10, = 22, = 45 2) Suposiciones: distribución normal, varianza conocida.

40 3) Hipótesis: H 0 : µ= 25 H A :µ 25 4) Estadística de prueba: 5) Distribución de la estadística de prueba: z presenta distribución normal con media=0 y varianza = 1, si Ho es verdadera. 6) Regla de decisión: =0,05, como la región de rechazo va a consistir en dos partes: /2=0,025 Tabla F: 0,975 obtengo los valores críticos: z = -1,96 y 1,96 El valor de y la regla de decisión se establecen antes de reunir los datos.

41 7) Calculo la estadística de prueba: z= -1,41 8) Decisión estadística: No se puede rechazar Ho, ya que -1,41 no está en la zona de rechazo. El valor calculado de z no es significativo en el nivel 0,05. 9) Conclusión: µ puede ser igual a 25. Se tomarán decisiones acordes a esta conclusión.

42 Valores p: En lugar de decir que el valor observado de la estadística de prueba es o no significativo, se puede reportar la probabilidad exacta de obtener un valor igual o mas extremo si la Ho es verdadera. En este caso p=0,1586 la probabilidad de obtener un valor tan extremo como 1,41 en cualquier dirección es de 0,1586 cuando la Ho es verdadera. Tabla F: z de -1,41 F=0,0793 La probabilidad de z -1,41 = 0,0793 La probabilidad de z 1,41 = 0,0793 P: -1,41 z 1,41 = 0,0793+0,0793 (cuando Ho es verdadera ) = 0,1586

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE II POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Tema 5. Medidas de posición Ejercicios resueltos 1

Tema 5. Medidas de posición Ejercicios resueltos 1 Tema 5. Medidas de posición Ejercicios resueltos 1 Ejercicio resuelto 5.1 Un Centro de Estudios cuenta con 20 aulas, de las cuales 6 tienen 10 puestos, 5 tienen 12 puestos, 4 tienen 15 puestos, 3 tienen

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

N. Libros No. Estudiantes

N. Libros No. Estudiantes EJERCICIOS RESUELTOS DE ESTADÍSTICA UNIDIMENSIONAL 1. Se pregunta en un grupo de estudiantes por el numero de libros que han leído en el último mes, obteniendo las siguientes respuestas. N. Libros 0 1

Más detalles

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta

Más detalles

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS Jorge Galbiati Riesco Si los datos se presentan en tablas de recuencias por intervalos, se pueden obtener valores aproximados de las medidas de resumen,

Más detalles

TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014

TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014 TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014 AGENDA Estadísticas en Excel Construcción de una hoja de trabajo Puntuaciones por asistencia Calificaciones finales igual peso Calificaciones finales pesadas

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 2012-2013 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis

Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis Objetivos del tema Conocer el proceso para contrastar hipótesis y su relación con el método científico. Diferenciar entre hipótesis nula y alternativa Nivel de significación Test de Hipótesis Introducción

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Las secciones anteriores han mostrado cómo puede estimarse un parámetro de

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

2. Análisis de varianza

2. Análisis de varianza 1. Análisis de varianza Introducción La estadística inferencial no solo realiza estudios con una muestra, también es necesario trabajar con más de una muestra; las que pueden ser dos o más. Para cada una

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

EJERCICIOS ESTADÍSTICA DESCRIPTIVA

EJERCICIOS ESTADÍSTICA DESCRIPTIVA EJERCICIOS ESTADÍSTICA DESCRIPTIVA 1.- Dada la siguiente distribución de frecuencias de variable discreta. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica x i f i 47 1 48 3 49 2 50

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: STATGRAPHICS Re. 4/d/yyyy Pruebas de Hipótesis (Una Muestra) Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: 1. la media μ de una distribución normal.. la desiación

Más detalles

2. FRECUENCIAS. 2.1. Distribución de Frecuencias.

2. FRECUENCIAS. 2.1. Distribución de Frecuencias. 2. FRECUENCIAS 2.1. Distribución de Frecuencias. El manejo de la información requiere de la ordenación de datos de tal forma que permita la obtención de una forma más fácil la obtención de conclusiones

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 31 de mayo, 2011 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE

ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE 1. TÉCNICAS DE INVESTIGACIÓN SOCIAL 1.1. Datos de la asignatura Tipo de estudios Titulación Nombre de la asignatura Carácter de la asignatura Licenciatura Investigación

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Definiciones generales

Definiciones generales Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para

Más detalles

Temas de Estadística Práctica

Temas de Estadística Práctica Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: Medidas de tipo paramétrico Resumen teórico Medidas de tipo paramétrico Medidas de tendencia central Medidas

Más detalles

Tablas de frecuencias con datos agrupados

Tablas de frecuencias con datos agrupados Tablas de frecuencias con datos agrupados Cuando los valores de la variable son muchos, conviene agrupar los datos en intervalos o clases para así realizar un mejor análisis e interpretación de ellos.

