Determinación del coeficiente de dilatación adiabática del aire en condiciones atmosféricas para la ciudad de Medellín.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Determinación del coeficiente de dilatación adiabática del aire en condiciones atmosféricas para la ciudad de Medellín."

Transcripción

1 Determinación del coeficiente de dilatación adiabática del aire en condiciones atmosféricas para la ciudad de Medellín. J. D. Ramírez a, D. Pineda a, D. Olaya a. a departamento de ingeniería ambiental, facultad de ingenierías, universidad de Medellín. Colombia. Información del Informe. Entrega: 17 septiembre 2012 Palabras claves. Capacidad calorífica. Proceso isotermo. Proceso isóbara. Coeficiente adiabático. Trabajo termodinámico. RESUMEN. La determinación del coeficiente adiabático es la propiedad termodinámica entre las capacidades caloríficas de un gas a presión y volumen constante de mantener la cantidad de calor igual a cero. La determinación del coeficiente de dilatación adiabática se realiza de acuerdo al método de Clement y Desormes en la cual se dispone de una botella de 20 L se le inyecta aire en el interior aumentando la presión y por ende la temperatura se toma las medidas de diferencia de volumen en el manómetro y a partir de esa diferencia se determina el coeficiente adiabático. Introducción. El cálculo en las variaciones de energía y la realización de balances de la misma, permiten utilizar una propiedad termodinámica conocida como capacidad calorífica. La razón de las capacidades caloríficas a presión y volumen constante pueden determinarse con gran facilidad si se logra la expansión del gas en condiciones adiabáticas y luego se deja calentar nuevamente a la temperatura original. Es necesario conocer la presión inicial, después de la expansión y la alcanzada por el gas una vez que se dejó calentar a temperatura original. Como la capacidad calorífica se halla a presión y volumen constante, es necesario saber que: "La capacidad calorífica a presión constante, cp, es la razón de cambio de la entalpía con respecto a la temperatura, a presión constante" y que "La capacidad calorífica a volumen constante, cv, es la razón de cambio de la energía interna con respecto a la temperatura, a volumen constante" (unal). γ es la razón de las capacidades caloríficas, este valor es un exponente adiabático donde es común que ocurran enfriamientos y calentamientos debido al cambio en la presión del gas, dicho fenómeno puede ser cuantificado con el uso de la ley de los gases ideales. El método usado para la determinación de la razón es el de Clement-Desormes, este se basa en la expansión adiabática de un gas y se interpreta su resultado en términos de la contribución al calor específico por grados de libertad molecular. 1. Objetivos. Determinar la razón de por el método de Clement y Desormes.

2 Comprender la importancia de la determinación del coeficiente adiabático en la ingeniería ambiental especialmente en la determinación de algunos gases contaminantes en el aire. 2. Procedimiento experimental. En esta sección del coeficiente de dilatación adiabática del aire se dispuso de un tanque de 20 litros el cual su contenido se encuentra con aire, este tanque se encuentra conectado en su parte superior por dos mangueras de goma las cuales una de estas sirve como conector de la bomba que agregara aire a l tanque mientras la otra manguera esta conectada directamente al manómetro que contiene Ftalato de dibutilo, a priori se le agrega al tanque silica gel con el fin de retener la humedad y se introduce aire con el aparato de bombeo tres veces hasta que se equilibre el lado izquierdo con el lado derecho del manómetro, cuando se alcanza el equilibrio la manguera que conecta con el manómetro se cierra con una pinza y se espera que el sistema alcance la temperatura ambiente la cual para susodicho experimento es de un promedio de 27,8 C mientras que en el interior del recipiente variaba entre los 30 C a 31 C, justo en este momento se toma el valor del desplazamiento del liquido tanto en la columna derecha como en la izquierda. Después de que el sistema alcance la temperatura ambiente se suelta la pinza y se destapa un poco y se vuelven a tomar los valores en las columnas derecha e izquierda en el manómetro; este experimento se repite tres veces, obteniéndose los siguientes valores. prueba R 0 inicial L 0 inicial H 0 (cm) R f (cm) L f (cm) H f (cm) (cm) (cm) , ,4 2 44,5 6 38,5 38,5 10,7 27,8 3 43,2 6, ,5 10,6 27,9 3. Resultados. 3.1 Determinación del coeficiente de dilatación adiabática. De acuerdo a la teoría se tiene que el coeficiente de dilatación adiabática está determinado por: Pero antes de poder realizar cualquier cálculo como se maneja un líquido diferente al mercurio en el manómetro se tiene que buscar la altura correspondiente con los mm de Hg y desde luego con la presión para Medellín la cual es de 640 mm Hg: A partir de esto se obtiene que en mm Hg las diferencias de altura de las presiones fueron de:

