Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos"

Transcripción

1 Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos, grupos, etc.) y/o covariables (regresoras). Cada uno de estos efectos puede considerarse tanto como una constante fija (desconocida) o una variable aleatoria. Cada modelo estadístico que contiene una media general, µ, es un modelo mixto por definición, ya que también contiene un término de error aleatorio, y por tanto contiene ambos tipos de efectos (la media general es fija y el error es aleatorio). Sin embargo, en la práctica, el nombre modelo mixto se reserva usualmente para cualquier modelo que contiene efectos fijos distintos a µ y efectos aleatorios diferentes a los errores aleatorios. En general, un efecto es considerado como fijo si los niveles del factor asociado han sido arbitrariamente determinados por el investigador mientras que se trata como aleatorio si los niveles en el estudio pueden ser considerados como una muestra aleatoria de una población de niveles para el factor, es decir existe una distribución de probabilidad asociada. Para decidir cuándo un conjunto de efectos va a ser tratado como fijo o aleatorio es importante analizar el contexto de los datos, es decir el ambiente desde el cual ellos provienen, la manera en la cual se obtuvieron y principalmente el espacio de inferencia. Si los niveles del factor en consideración no pueden considerarse como una muestra aleatoria de una población de niveles para ese factor, los efectos deberían considerarse fijos y la inferencia restringirse a los niveles del factor considerados en el estudio. Por el contrario, si se desea inferir para una población de efectos de un determinado factor, los efectos actualmente considerados en el estudio deberían tratarse como variables aleatorias. Situación 1: Modelos de efectos fijos. Consideremos un pequeño experimento diseñado para comparar a tratamientos (entiéndase existe un factor tratamiento de interés con a niveles) que incluye n unidades experimentales o repeticiones para cada tratamiento arregladas de acuerdo a un diseño completamente aleatorizado (cada tratamiento se asigna aleatoriamente a n unidades experimentales). Si y ij representa la respuesta observada en la unidad j del tratamiento i, y ij puede considerarse como una observación aleatoria de una población 1

2 de observaciones bajo el tratamiento i, que podemos suponer tiene una distribución normal con media µ i y varianza σ. Luego, un posible modelo para y ij podría ser: E(y ij )= µ i, donde E(.) representa el operador esperanza µ i y es la respuesta esperada para una observación bajo el tratamiento i. En este modelo, llamado modelo de medias, cada µ i es considerada como una constante. Dichas constantes (valores fijos) representan, en algún sentido, las magnitudes que se desean estimar y comparar. Por ejemplo, puede ser de interés estimar µ i y µ j, o µ i -µ j. Las constantes a estimar µ i s, con i=1,,a, corresponden explícitamente a los a tratamientos incluidos en el experimento. Existen a tratamientos que son de interés y que por tanto han sido arbitrariamente seleccionados por el investigador para el experimento. El efecto del tratamiento i se define como τ i =µ i -µ, donde µ es la media general de la variable respuesta, por lo que el modelo puede ser re-escrito como: E(y ij )= µ + τ i, que se conoce como modelo de efectos fijos. Los τ i representan los efectos de tratamiento y son obviamente constantes. Si e ij representa el valor de la desviación o diferencia entre y ij y su valor esperado, término llamado error en y ij, es posible modelar los datos observados como la suma de su valor esperado y un error aleatorio, y ij = µ i + e ij o equivalentemente y ij = µ + τi + e ij. Conforme a las propiedades distribucionales de y ij, y a la definición de e ij, los términos de error son variables aleatorias con media cero, E(e ij )=E[y ij -E(y ij )]=0 a los cuales usualmente se les atribuye la siguiente estructura de varianzas y covarianzas: 1. Cada e ij tiene la misma varianza, σ.. Los e ij son independientes e idénticamente distribuidos, con covarianza entre cualquier par de ellos igual a cero. Es esta distribución de probabilidades asociada con los términos de error la que provee los medios para hacer inferencias sobre las funciones de los µ i que son de

