EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos)"

Transcripción

1 EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) PROBLEMA 1 Se quiere comparar la cantidad de energía necesaria para realizar 3 ejercicios o actividades: andar, correr y montar en bici. La variable de interés es el número de calorías consumido por kilómetro. Para controlar las diferencias metabólicas, se seleccionan 6 individuos y cada uno realiza una vez cada actividad. Los resultados son: ind. 1 ind. 2 ind. 3 ind. 4 ind. 5 ind. 6 y i. Correr Andar Bici y..j Obtener la tabla Adeva teniendo en cuenta tanto la actividad o ejercicio como el individuo. Es siginifcativo el tipo de ejercicio en el consumo de calorías?. Se sabe que V T (variabilidad total) = (y ij y.. ) 2 = i j Fuente S.C. g.l. C.M. F Actividad Individuo Residual Total Como F 2,10; 0.05 = 4, 10, luego > 4, 10 y por tanto rechazo H 0 = α i = 0 i = 1, 2, 3 siendo α i el efecto sobre el consumo de calorías del factor ejercicio o actividad. El tipo de ejercicio es significativo en el consumo de calorías. 2. Teniendo en cuenta los individuos, construir intervalos de confianza (Bonferroni) para averiguar si existen diferencias entre las medias del consumo de energía de cada ejercicio. Interpretar los resultados. (α T = 0.05).

2 c = 3, luego α = α T 3 = entonces α/2 = y 1 (α/2) = t 10; 0.99 = 2.76 IC(α i α j ) = ( y i. y j. ) ± t10; 0.99 Ŝ 2 R ( 2 J ) ( 2 IC(corre andar) = ( ) ± = 6) = 5.67 ± = (2.69, 8.65) luego existen diferencias significativas entre la energía media necesaria para correr y andar. IC(correr bici) = ( ) ± = = 1.34 ± 2.98 = ( 1.64, 4.32) luego no exiten diferencias siginficativas entre correr y montar en bici. IC(andar bici) = ( ) ± 2.98 = 4.33 ± 2.98 = ( 7.31, 1.35) luego hay diferencias en el consumo de calorías entre andar y montar en bici. 3. Obtener también la tabla Adeva sin tener en cuenta el efecto del individuo, qué ocurre ahora?. Qué influencia tiene excluir el efecto de los individuos?. Interpretar la variación y el por qué de la misma. Fuente S.C. g.l. C.M. F Actividad Residual Total Como F 2,15; 0.05 = 3.68 > 3.15, no puedo rechazar H 0 = α i = 0 i = 1, 2, 3. El tipo de ejercicio ya no es siginificativo en el consumo de calorías. Al

3 eliminar la variable bloque, no sólo he perdido el efecto incremental debido al mismo, sino que la variabilidad explicada por el bloque pasa a formar parte de la no explicada, lo que hará que la varianza residual sea mayor y el estadístico F calculado será menos. Luego tendré menos sensibilidad para detectar el efecto del factor ejercicio (o actividad). Luego se rechaza la H 0 de igualdad de medias entre actividades cuando hemos tenido en cuenta el efecto del individuo. Pero no hemos podido rechazar la H 0 cuando lo hemos excluido.