3 prueba H 0 (cm) H f (cm) 1 2, , , , , , Promediando las diferencias de altura de las presiones en el manómetro inicial y final para los tres datos tomados se tiene que: Para la diferencia de alturas final se tiene que: Luego reemplazando en el coeficiente de dilatación adiabática se tiene que: Por tanto para una temperatura ambiente de 27,8 C en la ciudad de Medellín el coeficiente de dilatación adiabática es de aproximadamente de 3, Determinación de los valores de capacidad calorífica a presión constante y volumen constante. Teóricamente y despreciando grados de libertad, considerando el aire como un gas ideal y relegando otros gases presentes en la atmosfera así como sistemas no cuasi-estacionarios y el movimiento de estas se puede decir que el aire es fundamentalmente un gas diatómico y por esto se pueden utilizar las relaciones del capacidad calorífica a presión y volumen constante para estos gases: Y como se conoce Entonces se tiene:

4 Por tanto el coeficiente de dilatación adiabática para el aire en condiciones de gas ideal para una temperatura ambiente de 20 C es de: Al suponer que esto es un valor teórico podemos hallar el error entre este y el hallado experimentalmente por tanto: Por tanto el error es demasiado grande y esto se debe esencialmente a causas exógenas por fuera del experimento que se manejan en la discusión. 3.3 Calculo del trabajo de expansión del aire. ( ) En base al dato obtenido en la segunda prueba: 4. Discusión. A partir del experimento llevado a cabo se puede considerar cuatro fuentes de error que afectaron la calidad y el rendimiento del experimento estas son:

5 Cuando se uso la silica gel en el experimento para reducir la humedad en el aire y que permaneciera en este gases monoatómicos y diatomicos que por lo general están compuesto el aire este no se encuentra anhidro (color azul) como lo exige el manual del laboratorio sino que se encuentra de color amarillo-rosado demostrando que la silica gel ha contenido humedad y por tanto se tiene que al agregarle la silica al envase este no absorbe la humedad apropiada. La no utilización de mercurio en el manómetro y en vez de esto se uso ftalato de dibutilo lo que corresponde una transformación de unidades además la densidad de este ultimo para la transformación de mm de ftalato a mm Hg solo se mantiene constante a una temperatura de 21 C y en esos momentos el laboratorio se encuentra a una temperatura de casi 29 C lo que indica que la densidad de este cambia un poco. Se presentaron impurezas en el ftalato de dibutilo por lo que el precipitado y la turbiedad que se encuentra en el liquido pudo haber afectado la diferencia de volumen tomados. Para cada uno de los datos a tomar no se mantuvieron las mismas condiciones uniformes y es por tanto que el resultado en cada una de ellas cambia. 5. Conclusiones. A partir del siguiente informe se pueden extraer tres esenciales conclusiones: la primera el trabajo ejercido en una expansión adiabática es proporcional a la diferencia de temperaturas en los estados inicial y final del proceso; la segunda la capacidad calorífica es determinada en función de las variables ΔQ y ΔT, es decir el cambio en el calor absorbido y la temperatura y la tercera es que la razón de las capacidades caloríficas para un gas ideal puede estar relacionado con los grados de libertad de una molécula, de tal manera que al considerar ciertos gases como ideales a partir de este experimento se puede hallar las capacidades caloríficas a presión constante y a volumen constante, pudiéndose predecir el comportamiento de algunos compuestos en el aire contaminantes presentes en el, así como determinar el grado de contaminación del aire en ciertos lugares. Bibliografía. [1] AGUILAR Alfredo Luis; Guia de fisioquímica. Tabla de calores específicos. Universidad de Medellín, p67. [2] Bell, D. (1997). Fisicoquimica. Cleveland: Thomson. [3] Cespedes, M., & Peña, A. (2007). manual de laboratorio de fisicoquimica. Medellín: universidad de Medellín. [4] Reyes, L. (01 de septiembre de 2012). labortaorio de instrumentacion universidad de antioquia. Obtenido de gfif.udea.edu.co/mecanica [5] unal. (s.f.). Recuperado el 03 de Marzo de 2012, de