3 interés y, si se desea, sobre σ. Cabe destacar entonces que la manera en que se obtienen los datos afecta la inferencia que se puede extraer desde ellos. En este ejemplo se ha descripto el proceso de muestreo pertinente a un modelo de efectos fijos. Los datos se consideraron como un conjunto posible de datos para estos a tratamientos, conjunto que podría ser obtenido si se repite el experimento. Cada repetición del experimento proporciona un muestra diferente de n unidades experimentales para cada una de los a tratamientos. Los errores realizados en el experimento conforman una muestra aleatoria de una población de términos de error con media cero, varianza σ y covarianzas cero. Los datos en este estudio proveen estimaciones de las medias de tratamiento y de diferencias entre ellas, la distribución de los términos de error provee las varianzas para estas estimaciones. Por ejemplo, la media muestral de las observaciones bajo el tratamiento i, y i, es un estimador de µ i, con varianza σ /n, y la diferencias de medias muestrales, yi yj, un estimador de µ i -µ j con varianza σ /n. En realidad, σ es desconocida y debe ser estimada. Debido a que los términos de error tienen todos la misma varianza, cada una de las varianzas muestrales es un estimador de σ con n-1 grados de libertad, por lo que el promedio de las varianzas muestrales es un estimador de σ con a(n-1) grados de libertad. Éste es el estimador usualmente preferido para estimar σ en las fórmulas de errores estándar de las medias de tratamiento o de sus combinaciones lineales a los fines de la inferencia, cuando los datos son balanceados. Situación. Modelo con efectos aleatorios Supongamos que existe un gran número de niveles para el factor tratamiento de interés y por tanto una población de efectos. Supongamos también que a niveles se seleccionaron aleatoriamente para ser incluidos en el experimento y que cada nivel del factor tratamiento se asignó aleatoriamente a n unidades experimentales (equivalentemente, que existen n observaciones aleatorias para cada uno de los a niveles del factor de interés). La selección aleatoria de niveles de tratamiento se realiza con el propósito de tratarlos como una representación de la población de efectos hacia la cual se pretende inferir. Si y ij representa la respuesta observada en la unidad j del tratamiento i, un posible modelo para los datos es, E(y ij )= µ + a i, 3

4 donde µ es la media general de la variable respuesta y a i es el efecto del nivel i del factor de interés, a i =µ i -µ. A pesar de que la expresión anterior es la misma que la correspondiente al modelo de efectos fijos, los supuestos subyacentes son diferentes debido a que los niveles en estudio del factor tratamiento representan una muestra aleatoria desde la población de niveles. La cantidad a i es la realización de una variable aleatoria efecto de tratamiento. Dado que las cantidades a i son variables aleatorias es necesario caracterizar su distribución de probabilidades. Comúnmente las cantidades a i se consideran independiente e idénticamente distribuidas, con esperanza cero y varianza σ a para todo i. No obstante, otros supuestos podrían adecuarse mejor a los datos, por ejemplo covarianza entre pares de efectos. Debido a que a i es una variable aleatoria, el modelo debe interpretarse como el valor esperado de y ij cuando, la variable aleatoria a, efecto de tratamiento, asume el valor a i. Es decir E(y ij )= µ + a i representa una esperanza condicional, la esperanza de la respuesta dado el nivel del factor de tratamiento observado. Una notación alternativa para el modelo de efectos aleatorios podría ser, E(y ij a = a i ) = µ + a i, o simplemente E(y ij a i ) = µ + a i. Tomando esperanza respecto a la variable a i, se tiene que E(y ij ) = µ. Si definimos los términos de error como la diferencia entre la cantidad observada y la esperada, e ij = y ij - E(y ij a i ) = y ij - (µ + a i ) Se puede observar nuevamente que e ij es una variable aleatoria. Debido a que las observaciones para cada tratamiento han sido obtenidas de la misma manera que en la situación 1, las propiedades distribucionales de los términos de error, e ij, son similares. Comúnmente se adiciona el supuesto de que las variables aleatorias e ij y a i se distribuyen independientemente, de manera tal que las observaciones marginalmente se distribuyen con esperanza µ y varianza Var(y ij ) = σ + σ. Es decir que, bajo este supuesto, la varianza de las respuestas es una suma de varianzas, una para cada efecto aleatorio. Generalmente interesa conocer la representación de cada una de ellas (componente de varianza) en la variabilidad total observada. Tipos de Modelos Mixtos a Bajo el marco general de los modelos mixtos se pueden considerar distintos tipos de modelos. Es importante recordar que en general los modelos mixtos se presentan 4

5 como aquéllos que permiten modelar conjuntos de datos en los que las observaciones no son independientes. El tipo más simple de modelo mixto es el modelo de efectos aleatorios presentado en el ejemplo anterior. En ese modelo, para algunos efectos se asume que existe una distribución asociada que da origen a una fuente de variación distinta a la variación residual. Tales efectos se denominan efectos aleatorios. Los modelos de efectos aleatorios han sido ampliamente usados en agronomía, principalmente en aplicaciones relacionadas a mejoramiento genético animal y vegetal para estimar heredabilidades y predecir ganancia genética en programas de mejoramiento (Thompson, 1977). Se usan también en ensayos comparativos de rendimiento para estimar componentes de varianzas asociadas a la comparación de efectos de tratamiento conducidos a través de varias localidades y años, asumiendo que la interacción tratamiento ambiente es aleatoria y que los efectos de tratamiento están contenidos dentro de la interacción aleatoria (Casanoves, 004). Sin embargo, en otras circunstancias, los efectos que se permite varíen aleatoriamente están asociados a covariables en lugar de factores de clasificación. Por ejemplo, en un modelo de regresión Y sobre tiempo, se podría pensar que la pendiente de la regresión varía aleatoriamente entre los sujetos que aportan información para el ajuste de la regresión. Por último, en algunas circunstancias la teoría de los modelos mixtos se usa para modelar directamente el patrón de correlación o covarianza residual. Los modelos mixtos también pueden, en la práctica, definirse con combinaciones de efectos aleatorios, efectos de coeficientes aleatorios y patrones de covarianza. La selección de uno u otro tipo de modelo depende del objetivo del análisis. 5

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

8.2.5. Intervalos para la diferencia de medias de dos poblaciones

8.2.5. Intervalos para la diferencia de medias de dos poblaciones 8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

Prácticas de Ecología Curso 3 Práctica 1: Muestreo

Prácticas de Ecología Curso 3 Práctica 1: Muestreo PRÁCTICA 1: MUESTREO Introducción La investigación ecológica se basa en la medición de parámetros de los organismos y del medio en el que viven. Este proceso de toma de datos se denomina muestreo. En la

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

METODOLOGÍA DE INVESTIGACIÓN

METODOLOGÍA DE INVESTIGACIÓN ÍNDICE Objetivos de la investigación... 1 Población objetivo... 1 Periodicidad... 1 Método de investigación... 1 Alcance de la investigación... 2 Mejoras introducidas en la encuesta a partir 2012... 3

Más detalles

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos)

Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Alberto Contreras Cristán, Miguel Ángel Chong Rodríguez. Departamento de Probabilidad y Estadística Instituto de Investigaciones en

Más detalles

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

PRUEBAS PARA DOS MUESTRAS RELACIONADAS

PRUEBAS PARA DOS MUESTRAS RELACIONADAS PRUEBAS PARA DOS MUESTRAS RELACIONADAS Estos contrastes permiten comprobar si hay diferencias entre las distribuciones de dos poblaciones a partir de dos muestras dependientes o relacionadas; es decir,

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE II POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

ESTADISTICA APLICADA: PROGRAMA

ESTADISTICA APLICADA: PROGRAMA Pág. 1 de 5 ESTADISTICA APLICADA: PROGRAMA a) OBJETIVOS Y BLOQUE 1: Teoría de Probabilidades 1.1 Comprender la naturaleza de los experimentos aleatorios y la estructura de los espacios de probabilidades,

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Medición y gestión del riesgo de cambio

Medición y gestión del riesgo de cambio Medición y gestión del riesgo de cambio Israel Pérez Corrales Madrid, 16 de diciembre de 2004 Gestión Global del Riesgo, BBVA Definición del Riesgo de Cambio Metodología de medición Modelos para la gestión

Más detalles

METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012

METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012 METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012 Departamento de Pruebas Nacionales División de Evaluación de Logros de Aprendizaje AGENCIA DE CALIDAD DE LA EDUCACIÓN Índice 1.

Más detalles

Definiciones Diseño de Experimentos: Diseño del Experimento: Replicación o Repetición:

Definiciones Diseño de Experimentos: Diseño del Experimento: Replicación o Repetición: Definiciones Diseño de Experimentos: La experimentación es una técnica utilizada para encontrar el comportamiento de una variable a partir de diferentes combinaciones de factores o variables de entrada

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El método de mínimos cuadrados Curso de Estadística TAE, 005 J.J. Gómez-Cadenas Mínimos cuadrados y máxima verosimilitud Teorema del límite central Una medida y, puede considerarse como un variable aleatoria,

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

INTRODUCCION 1.1.-PREAMBULO

INTRODUCCION 1.1.-PREAMBULO INTRODUCCION 1.1.-PREAMBULO El suelo en un sitio de construcción no siempre será totalmente adecuado para soportar estructuras como edificios, puentes, carreteras y presas. Los estratos de arcillas blanda

Más detalles

Coeficiente de correlación semiparcial

Coeficiente de correlación semiparcial Coeficiente de correlación semiparcial 1.- Introducción...1.- Correlación semiparcial... 3.- Contribución específica de las distintas variables al modelo de egresión Múltiple... 3 4.- Correlación semiparcial

Más detalles

INVERSIÓN LA INVERSIÓN

INVERSIÓN LA INVERSIÓN INVERSIÓN LA INVERSIÓN Generalmente se ha definido la inversión: n: como la renuncia de una satisfacción n inmediata con la esperanza de obtener en el futuro una satisfacción n mayor. Elementos El sujeto

Más detalles

Modelo mixto: estimación y prueba de hipótesis

Modelo mixto: estimación y prueba de hipótesis Agro 6998 Conferencia 3 Modelo mixto: estimación y prueba de hipótesis Comenzaremos definiendo el modelo lineal de efectos fijos para luego extender dicha definición al caso del modelo lineal mixto. El

Más detalles

Práctica 2: Intervalos de confianza y contrastes con SPSS 1

Práctica 2: Intervalos de confianza y contrastes con SPSS 1 Estadística Aplicada Curso 2010/2011 Diplomatura en Nutrición Humana y Dietética Práctica 2: Intervalos de confianza y contrastes con SPSS 1 El objetivo de esta práctica es aprender a calcular intervalos

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

Capítulo 9 Estructura y Administración de Portafolios de Inversión

Capítulo 9 Estructura y Administración de Portafolios de Inversión Capítulo 9 Estructura y Administración de Portafolios de Inversión Objetivo Presentar los conceptos básicos y el proceso vinculado a la administración de portafolios de inversión Parte I CONCEPTOS BÁSICOS

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E.

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E. OPTIMIZACIÓN EXPERIMENTAL Ing. José Luis Zamorano E. Introducción n a la metodología de superficies de respuesta EXPERIMENTACIÓN: Significa variar deliberadamente las condiciones habituales de trabajo

Más detalles

Cifras significativas

Cifras significativas Cifras significativas No es extraño que cuando un estudiante resuelve ejercicios numéricos haga la pregunta: Y con cuántos decimales dejo el resultado? No es extraño, tampoco, que alguien, sin justificación,

Más detalles

CAPITULO IV ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS. Para la realización de este estudio se aplicaron encuestas a los usuarios del

CAPITULO IV ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS. Para la realización de este estudio se aplicaron encuestas a los usuarios del CAPITULO IV ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS 4.1 Introducción Para la realización de este estudio se aplicaron encuestas a los usuarios del servicio telefónico Telmex sucursal Cholula, Puebla

Más detalles

Prueba de hipótesis Por Tevni Grajales

Prueba de hipótesis Por Tevni Grajales Prueba de hipótesis Por Tevni Grajales Antes de entrar en el tema de esta sección, quisiera que me permitieran hacer un breve repaso de algunas de las cosas que hemos considerado en temas anteriores, como

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Capítulo 3. Desarrollo Metodológico de la Investigación.

Capítulo 3. Desarrollo Metodológico de la Investigación. Capítulo 3. Desarrollo Metodológico de la Investigación. El presente capitulo tiene el objetivo de desarrollar la ruta metodológica utilizada para abordar nuestro objeto de estudio. (cuadro No.2), en el

Más detalles

Pruebas de Bondad de Ajuste

Pruebas de Bondad de Ajuste 1 Facultad de Ingeniería IMERL PROBABILIDAD Y ESTADÍSTICA Curso 2008 Pruebas de Bondad de Ajuste En esta sección estudiaremos el problema de ajuste a una distribución. Dada una muestra X 1, X 2,, X n de

Más detalles

Modelos de Regresión y Correlación

Modelos de Regresión y Correlación Artículo de Educación Modelos de Regresión y Correlación REGRESSION AND CORRELATION MODELS Claudio Silva Z 1, Mauricio Salinas 2 1. PhD en Estadística Escuela de Salud Pública Universidad de Chile. 2.

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis

Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis Objetivos del tema Conocer el proceso para contrastar hipótesis y su relación con el método científico. Diferenciar entre hipótesis nula y alternativa Nivel de significación Test de Hipótesis Introducción

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

Inversión en condiciones de riesgo, riesgo y rendimiento

Inversión en condiciones de riesgo, riesgo y rendimiento Los barcos no están hechos más que de tablas, los marineros no son más que hombres; hay ratas de tierra y ratas de agua; Ladrones de tierra y Ladrones de agua; quiero decir piratas. Además existe el peligro

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana

Más detalles

APLICACIÓN DEL SISTEMA FLOWDRILL EN PLACAS DE ACERO INOXIDABLES

APLICACIÓN DEL SISTEMA FLOWDRILL EN PLACAS DE ACERO INOXIDABLES APLICACIÓN DEL SISTEMA FLOWDRILL EN PLACAS DE ACERO INOXIDABLES Autores Alberto Gallegos Araya, Ramon Araya Gallardo Departamento Mecánica. Universidad de Tarapacá. 8 Septiembre Arica -e-mail: gallegos@uta.cl

Más detalles

Intervalos de Confianza para dos muestras

Intervalos de Confianza para dos muestras Intervalos de Confianza para dos muestras Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Comparación de dos poblaciones La comparación

Más detalles

APÉNDICE I. Calibración de la señal cromatográfica como función de la concentración: Sistema Ternario

APÉNDICE I. Calibración de la señal cromatográfica como función de la concentración: Sistema Ternario APÉNDICE I Calibración de la señal cromatográfica como función de la concentración: Sistema Ternario En este apéndice se muestra la información correspondiente a la elaboración de las diferentes curvas

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

OFERTA Y DISPONIBILIDAD DE FORRAJE COMO FACTORES EN LA SELECTIVIDAD Y CONSUMO DE LA PRADERA

OFERTA Y DISPONIBILIDAD DE FORRAJE COMO FACTORES EN LA SELECTIVIDAD Y CONSUMO DE LA PRADERA OFERTA Y DISPONIBILIDAD DE FORRAJE COMO FACTORES EN LA SELECTIVIDAD Y CONSUMO DE LA PRADERA Ing. Agrónomo Mg. Sc. Luis Piña M. Ing. Agrónomo Mg. Sc. Alfredo Olivares E. Departamento de Producción Animal,

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

EL CENSO CONTINUO EN EL PERU. Juan Valverde Quezada Instituto Nacional de Estadística e Informática - Perú

EL CENSO CONTINUO EN EL PERU. Juan Valverde Quezada Instituto Nacional de Estadística e Informática - Perú EL CENSO CONTINUO EN EL PERU Juan Valverde Quezada Instituto Nacional de Estadística e Informática - Perú ANTECEDENTES Ultimo Censo de Población y Vivienda de 1993: * Población: 22 millones habitantes

Más detalles

Departamento de Métodos Cuantitativos para la Economía y la Empresa

Departamento de Métodos Cuantitativos para la Economía y la Empresa Departamento de Métodos Cuantitativos para la Economía y la Empresa Técnicas para el Análisis de Mercado NOMBRE: DNI: GRUPO: 1 (3 puntos) La empresa de productos de informática Watermellon quiere analizar

Más detalles

MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN)

MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN) MEDIDAS DE TENDENCIA CENTRAL (MEDIDAS DE POSICIÓN) Las medidas de tendencia central se llaman promedios. Un promedio es un valor típico en el sentido de que se emplea a veces para representar todos los

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

SERVICIOS DE TRANSPORTE. Aspectos conceptuales y de compilación

SERVICIOS DE TRANSPORTE. Aspectos conceptuales y de compilación SERVICIOS DE TRANSPORTE Aspectos conceptuales y de compilación Introducción Los servicios se definen como un conjunto de actividades realizadas por una entidad económica para satisfacer los requerimientos

Más detalles

Las funciones cuadráticas y sus soluciones Guía del profesor

Las funciones cuadráticas y sus soluciones Guía del profesor Las funciones cuadráticas y sus soluciones Guía del profesor Contenidos: Intersección de la parábola con el eje X. Aprendizajes Esperados Se espera que los estudiantes: Deduzcan procedimientos gráfico-analíticos

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 31 de mayo, 2011 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Análisis Factorial: Análisis de componentes principales

Análisis Factorial: Análisis de componentes principales Análisis Factorial: Análisis de componentes principales Abel Lucena Ferran Carrascosa Universitat Pompeu Fabra 22 de febrero de 2013 En qué consiste el análisis factorial? El análisis factorial agrupa

Más detalles

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M.

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M. FACTORES DETERMINANTES DEL PRECIO DE LAS ACCIONES: Riesgo Se puede examinar ya sea por su relación con un: Activo individual Cartera Rendimiento RIESGO: En un concepto básico es la probabilidad de enfrentar

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

bloques SC Suma de Cuadrados k trat bloques

bloques SC Suma de Cuadrados k trat bloques Análisis de un diseño en bloques aleatorios Cuando sólo hay dos tratamientos, el análisis de varianza de una vía equivale al test t de Student para muestras independientes. A su vez, el análisis de varianza

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

Efecto Grados de Libertad A 1 D 1 B 1 E 1 C 1 F 1 AD 1 CD 1 AE 1 CD 1 AF 1 CF 1 BD 1 BE 1 BF 1

Efecto Grados de Libertad A 1 D 1 B 1 E 1 C 1 F 1 AD 1 CD 1 AE 1 CD 1 AF 1 CF 1 BD 1 BE 1 BF 1 Diseños Robustos El diseño robusto es esencialmente un principio que hace énfasis en seleccionar adecuadamente los niveles de los factores controlables en el proceso para la manufactura de productos. El

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015 CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Análisis de suelos Algunas ideas acerca de precisión y producción bajo siembra directa 1

Análisis de suelos Algunas ideas acerca de precisión y producción bajo siembra directa 1 Análisis de suelos Algunas ideas acerca de precisión y producción bajo siembra directa 1 Don Bullock Crop Sciences Department University of Illinois 1102 South Goodwin Ave., Urbana IL 61801, EE.UU. En

Más detalles

Limites: Definición: lim

Limites: Definición: lim Limites: Definición: El concepto de límite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Por ejemplo: Consideremos la función yy

Más detalles

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público Sede y localidad Carrera Sede Atlántica, Viedma Contador Publico Programa Asignatura: Estadística Aplicada Año calendario: 2012 Carga horaria semanal: 6 (seis) hs. Cuatrimestre: Primer Cuatrimestre. Segundo

Más detalles

Los Métodos de Valoración Indirecta (Costo De Viaje)

Los Métodos de Valoración Indirecta (Costo De Viaje) Los Métodos de Valoración Indirecta (Costo De Viaje) Método de Valoración de Bienes que no tienen un mercado definido. No existe información sobre precios ni demanda. La valoración se realiza por método

Más detalles

Uso de la simulación en hoja de cálculo como herramienta pedagógica para la inferencia estadística.

Uso de la simulación en hoja de cálculo como herramienta pedagógica para la inferencia estadística. USO DE LA SIMULACIÓN EN HOJA DE CÁLCULO COMO HERRAMIENTA PEDAGÓGICA PARA LA INFERENCIA ESTADÍSTICA: APLICACIÓN A LAS PROPIEDADES CLÁSICAS DE LOS ESTIMADORES Carlos Martínez de Ibarreta Zorita Departamento

Más detalles

GUÍA DE ESTUDIO VEGETALISTA. Proyecto Vegetalista Guía de Estudio para el alumno

GUÍA DE ESTUDIO VEGETALISTA. Proyecto Vegetalista Guía de Estudio para el alumno Proyecto Vegetalista Guía de Estudio para el alumno Indicaciones al docente Estimado (a) profesor (a): El siguiente material, ha sido preparado para complementar y profundizar temas vistos en clases y

Más detalles

Desarrollos Conceptuales y Operacionales acerca de la Creatividad

Desarrollos Conceptuales y Operacionales acerca de la Creatividad S E R I E : C U A D E R N O S DE T R A B A J O Nº l Desarrollos Conceptuales y Operacionales acerca de la Creatividad Ricardo López Pérez UNIVERSIDAD CENTRAL Escuela de Ciencias de la Educación RICARDO

Más detalles

La eficiencia de los programas

La eficiencia de los programas La eficiencia de los programas Jordi Linares Pellicer EPSA-DSIC Índice General 1 Introducción... 2 2 El coste temporal y espacial de los programas... 2 2.1 El coste temporal medido en función de tiempos

Más detalles

Ofertas Anormalmente Bajas

Ofertas Anormalmente Bajas Ofertas Anormalmente Bajas Segunda Parte Leandro Arozamena - Federico Weinschelbaum 25 de febrero de 2016 Arozamena - Weinschelbaum Ofertas () Anormalmente Bajas 25 de febrero de 2016 1 / 11 Esquema de

Más detalles

TEST DE HIPÓTESIS. Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una

TEST DE HIPÓTESIS. Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una TEST DE HIPÓTESIS Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una provincia según un indicador: mortalidad de recién nacidos con peso 1.000 gr. Supongamos, como ejemplo,

Más detalles

Análisis de indicadores financieros y patrimoniales. Análisis de indicadores financieros y patrimoniales 1

Análisis de indicadores financieros y patrimoniales. Análisis de indicadores financieros y patrimoniales 1 Análisis de indicadores financieros y patrimoniales Análisis de indicadores financieros y patrimoniales 1 Con el fin de conocer la situación y evolución de determinados indicadores que afectan a la información

Más detalles

Variable Estadística Bidimensional

Variable Estadística Bidimensional Capítulo 2 Variable Estadística Bidimensional 21 Distribución de Frecuencias Bidimensional Sea una población de n individuos donde estudiamos, simultáneamente, dos variables X e Y Seanx 1,x 2,,x k las

Más detalles

Inteligencia artificial

Inteligencia artificial Inteligencia artificial Proceso de Lenguaje Natural Qué es el Lenguaje? Qué es el Lenguaje Natural? Procesamiento del lenguaje Natural (PLN) Aplicaciones PLN Niveles del Lenguaje Arquitectura de un sistema

Más detalles

1.- DATOS DE LA ASIGNATURA. Diseño Asistido por Computadora. Nombre de la asignatura: Ingeniería Industrial. Carrera: Clave de la asignatura: OPN-1307

1.- DATOS DE LA ASIGNATURA. Diseño Asistido por Computadora. Nombre de la asignatura: Ingeniería Industrial. Carrera: Clave de la asignatura: OPN-1307 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Diseño Asistido por Computadora Ingeniería Industrial Clave de la asignatura: (Créditos) SATCA 1 OPN-1307 0-6-6 2.- PRESENTACIÓN Caracterización

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fecha Emisión: 2012/01/27 Revisión No. 1 AC-DO-F-8 Página 1 de 3 ESTADÍSTICA DESCRIPTIVA CÓDIGO 14241 PROGRAMA TECNOLOGÍA EN CONTABILIDAD Y TRIBUTARIA ÁREA DE FORMACIÓN CIENCIAS

Más detalles

Ciencia y matemáticas

Ciencia y matemáticas Ciencia y matemáticas Las matemáticas se originaron como una abstracción de la experiencia empírica del mundo exterior. El lenguaje se desarrolló cuando nuestros ancestros trataron de trasmitirse mutuamente

Más detalles

Desigualdad de Chebyshev bidimensional

Desigualdad de Chebyshev bidimensional Scientia et Technica Año XVII, No 51, Agosto de 2012. Universidad Tecnológica de Pereira. ISSN 0122-1701 242 Desigualdad de Chebyshev bidimensional Two - dimensional Chebyshev Inequality Edgar Alirio Valencia,

Más detalles