Más detalles

Departamento de Métodos Cuantitativos para la Economía y la Empresa

Departamento de Métodos Cuantitativos para la Economía y la Empresa Departamento de Métodos Cuantitativos para la Economía y la Empresa Técnicas para el Análisis de Mercado NOMBRE: DNI: GRUPO: 1 (3 puntos) La empresa de productos de informática Watermellon quiere analizar

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Tema 1: Introducción

Tema 1: Introducción Estadística Universidad de Salamanca Curso 2010/2011 Outline 1 Estadística 2 Outline 1 Estadística 2 La estadística es una ciencia que comprende la recopilación, tabulación, análisis e interpretación de

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

EJERCICIOS Tema 5 La información que recibimos

EJERCICIOS Tema 5 La información que recibimos EJERCICIOS Tema 5 La información que recibimos 1.- Califica las siguientes preguntas como abiertas o cerradas: a) Elige un lugar para tomar un baño: Playa - Piscina b) Indica que color o colores del arco

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

ESTADÍSTICA I Código: 8219

ESTADÍSTICA I Código: 8219 ESTADÍSTICA I Código: 8219 Departamento : Metodología Especialidad : Ciclo Básico Prelación : Sin Prelación Tipo de Asignatura : Obligatoria Teórica y Práctica Número de Créditos : 3 Número de horas semanales

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

TEMAS SELECTOS DE MATEMÁTICAS II

TEMAS SELECTOS DE MATEMÁTICAS II MATERIAL PARA PREPARAR EL EXAMEN DE TEMAS SELECTOS DE MATEMÁTICAS II Profesor: Rubén Oscar Costiglia Garino PREFECO David Alfaro Siqueiros MEDIAS 1. Dados los números 13 y 23 calcula: a. La media aritmética

Más detalles

PROBLEMAS ESTADÍSTICA I

PROBLEMAS ESTADÍSTICA I PROBLEMAS ESTADÍSTICA I INGENIERÍA TÉCNICA EN INFORMÁTICA CURSO 2002/2003 Estadstica Descriptiva Unidimensional 1. Un edificio tiene 45 apartamentos con el siguiente número de inquilinos: 2 1 3 5 2 2 2

Más detalles

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 =

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 = www.clasesalacarta.com.- Universidad de Castilla la Mancha PAU/LOGSE Reserva-2 2.0 Opción A RESERVA _ 2 _ 20 a) Despeja la matriz X en la siguiente ecuación matricial: I - 2X + XA = B, suponiendo que todas

Más detalles

Julio Deride Silva. 27 de agosto de 2010

Julio Deride Silva. 27 de agosto de 2010 Estadística Descriptiva Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de agosto de 2010 Tabla de Contenidos Estadística Descriptiva Julio Deride

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

Herramientas computacionales para la matemática MATLAB: Análisis de datos.

Herramientas computacionales para la matemática MATLAB: Análisis de datos. Herramientas computacionales para la matemática MATLAB:. Verónica Borja Macías Junio 2012 1 Analizar datos estadísticos en MATLAB es sencillo. Máximo y mínimo max(x) si x es vector encuentra el valor más

Más detalles

Reporte de Pobreza y Desigualdad DICIEMBRE 2015

Reporte de Pobreza y Desigualdad DICIEMBRE 2015 Reporte de Pobreza y Desigualdad DICIEMBRE 2015 1 Reporte de Pobreza y Desigualdad - Diciembre 2015 Dirección responsable de la información estadística y contenidos: Dirección de Innovación en Métricas

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva ESTADÍSTICA DESCRIPTIVA 1 Sesión No. 8 Nombre: Medidas de centralización Contextualización En la sesión anterior has conocido una de las medidas de tendencia central denominada