6 Cuestionario. 1. Explique porque para gases ideales C p >C v Se sabe que Q= W+ΔU, por lo tanto a volumen constante W=0 y entonces Q= y a presión constante Q= W+ ΔU. Es decir, a presión constante, parte del calor se transforma en trabajo. Mientras que a volumen constante se transforma en un aumento de energía interna por lo cual el calor necesario para aumentar 1ºC de un kg de cierta sustancia, va a ser mayor C p que C v. 2. Consulte los valores de C p y C v para gases monoatómicos, diatómicos y de más de tres átomos. Estos están determinados de acuerdo a los movimientos que poseen las partículas y a los grados de libertad: Gases monoatómicos: Cv= 3/2R Cp=5/2R Gases diatómicos: Cv= 5/2R Cp= 7/2R Gases poliatómicos: Cv=3R Cp=4R 3. Demuestre que C p -C v =R Sea: La cual se puede expresar de acuerdo a la definición de entalpia como: Al considerar pequeños cambios en el sistema se tiene que se puede escribir como: Pero el cambio en la entalpia, la presión por el volumen y en la energía interna se puede expresar como: Considerando además un cambio en la temperatura se tiene que: Esto es equivalente a:

7 Reemplazando 4, 3,2 en 1 se tiene que: 4. Establezca la diferencia entre el proceso adiabático e isotérmico de la práctica. La diferencia es que un sistema adiabático no intercambia calor con el entorno, pero con el calor generado por la reacción química conduce a un aumento de la energía termina del sistema y por ende la temperatura, mientras que un sistema isotérmico mantiene constante su temperatura lo que implica el intercambio de calor con el entorno para quitarle calor al sistema y mantenerlo constante.

Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes)

Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes) Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes) 1. Objetivo general: Determinar experimentalmente el índice adiabático, utilizando el método de Clement- Desormes.

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 4. Primera ley de la Termodinámica. i. Concepto de Trabajo aplicado a gases. ii. Trabajo

Más detalles

Determinación de la relación Cp/Cv en gases

Determinación de la relación Cp/Cv en gases Determinación de la relación p/v en gases Objetivo. En esta práctica se determinará la relación entre p/vγ o coeficiente isentrópico de un gas combinando un sencillo proceso de expansión en condiciones

Más detalles

LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO

LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO LABORATORIO DE TERMODINÁMICA PRÁCTICA 1: TÍTULO DE UN VAPOR HÚMEDO 1. OBJETIVO Determinar la calidad de un vapor húmedo 2. MATERIAL - Calderín para producir el vapor (p atmosférica = constante) - Calorímetro

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA TÉRMICA. PRÁCTICA NÚMERO 5 Simulación de Ley de Boyle. OBJETIVO: Confirmar de manera experimental la ley de Boyle. Analizar con base en gráficos obtenidos a partir de los datos experimentales de presión

Más detalles

Determinación de entalpías de vaporización

Determinación de entalpías de vaporización Prácticas de Química. Determinación de entalpías de vaporización I. Introducción teórica y objetivos........................................ 2 II. Desarrollo experimental...............................................

Más detalles

PARCIAL DE FISICA II 7/6/2001 CASEROS II TEORICO: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos.

PARCIAL DE FISICA II 7/6/2001 CASEROS II TEORICO: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos. PARCIAL DE FISICA II 7/6/2001 CASEROS II ALUMNO: MATRICULA: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos. 2-Obtener la ecuación de las Adiabáticas. 3-Explicar

Más detalles

2.A) DETERMINACIÓN DEL COEFICIENTE ADIABATICO DEL AIRE. (Método de Clement-Desormes)

2.A) DETERMINACIÓN DEL COEFICIENTE ADIABATICO DEL AIRE. (Método de Clement-Desormes) - PRÁCTICA Nº2 TERMODINÁMICA - 2.A) DETERMINACIÓN DEL COEFICIENTE ADIABATICO DEL AIRE. (Método de Clement-Desormes) 2.B) DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DE GASES. (Oscilador de Flammersfeld) GRUPO

Más detalles

M del Carmen Maldonado Susano M del Carmen Maldonado Susano

M del Carmen Maldonado Susano M del Carmen Maldonado Susano Antecedentes Temperatura Es una propiedad de la materia que nos indica la energía molecular de un cuerpo. Energía Es la capacidad latente o aparente que poseen los cuerpos para producir cambios en ellos

Más detalles

Práctica No 5. Capacidad calorífica de un sólido

Práctica No 5. Capacidad calorífica de un sólido Práctica No 5 Capacidad calorífica de un sólido 1. Objetivo general: Determinación de la capacidad calorífica especifica de un sólido en un proceso a presión constante. 2. Objetivos específicos: 1) Identificar

Más detalles

Práctica No 10. Capacidad térmica de un calorímetro (constante calorimétrica)

Práctica No 10. Capacidad térmica de un calorímetro (constante calorimétrica) Práctica No 10 Capacidad térmica de un calorímetro (constante calorimétrica) 1. Objetivo general: Determinar la capacidad térmica (constante calorimétrica), del calorímetro que se le proporcione. 2. Marco

Más detalles

PROBLEMAS RESUELTOS DE TERMODINAMICA

PROBLEMAS RESUELTOS DE TERMODINAMICA PROBLEMAS RESUELTOS DE TERMODINAMICA 1. Responder a. Qué es el calor latente de una sustancia? y el calor específico? b. Es posible transformar todo el calor en trabajo en un ciclo? Razona la respuesta.

Más detalles

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS FUNDAMENOS DE ERMODINÁMICA ROBLEMAS 1.- Clasifique cada propiedad como extensiva o intensiva: a) temperatura, b) masa, c) densidad, d) intensidad del campo eléctrico, e) coeficiente de dilatación térmica,

Más detalles

Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura.

Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. Práctica No 9 Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. 1. Objetivo general: Establecer empíricamente una escala de temperatura, aplicándose

Más detalles

Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo.

Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. ! " # $ %& ' () ) Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. Conceptos a afianzar: Descripción termodinámica

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

Titular: Daniel Valdivia

Titular: Daniel Valdivia UNIERSIDAD NACIONAL DE TRES DE FEBRERO ROBLEMAS DE LA CÁTEDRA FÍSICA Titular: Daniel aldivia Adjunto: María Inés Auliel 9 de septiembre de 016 Transformaciones Justificar cada una de sus respuestas. Realizar

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

COEFICIENTE DE EXPANSIÓN TÉRMICA ISOBÁRICA, DE

COEFICIENTE DE EXPANSIÓN TÉRMICA ISOBÁRICA, DE COEFICIENE DE EXPANSIÓN ÉRMICA ISOBÁRICA, DE COMPRESIBILIDAD ISOÉRMICA Y PIEZOÉRMICO 1.- Objetivo: Determinación de los coeficientes termodinámicos de un gas (por ejemplo: aire): coeficiente de expansión

Más detalles

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Gases Ideales

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Gases Ideales Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Objetivos Gases Ideales Elaborada por: Daniel Sosa, Luis Vargas y Lucio Villanueva Actualizada y corregida por Fis. Ricardo

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 2. El Primer Principio de la Termodinámica

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 2. El Primer Principio de la Termodinámica María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 2 El Primer Principio de la Termodinámica Esquema Tema 2. Primer Principio de la Termodinámica 2.1 Primer Principio

Más detalles

TERMODINÁMICA - PREGUNTAS DE TEST

TERMODINÁMICA - PREGUNTAS DE TEST TERMODINÁMICA - PREGUNTAS DE TEST Grupo A: DEFINICIONES DE VARIABLES. CONCEPTOS GENERALES Grupo B: MAQUINAS TÉRMICAS: Grupo C: PRIMER PRINCIPIO: Grupo D: SEGUNDO PRINCIPIO: Grupo E: ESPONTANEIDAD DE LAS

Más detalles

Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.1. Propiedades Particulares de la Materia

Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.1. Propiedades Particulares de la Materia Área de Ciencias Naturales LABORATORIO DE FISICA Física II ALUMNO(A): GRUPO: EQUIPO: PROFESOR(A): FECHA: CALIFICACION: Actividad experimental No.1 Propiedades Particulares de la Materia EXPERIMENTO No.

Más detalles

UNIDAD VII TEMPERATURA Y DILATACIÓN

UNIDAD VII TEMPERATURA Y DILATACIÓN UNIDAD VII TEMPERATURA Y DILATACIÓN TEMPERATURA Expresión del nivel térmico de un cuerpo Un cuerpo con mucha temperatura tiene mucha cantidad de calor; sin embargo hay cuerpos como el mar con gran cantidad

Más detalles

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla El gas ideal Física II Grado en Ingeniería de Organización Industrial rimer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada III Universidad de Sevilla Índice Introducción Ecuación

Más detalles

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica PRÁCTICA 1 PRESIÓN Laboratorio de Termodinámica M del Carmen Maldonado Susano Enero 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular carece de forma propia y adopta

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 02. Primer Principio de la Termodinámica Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA

Más detalles

I OBJETIVO: Determinar el calor latente de vaporización y de fusión del agua

I OBJETIVO: Determinar el calor latente de vaporización y de fusión del agua I OBJETIVO: Determinar el calor latente de vaporización y de fusión del agua II TEORIA: Cuando una sustancia cambia de fase, su arreglo molecular cambia. Si esa nueva configuración tiene una energía interna

Más detalles

UNIVERSIDAD CATÓLICA ANDRÉS BELLO GUAYANA Escuela de Ingeniería Industrial Manual de Prácticas Laboratorio Química CALORIMETRIA.

UNIVERSIDAD CATÓLICA ANDRÉS BELLO GUAYANA Escuela de Ingeniería Industrial Manual de Prácticas Laboratorio Química CALORIMETRIA. 1. INTRODUCCION Un calorímetro es un dispositivo que mide la cantidad de calor que se produce en una reacción. Es un sistema adiabático y por lo tanto no permite la transferencia de energía con el medio

Más detalles

Termodinámica del aire: experimento de expansión adiabática de un gas y medida de γ = C p / C v con el método de Clément y Desormes (*)

Termodinámica del aire: experimento de expansión adiabática de un gas y medida de γ = C p / C v con el método de Clément y Desormes (*) Termodinámica del aire: experimento de expansión adiabática de un gas y medida de γ = C p / C v con el método de Clément y Desormes (*) 1. Introducción El cociente de calores específicos a presión constante

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA GUÍA DE ESTUDIO DE TERMODINÁMICA E.T. (CLAVE 1212) UNIDAD 1. INTRODUCCIÓN A LA TERMODINÁMICA 1.1 Definición, campo

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009

PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009 PROGRAMA ANALÍTICO DE FÍSICA EXPERIMENTAL II: Año 2009 UNIDAD I: Breve repaso de Temperatura y Calor. Temperatura. Calor y energía. Temperatura. Propiedades mensurables. Escalas termométricas. Métodos

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

Ecuación de estado del gas ideal

Ecuación de estado del gas ideal Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

El término teoría cinética hace referencia al modelo microscópico para un gas ideal Suposiciones: 1.- En los gases las moléculas son numerosas y la

El término teoría cinética hace referencia al modelo microscópico para un gas ideal Suposiciones: 1.- En los gases las moléculas son numerosas y la CAP 21 SERWAY El término teoría cinética hace referencia al modelo microscópico para un gas ideal Suposiciones: 1.- En los gases las moléculas son numerosas y la separación promedio entre ellas es grande

Más detalles

Máquinas térmicas y Entropía

Máquinas térmicas y Entropía Física 2 (Biólogos y Geólogos) SERIE 10 Máquinas térmicas y Entropía 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste

Más detalles

Práctica No 13. Determinación de la calidad de vapor

Práctica No 13. Determinación de la calidad de vapor Práctica No 13 Determinación de la calidad de vapor 1. Objetivo general: Determinar la cantidad de vapor húmedo generado a presión atmosférica. 2. Marco teórico: Entalpía del sistema: Si un sistema consiste

Más detalles

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo PRÁCTICA 3 PRESIÓN Laboratorio de Principios de Termodinámica y Electromagnetismo M del Carmen Maldonado Susano 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular

Más detalles

Unidad III. Sistemas Monofásicos

Unidad III. Sistemas Monofásicos UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingeniería Química Unidad III. Balance de materia Sistemas Monofásicos

Más detalles

Estudio experimental de procesos termodinámicos

Estudio experimental de procesos termodinámicos Estudio experimental de procesos termodinámicos Julieta Romani, Paula Quiroga, María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com, comquir@ciudad.com.ar, merigl@yahoo.com.ar, mapaz@vlb.com.ar

Más detalles

Cuestión 1. (10 puntos)

Cuestión 1. (10 puntos) ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA 2º eoría (30 puntos) IEMPO: 45 minutos FECHA DAA + + = Cuestión 1. (10 puntos) Lea las 15 cuestiones y escriba dentro de la casilla a la derecha de cada cuestión

Más detalles

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v FÍSICA 4 SEGUNDO CUARIMESRE DE 2009 GUÍA 3: OENCIALES ERMODINÁMICOS, CAMBIOS DE FASE 1. Sean x,, z cantidades que satisfacen una relación funcional f(x,, z) = 0. Sea w una función de cualquier par de variables

Más detalles

CALORIMETRIA DEL VAPOR DE AGUA

CALORIMETRIA DEL VAPOR DE AGUA CAPITULO I.- CALORIMETRIA DEL VAPOR DE AGUA GENERACIÓN DE VAPOR DE AGUA. Cuando al agua se le agrega energía calorífica, varían su entalpía y su estado físico. A medida que tiene lugar el calentamiento,

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUÍMICA FARMACÉUTICA LABORATORIO DE QUÍMICA GENERAL Profesor: Jaime O. Pérez

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUÍMICA FARMACÉUTICA LABORATORIO DE QUÍMICA GENERAL Profesor: Jaime O. Pérez UNIVERSIDAD DE ANTIOQUIA FACULTAD DE QUÍMICA FARMACÉUTICA LABORATORIO DE QUÍMICA GENERAL Profesor: Jaime O. Pérez Práctica: Determinación de Densidades. Fecha: 24 de noviembre de 2009 DEYMER GÓMEZ CORREA:

Más detalles

COEFICIENTES DE DILATACIÓN

COEFICIENTES DE DILATACIÓN PRÁCTICA 3 COEFICIENTES DE DILATACIÓN OBJETIVO Determinación del coeficiente de dilatación del agua a temperatura ambiente utilizando un picnómetro. Determinación del coeficiente de dilatación lineal de

Más detalles

TERMODINÁMICA CONCEPTOS FUNDAMENTALES

TERMODINÁMICA CONCEPTOS FUNDAMENTALES TERMODINÁMICA CONCEPTOS FUNDAMENTALES 1 Introdución Sistema y medio ambiente Propiedades de un sistema Equilibrio termodinámico 2 FACULTAD DE INGENIERIA - UNCuyo 1 Termodinámica Therme (griego): calor

Más detalles

Conceptos Básicos Termodinámica

Conceptos Básicos Termodinámica Conceptos Básicos Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido

Más detalles

Capítulo 17. Temperatura. t(h) = 100 h h 0

Capítulo 17. Temperatura. t(h) = 100 h h 0 Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

JOHN ERICSSON ( )

JOHN ERICSSON ( ) FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA GENERAL Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA PRIMER EXAMEN FINAL COLEGIADO 2010-1 JUEVES 3 DE DICIEMBRE DE 2009, JOHN ERICSSON

Más detalles

PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT.

PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT. PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT. Se mantiene un gas a presión constante de 0 atm mientras se expande desde un volumen de 0 005 m 3 hasta uno de 0 009 m 3. Qué cantidad de calor se

Más detalles

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía.

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. Física 3 (Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. 1. Demostrar que: (a) Los postulados del segundo principio de Clausius

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

GASES Y ESTEQUIOMETRIA

GASES Y ESTEQUIOMETRIA Universidad Católica del Norte Departamento de Química ractica Nº 4 GASES Y ESTEQUIOMETRIA Recolección de gas en agua Objetivos 1. Aprender a realizar un montaje para el análisis de un sistema en equilibrio.

Más detalles

1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo?

1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo? 1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo? Sabemos que el trabajo termodinámico es el producto de la presión y la variación

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS ESCUELA: CARRERA: ESPECIALIDAD: COORDINACION: DEPARTAMENTO: U P I I C S A INGENIERIA INDUSTRIAL ACADEMIAS DE QUIMICA CIENCIAS BASICAS ASIGNATURA: QUIMICA INDUSTRIAL II CLAVE: ITU SEMESTRE: CREDITOS: VIGENTE:

Más detalles

FISICOQUIMICA. La energía total de un sistema puede ser: externa, interna o de tránsito. CLASIFICACION TIPOS DETERMINACION Energía Potencial:

FISICOQUIMICA. La energía total de un sistema puede ser: externa, interna o de tránsito. CLASIFICACION TIPOS DETERMINACION Energía Potencial: FISICOQUIMICA ENERGIA: No puede definirse de forma precisa y general, sin embargo, puede decirse que es la capacidad para realizar trabajo. No se puede determinar de manera absoluta, solo evaluar los cambios.

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades.

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. UNIDAD 5 TERMODINÁMICA - HIDRAULICA TERMODINÁMICA La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. ENERGIA TERMICA: Todos los cuerpos se componen de pequeñas

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

TORRES DE ENFRIAMIENTO CON AGUA

TORRES DE ENFRIAMIENTO CON AGUA TORRES DE ENFRIAMIENTO CON AUA Agua, T L2,L 2 L T L Agua, T L1,L 1 Aire, T 2, 2, 2, 2 T dz z Aire, T 1, 1, 1, 1 Se considerará una torre empacada para enfriamiento de agua con aire que flue hacia arriba

Más detalles

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales BALANCE DE ENERGÍA Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales Los objetivos del balance de Energía son: Determinar la cantidad energía necesaria para

Más detalles

DEMOSTRACIONES DE PRESION. ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ

DEMOSTRACIONES DE PRESION. ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ DEMOSTRACIONES DE PRESION. ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ KAREN SUSANA DE MARIA MOSQUERA TORRADO PRESENTADO A: FERNANDO VEGA PONTIFICIA

Más detalles

Energética y cinética química: Intercambios de energía en las reacciones químicas. Intercambios de energía en las reacciones químicas

Energética y cinética química: Intercambios de energía en las reacciones químicas. Intercambios de energía en las reacciones químicas Energética y cinética química: Intercambios de energía en las reacciones químicas Tipos de reacciones Exotérmicas: se desprende energía en forma de calor cuando se producen, observándose un aumento de

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

Manual de Prácticas. Práctica número 5 La primera ley de la termodinámica para sistemas cerrados

Manual de Prácticas. Práctica número 5 La primera ley de la termodinámica para sistemas cerrados Práctica número 5 La primera ley de la termodinámica para sistemas cerrados Tema Correspondiente: Primera Ley de la Termodinámica Nombre del Profesor: Nombre completo del alumno Firma N de brigada: Fecha

Más detalles

Práctica No 8. Capacidad térmica y calor específico

Práctica No 8. Capacidad térmica y calor específico Práctica No 8 Capacidad térmica y calor específico 1. Objetivo general: Determinar la capacidad térmica y el calor específico de una sustancia. 2. Objetivos específicos: 1) Comprobación experimental del

Más detalles

CARÁCTERÍSTICAS DE LOS GASES

CARÁCTERÍSTICAS DE LOS GASES DILATACIÓN EN LOS GASES - CARACTERÍSTICAS DE LOS GASES - PRESIÓN EN LOS GASES: CAUSAS Y CARACTERÍSTICAS - MEDIDA DE LA PRESIÓN DE UN GAS: MANÓMETROS - GAS EN CONDICIONES NORMALES - DILATACIÓN DE LOS GASES

Más detalles

COEFICIENTE ADIABÁTICO DE GASES

COEFICIENTE ADIABÁTICO DE GASES PRÁCTICA 4A COEFICIENTE ADIABÁTICO DE GASES OBJETIVO Determinación del coeficiente adiabático γ del aire, argón y del anhídrido carbónico utilizando un oscilador de gas tipo Flammersfeld. MATERIAL NECESARIO

Más detalles

TERMOQUÍMICA. + q W SISTEMA. - q W + = = = =

TERMOQUÍMICA. + q W SISTEMA. - q W + = = = = TERMOQUÍMICA 1. Primer Principio de la Termodinámica "La energía de un sistema más la de sus alrededores se conserva". Es decir, la variación de la energía interna de un sistema es igual a la suma del

Más detalles

EQUILIBRIO QUÍMICO 1517 DEPARTAMENTO DE QUÍMICA GENERAL Y FISICOQUÍMICA

EQUILIBRIO QUÍMICO 1517 DEPARTAMENTO DE QUÍMICA GENERAL Y FISICOQUÍMICA EQUILIBRIO QUÍMICO 1517 DEPARTAMENTO DE QUÍMICA GENERAL Y FISICOQUÍMICA UBICACIÓN SEMESTRE 5o. TIPO DE ASIGNATURA TEÓRICO-PRÁCTICA NÚMERO DE HORAS/SEMANA Teoría 4 Práctica 2 CRÉDITOS 10 INTRODUCCIÓN. En

Más detalles

Práctica No 4. Calor latente de vaporización

Práctica No 4. Calor latente de vaporización Práctica No 4 Calor latente de vaporización 1. Objetivo general: Determinación del calor latente de vaporización. 2. Objetivo específicos: 1) Operar correctamente un calorímetro de vapor. 2) Establecer

Más detalles

Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial

Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial Programa de la asignatura: IEM-211 Termodinámica I Total de Créditos:

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA II ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 7 I. NOMBRE: PRESION ATMOSFERICA.

Más detalles

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage:

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage: Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 3. Gases ideales y estados termodinámicos. i. Concepto y características del gas ideal.

Más detalles

mediante un punto en dicho diagrama. La temperatura de dicho estado se obtiene haciendo uso de la ecuación de estado.

mediante un punto en dicho diagrama. La temperatura de dicho estado se obtiene haciendo uso de la ecuación de estado. Función de estado Una función de estado es una propiedad de un sistema termodinámico que depende sólo del estado del sistema, y no de la forma en que el sistema llegó a dicho estado. Por ejemplo, la energía

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA

Más detalles

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA

Más detalles

PRÁCTICAS DE DE TERMODINÁMICA

PRÁCTICAS DE DE TERMODINÁMICA PRÁCTICAS DE DE TERMODINÁMICA Curso 2011-12 PRACTICA 3: PRESIÓN DE VAPOR DEL AGUA POR DEBAJO DE 100 ºC.CALOR DE VAPORIZACIÓN. Alumnos: - Iván Company Hernando Nº matricula: 49917 - Héctor Calvo Fernández

Más detalles

En el transcurso de una reacción química se rompen enlaces de los reactivos y se forman nuevos enlaces que dan lugar a los productos.

En el transcurso de una reacción química se rompen enlaces de los reactivos y se forman nuevos enlaces que dan lugar a los productos. Termoquímica En el transcurso de una reacción química se rompen enlaces de los reactivos y se forman nuevos enlaces que dan lugar a los productos. Para romper enlaces se consume energía y al formar otros

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

Física Termodinámica. Parte 2

Física Termodinámica. Parte 2 Física ermodinámica Parte 4. Gases 4. Sólidos, líquidos y gases Fuerzas entre moléculas: Atracción de largo alcance Atracción de corto alcance Fuerza muy fuerte pero actúa en distancias muy cortas Es fuerte

Más detalles

EQUILIBRIO LÍQUIDO-VAPOR ciclo 2013-I PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA

EQUILIBRIO LÍQUIDO-VAPOR ciclo 2013-I PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA EQUILIBRIO LÍQUIDO-VAPOR ciclo 2013-I PRESIÓN DE VAPOR Y ENTALPÍA DE VAPORIZACIÓN DEL AGUA I. OBJETIVO GENERAL Comprender e interpretar el significado de las variables termodinámicas involucradas en la

Más detalles

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289 GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la

Más detalles

PRÁCTICA N 7. Determinar el peso equivalente experimental en los procesos en que intervienen reacciones químicas redox.

PRÁCTICA N 7. Determinar el peso equivalente experimental en los procesos en que intervienen reacciones químicas redox. PRÁCTICA N 7 DETERMINACION EXPERIMENTAL DEL PESO EQUIVALENTE DEL MAGNESIO I. OBJETIVO GENERAL Determinar el peso equivalente experimental en los procesos en que intervienen reacciones químicas redox. II.

Más detalles

2. LA PRIMERA LEY DE LA TERMODINÁMICA

2. LA PRIMERA LEY DE LA TERMODINÁMICA 1. CONCEPTOS BÁSICOS Y DEFINICIONES l. 1. Naturaleza de la Termodinámica 1.2. Dimensiones y unii2acles 1.3. Sistema, propiedad y estado 1.4. Densidad, volumen específico y densidad relativa 1.5. Presión

Más detalles

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura:

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura: FÍSICA 4 PRIMER CUARIMESRE DE 05 GUÍA : SEGUNDO PRINCIPIO, MÁUINAS ÉRMICAS. Demostrar que: (a) Los postulados del segundo principio de Clausius y de Kelvin son equivalentes (b) Ninguna máquina cíclica

Más detalles

Bol. 2: Convección Atmosférica y Nubes

Bol. 2: Convección Atmosférica y Nubes Bol. 2: Convección Atmosférica y Nubes Termodinámica El link entre la circulación y la transferencia de calor latente, sensible y radiación entre la superficie y la atmósfera es termodinámica. Termodinámica

Más detalles

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso:

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso: E.E.T. Nº9 Físico-Química de 2do año Guía Nº3 Profesor: Alumno: Curso: Soluciones Una solución es un sistema homogéneo formado por dos o más componentes. En una solución formada por dos componentes se

Más detalles