4 PROBLEMA 2 En un estudio realizado con 10 familias sobre el comportamiento de los gastos familiares en u.m. (Y,), en función del gasto en comida en u.m. (X 1 ) y la renta familiar en u.m. (X 2 ), se obtuvieron las siguientes estimaciones: Ŷ = X X 2 Además se dispone de la siguiente información. La suma de residuos al cuadrado 10 e 2 i = 1, 573 donde e i = y i ŷ i y la matriz de varianzas y i=1 covarianzas del estimador β viene dada por: V ar( β) = Se pide: 1. Interpretación de los coeficientes estimados. Explicar como se han calculado. (0.5) Si aumenta en una unidad monetaria el gasto en comida manteniendo la renta familiar constante los gastos medios familiares aumentan en 0.02 unidades monetarias. Si aumenta en una unidad monetaria la renta familiar manteniendo constante los gastos en comida, los gastos medios familiares aumentan en unidades monetarias. Si el gasto en comida es cero y la renta familiar es cero los gastos medios familiares son unidades monetarias. Cálculo: β = (X X) 1 X Y. Siendo X la matriz de diseño en el modelo de regresión múltiple matricial: Y = Xβ + U. La matriz X es de dimensión 10*3, y el vector Y tiene dimensión 10*1. 2. Construya un intervalo de confianza al 95% para el coeficiente del gasto en comida. Es esta variable significativa? (0.5) I.C.(β 1 ) : Luego el intervalo de confianza será: Nota: t 7; 0.05/2 = 2, 36 ( β 1 ± t n k 1; α/2 var ( β 1 ) ) 0.02 ± = ( 0.446; 0.486)

5 3. Contrastar la hipótesis: β 2 = con un nivel de siginificación α = (0.5) t = β var( β 2 ) = = 0.88 como t 7; = 2.36 luego no puedo rechazar H Obtener una medida de la bondad del ajuste (R 2 ), siendo V E = Se considera el modelo significativo?. Nivel de significación α = (0.5) R 2 = V E V T teniendo en cuenta que: V T = V E + V NE, se tiene V E = V NE = V T = = Luego: R 2 = = 0.12 El 12% de las variaciones de la variable endógena están explicadas por el modelo (variables x 1, x 2 ). Para hacer el contraste de regresión general: H 0 : β 1 = β 2 =... = β k = 0 F = R2 n k 1 1 R 2 k F k,n k 1 con lo que: F = = 0.477, teniendo en cuenta que F ,7;0.05 = 4.74 no se puede rechazar la hipótesis nula. 5. Sabiendo que los gastos en comida de una familia serán de 50 u.m. y que su renta familiar será de 350 u.m. Entre qué valores espera que se cifren los gastos de dicha familia a un 95% de confianza?. (0.5)

6 El intervalo de predicción es de la siguiente forma: ŷ h ± t n k 1; α/2 x hŝ2 R(X X) 1 x h + Ŝ2 R y sustituyendo los valores se obtiene, ± = ± , 8 = = ± = ( 19.85, 32.45) Con un 95% de confianza, la predicción para la variable dependiente se espera entre esos dos valores.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Prácticas Tema 2: El modelo lineal simple

Prácticas Tema 2: El modelo lineal simple Prácticas Tema 2: El modelo lineal simple Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 2.1- Se han analizado sobre una muestra de 10 familias las variables

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009 Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados

Más detalles

Gráfico 1: Evolución del exceso de rentabilidad de la empresa y de la cartera de mercado

Gráfico 1: Evolución del exceso de rentabilidad de la empresa y de la cartera de mercado Caso 1: Solución Apartado a) - 2 0 2 4 6 0 2 0 4 0 6 0 8 0 1 0 0 p e r i o d E x c e s s r e t u r n, c o m p a n y a e x c e s s r e t u r n m a r k e t p o r t f o l i o Gráfico 1: Evolución del exceso

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

1 El Análisis de Varianza

1 El Análisis de Varianza 1 El Análisis de Varianza Objetivo: Explicar (controlar las variaciones de una v.a. Y continua (numérica, mediante factores (variables cualitativas que definen categorías que controlamos (no aleatorios.

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN Capítulo 6 Análisis de la covarianza INTRODUCCIÓN Es una combinación de dos técnicas: Análisis de la Varianza y Análisis de Regresión. En el Análisis de la Covarianza: F La variable respuesta es cuantitativa

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

Prácticas Tema 5. Ampliaciones del Modelo lineal básico

Prácticas Tema 5. Ampliaciones del Modelo lineal básico Prácticas Tema 5. Ampliaciones del Modelo lineal básico Ana J. López y Rigoberto Pérez Dpto. Economía Aplicada, Universidad de Oviedo PRÁCTICA 5.1. Se ha examinado la evolución reciente de las ventas de

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears Análisis de la varianza Magdalena Cladera Munar mcladera@uib.es Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza

Más detalles

Lección 3. Análisis conjunto de dos variables

Lección 3. Análisis conjunto de dos variables Lección 3. Análisis conjunto de dos variables Estadística Descriptiva Parcialmente financiado a través del PIE13-04 (UMA) GARCÍA TEMA 3. ANÁLII CONJUNTO DE DO VARIABLE 3.1 COVARIANZA COEFICIENTE DE CORRELACIÓN

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

El modelo Lineal General

El modelo Lineal General El Lineal General Román Salmerón Gómez Universidad de Granada RSG El lineal uniecuacional múltiple 1 / 68 Estimación del Validación del Explotación del Estimación del Validación del Explotación del RSG

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 3.1 Colinealidad Exacta 3.2 Los efectos de la multicolinealidad Del

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

Tema 4. Análisis multivariante de la varianza

Tema 4. Análisis multivariante de la varianza Máster en Técnicas Estadísticas Análisis Multivariante Año 2008 2009 Profesor: César Sánchez Sellero Tema 4 Análisis multivariante de la varianza 4 Presentación del modelo Se trata de comparar las medias

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45

Más detalles

Análisis de la varianza

Análisis de la varianza Análisis de la varianza José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 I 1 Introducción 1 Comparación de medias 2 El pricipio de aleatorización 2 El problema de un factor

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

El Modelo de Regresión Lineal

El Modelo de Regresión Lineal ECONOMETRÍA I El Modelo de Regresión Lineal Dante A. Urbina CONTENIDOS 1. Regresión Lineal Simple 2. Regresión Lineal Múltiple 3. Multicolinealidad 4. Heterocedasticidad 5. Autocorrelación 6. Variables

Más detalles

Errores de especificación

Errores de especificación CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN

TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN 4.5.- En cuál de los siguientes casos se podría utilizar la varianza residual en lugar del coeficiente de determinación para medir la calidad del ajuste? Con el mismo conjunto de datos y dos ajustes distintos.

Más detalles

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión

Más detalles

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles.

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles. completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos. DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

MÉTODOS ESTADÍSTICOS 4º Biológicas Septiembre 2009 PRIMER EJERCICIO

MÉTODOS ESTADÍSTICOS 4º Biológicas Septiembre 2009 PRIMER EJERCICIO MÉTODOS ESTADÍSTICOS 4º Biológicas Septiembre 2009 PRIMER EJERCICIO Resultados obtenidos por los hombres ganadores de las medallas de oro en salto de longitud y salto de altura en las olimpiadas desde

Más detalles

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011 Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

(5 x 3) ( 3 x 5) ( 5 x 1) b1 335, ,3-26, ,59 b2 = 0, , ,8 12,85 = 2,94 b3-26,79 13,8 2, ,31

(5 x 3) ( 3 x 5) ( 5 x 1) b1 335, ,3-26, ,59 b2 = 0, , ,8 12,85 = 2,94 b3-26,79 13,8 2, ,31 VENTAS PUBLIC. PRECIOS 1990 0, 0, 10 1991 1 0, 1992 2 0,8 199, 0,8 199 1, Y X U 0, 1 0, 10 U1 Modelo matricial con término constante 1 1 0, U2 (el vector de unos recoge ese término constante) 2 1 0,8 U,

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Estudio del consumo y los precios al consumo de Frutas y Hortalizas

Estudio del consumo y los precios al consumo de Frutas y Hortalizas Conseería de Agricultura y Pesca Estudio del consumo y los precios al consumo de Frutas y Hortalizas Aspectos Metodológicos Marzo 008 Versión 1 SECRETARÍA GENERAL DE AGRICULTURA, GANADERÍA Y DESARROLLO

Más detalles

Qué es una regresión lineal?

Qué es una regresión lineal? Apéndice B Qué es una regresión lineal? José Miguel Benavente I. Introducción En varios capítulos de este libro se ocupan regresiones lineales y se afirma que el coeficiente de regresión indica cuánto

Más detalles

1. Objetivos. Introducción 2. ANOVA. Tema 8: Relaciones entre variables Test de hipótesis para el ANOVA. M. Iniesta Universidad de Murcia

1. Objetivos. Introducción 2. ANOVA. Tema 8: Relaciones entre variables Test de hipótesis para el ANOVA. M. Iniesta Universidad de Murcia Tema 8: Relaciones entre variables 1. Objetivos Analizar relaciones entre variables, para un único factor en el caso del ANOVA y una sola variable independiente, en el caso de Regresión. Conocer el signicado

Más detalles

Tema VII. La predicción de variables

Tema VII. La predicción de variables 7.1. La ecuación lineal de regresión: - Variable dependiente e independiente (fijas ó aleatorias):. Fijas (modelo I de regresión). Aleatorias (modelo II; más complejo) - Objetivo predictivo (básico en

Más detalles

CONTROL ESTADISTICO DE LA CALIDAD

CONTROL ESTADISTICO DE LA CALIDAD CICLO 2012-I Módulo:2 Unidad:2 Semana: 2 CONTROL ESTADISTICO DE LA CALIDAD ING. ENRIQUE MONTENEGRO MARCELO PRUEBAS DE HIPOTESIS CONTENIDOS TEMÁTICOS 1. DEFINICIÓN DE HIPOTESIS 2. PROCEDIMIENTO DE UNA PRUEBA

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

Métodos Estadísticos por Ordenador Curso

Métodos Estadísticos por Ordenador Curso Métodos Estadísticos por Ordenador Curso 013-014 Tema : Métodos de Regresión Estadística.1 Regresión simple El objetivo del Análisis de regresión es determinar una función matemática sencilla que describa

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

Hoja de Ejercicios 3 El modelo de regresión lineal múltiple

Hoja de Ejercicios 3 El modelo de regresión lineal múltiple Hoja de Ejercicios 3 El modelo de regresión lineal múltiple Nota: En aquellos ejercicios en los que se incluyen estimaciones y referencia al archivo de datos utilizado, el estudiante debería comprobar

Más detalles

Contrastes de restricciones lineales y predicción

Contrastes de restricciones lineales y predicción Tema 4 Contrastes de restricciones lineales y predicción Contenido 4.1. Contrastes de restricciones lineales................. 78 4.2. Contrastes utilizando Gretl..................... 80 4.3. Estimación

Más detalles

Julio Deride Silva. 4 de junio de 2010

Julio Deride Silva. 4 de junio de 2010 Curvas ROC y Regresión Lineal Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 4 de junio de 2010 Tabla de Contenidos Curvas ROC y Regresión Lineal

Más detalles

peso edad grasas Regresión lineal simple Los datos

peso edad grasas Regresión lineal simple Los datos Regresión lineal simple Los datos Los datos del fichero EdadPesoGrasas.txt corresponden a tres variables medidas en 25 individuos: edad, peso y cantidad de grasas en sangre. Para leer el fichero de datos

Más detalles

Tema 3.2: Modelo lineal general: inferencia y predicción. Universidad Complutense de Madrid 2013

Tema 3.2: Modelo lineal general: inferencia y predicción. Universidad Complutense de Madrid 2013 Tema 3.2: Modelo lineal general: inferencia y predicción Universidad Complutense de Madrid 2013 Contraste de hipótesis paramétricas en el MLG (I) Necesitamos añadir a la lista de hipótesis del MLG, la

Más detalles

MÍNIMOS CUADRADOS GENERALIZADOS

MÍNIMOS CUADRADOS GENERALIZADOS Métodos Estadísticos para Economía y Gestión (IN540-2) Otoño 2008 - Semestre I, Parte II Universidad de Chile Departamento de Ingeniería Industrial Profesor: Mattia Makovec (mmakovec@dii.uchile.cl) Auxiliar:

Más detalles

El Modelo de Regresión Lineal General Estimación

El Modelo de Regresión Lineal General Estimación Tema 5 El Modelo de Regresión Lineal General Estimación Pilar González y Susan Orbe Dpto Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Tema 5 MRLG: Estimación 1

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

Ejercicios de Clase. 1. Defina los siguientes términos y explique su significado

Ejercicios de Clase. 1. Defina los siguientes términos y explique su significado Ejercicios de Clase. 1. Defina los siguientes términos y explique su significado a. Coeficiente de elasticidad precio b. Coeficiente de elasticidad ingreso c. Coeficiente de elasticidad cruzado 2. Un estudio

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

3 CAPÍTULO III TRABAJO EMPÍRICO. Para toda evaluación cuantitativa generalmente se tiene uno que basar en

3 CAPÍTULO III TRABAJO EMPÍRICO. Para toda evaluación cuantitativa generalmente se tiene uno que basar en 3 CAPÍTULO III TRABAJO EMPÍRICO. 3.1 Modelo Econométrico Para toda evaluación cuantitativa generalmente se tiene uno que basar en experiencias anteriores (Allard, 1980, p. 1). Las experiencias anteriores

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Pasos. i Aplicar la prueba X 2 para determinar la significación estadística de las proporciones entre ambas variables (no son iguales)

Pasos. i Aplicar la prueba X 2 para determinar la significación estadística de las proporciones entre ambas variables (no son iguales) Relación entre variables cualitativas Pasos Construir una tabla de contingencia Crear una tabla con las frecuencias esperadas f ei (frecuencias teóricas en caso de que X e Y fueran independientes), calculadas

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra. Básica. Resultados de Aprendizaje Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT es Docentes PROGRAMA DE CURSO Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3

Más detalles

A: Broca B: velocidad A B AB Vibración Totales 1/ ,2 18,9 12,9 14,4 64,4 = (1) 1/ ,2 24,0 22,4 22,5 96,1 = a

A: Broca B: velocidad A B AB Vibración Totales 1/ ,2 18,9 12,9 14,4 64,4 = (1) 1/ ,2 24,0 22,4 22,5 96,1 = a LORTORIO 8 - LORTORIO INFORMÁTICO Caso. Interesa estudiar el efecto del tamaño de broca (factor ) y de la velocidad (factor ) sobre la vibración de la ranuradora (respuesta Y). Para ello se decide utilizar

Más detalles

Estadística para la Economía y la Gestión IN 3401 Clase 5

Estadística para la Economía y la Gestión IN 3401 Clase 5 Estadística para la Economía y la Gestión IN 3401 Clase 5 Problemas con los Datos 9 de junio de 2010 1 Multicolinealidad Multicolinealidad Exacta y Multicolinealidad Aproximada Detección de Multicolinealidad

Más detalles

Supuestos y comparaciones múltiples

Supuestos y comparaciones múltiples Supuestos y comparaciones múltiples Diseño de Experimentos Pruebas estadísticas Pruebas de bondad de ajuste Prueba de hipótesis para probar si un conjunto de datos se puede asumir bajo una distribución

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Examen de Estadística. 2 de julio de Grupo... Titulación...

Examen de Estadística. 2 de julio de Grupo... Titulación... Examen de Estadística 2 de julio de 2014 Nombre Número Grupo... Titulación... 1. Se dispone de un test para detectar la presencia de contaminantes en una bebida. Dicho test indica presencia de contaminantes

Más detalles

Mínimos Cuadrados Generalizados

Mínimos Cuadrados Generalizados Mínimos Cuadrados Generalizados Román Salmerón Gómez Los dos últimos temas de la asignatura han estado enfocados en estudiar por separado la relajación de las hipótesis de que las perturbaciones estén

Más detalles

TEMA 2: Propiedades de los estimadores MCO

TEMA 2: Propiedades de los estimadores MCO TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso

Más detalles

Ejercicio 5. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejercicio 5. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejercicio 5 Estimación del Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejercicio 5 Estimación

Más detalles

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis

Más detalles