Más detalles

MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN)

MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN) MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN) Las medidas de tendencia central se llaman promedios. Un promedio es un valor típico en el sentido de que se emplea a veces para representar todos los

Más detalles

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Sesión de Residentes 13 de febrero, 2012 ÍNDICE Diferencia entre población y muestra. Diferencia

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

DISTRIBUCIÓN NORMAL CAPÍTULO 16

DISTRIBUCIÓN NORMAL CAPÍTULO 16 CAPÍTULO 6 DISTRIBUCIÓN NORMAL Cuando los datos están distribuidos con frecuencias ascendentes-descendentes aproimadamente simétricas, se le llama distribución normal. Cuando se trata de una variable discreta,

Más detalles

MEDIDAS DE DISPERSIÓN EN DATOS NO AGRUPADOS

MEDIDAS DE DISPERSIÓN EN DATOS NO AGRUPADOS UNIVERSIDAD AUTÓNOMA DE CENTRO AMÉRICA SEDE REGIONAL PACÍFICO NORTE NICOYA - GUANACASTE MEDIDAS DE DISPERSIÓN EN DATOS NO AGRUPADOS CURSO: PROBABILIDAD Y ESTADÍSTICA PREPARADO POR: ING. ALLAN VILLEGAS

Más detalles

Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN

Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN CONTENIDO: 1. MODA 2. MEDIANA 3. MEDIA ARITMÉTICA 4. CUANTILES 5. DIAGRAMA DE CAJA Lecturas recomendadas: PP. 13-18 de La Estadística en Cómic,

Más detalles

Germán Jesús Rubio Luna Catedrático de Matemáticas del IES Francisco Ayala

Germán Jesús Rubio Luna Catedrático de Matemáticas del IES Francisco Ayala Decisión estadística. Contraste de hipótesis Nota.- Cuando tratábamos la estimación de parámetros, intentábamos obtener un valor o un intervalo de valores que constituyesen la mejor estimación del parámetro

Más detalles

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad 15. Confiabilidad La confiabilidad se refiere a la consistencia de los resultados. En el análisis de la confiabilidad se busca que los resultados de un cuestionario concuerden con los resultados del mismo

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015 CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º

INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º DEFINICIÓN DE PARÁMETRO ESTADÍSTICO Un parámetro estadístico es un número que se obtiene a partir

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25 1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 24 Dada la siguiente tabla de ingresos: Ingresos mensuales Frecuencia Menos de 1000 35 [1000, 1100) 70 [1100,

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

Prácticas de Ecología Curso 3 Práctica 1: Muestreo

Prácticas de Ecología Curso 3 Práctica 1: Muestreo PRÁCTICA 1: MUESTREO Introducción La investigación ecológica se basa en la medición de parámetros de los organismos y del medio en el que viven. Este proceso de toma de datos se denomina muestreo. En la

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

Reporte de Pobreza. Marzo 2016

Reporte de Pobreza. Marzo 2016 Reporte de Pobreza Marzo 2016 1 Reporte de Pobreza - Marzo 2016 Dirección responsable de la información estadística y contenidos: Dirección de Innovación en Métricas y Metodologías Realizadores: Melody

Más detalles

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10 Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

8.2.5. Intervalos para la diferencia de medias de dos poblaciones

8.2.5. Intervalos para la diferencia de medias de dos poblaciones 8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:

Más detalles

Medidas de tendencia Central

Medidas de tendencia Central Medidas de tendencia Central 7.1 Media 7.1.1 Media para un conjunto de datos no agrupados Este parámetro lo usamos con tanta cotidianidad que nos será muy familiar, aunque también aprenderemos algunas

Más detalles

PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD

PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD UNIDAD II PRINCIPIOS ESTADÍSTICOS APLICADOS EN CONTROL DE CALIDAD Por: Prof. Gastón A. Pérez U. (2.1) VARIABLES ESTADÍSTICAS (2.1.1) INTRODUCCIÓN (a) LA VARIABILIDAD Cuando se desea mejorar un proceso

Más detalles

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público Sede y localidad Carrera Sede Atlántica, Viedma Contador Publico Programa Asignatura: Estadística Aplicada Año calendario: 2012 Carga horaria semanal: 6 (seis) hs. Cuatrimestre: Primer Cuatrimestre. Segundo

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles