UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA UNIDAD CURRICULAR TERMODINÁMICA DEPARTAMENTO DE ENERGÉTICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA UNIDAD CURRICULAR TERMODINÁMICA DEPARTAMENTO DE ENERGÉTICA"

Transcripción

1 UNIVERSIDD NCIONL EXPERIMENL FRNCISCO DE MIRND ÁRE DE ECNOLOGÍ UNIDD CURRICULR DEPRMENO DE ENERGÉIC Prof, Ing. Frank ello Msc, Prof, Ing. Indira Ortiz Esp, Prof. Ing. Johanna Krijnen., Prof. Ing. Ender Carrasquero, Prof. Ing. Mayra Leal

2 EM 5: SEGUND LEY DE L EM N 5: SEGUND LEY DE L. Introducción a la Segunda Ley 2. Depósitos de Energía 3. Máquinas érmicas - Definición - Descripción del Ciclo ermodinámico - Eficiencia - Enunciado de Kelvin-Planck 4. Maquinas de Refrigeración y omba de Calor - Características - Descripción del Ciclo ermodinámico - Coeficientes de Operación - Enunciado de Clausius 5. Procesos Reversibles e Irreversibles 6. Ciclo de Carnot 7. Escala absoluta de emperatura 8. Eficiencia de Carnot 9. Coeficientes de Operación de Carnot 0. Ejercicios Resueltos. Ejercicios Propuestos 2. Referencias ibliográficas 2

3 EM 5: SEGUND LEY DE L. Introducción a la Segunda Ley de la ermodinámica En el tema anterior se estudió la primera ley de la termodinámica o el principio de la conservación de la energía el cual establece que la energía no puede crearse ni destruirse solo puede cambiar de una forma a otra. Sin embargo ésta no establece restricciones sobre la dirección del flujo de calor y de trabajo. Para que un proceso ocurra debe satisfacer la primera ley, no obstante su sola satisfacción no garantiza que el proceso ocurra. Por ejemplo una taza de café caliente se enfría debido a la transmisión de calor al medio circundante, pero el calor jamás fluirá del medio circundante (a temperatura más baja) hacia la taza de café caliente, aunque esto no violara la primera ley (si la cantidad de energía perdida por el medio es igual a la cantidad de energía ganada por la taza), todos sabemos que no sucede en la realidad. Los procesos siguen cierta dirección pero no la inversa. La primera ley no restringe la dirección de los procesos, lo que es resuelto con la segunda ley, un proceso no sucede a menos que satisfaga la primera y la segunda ley de la termodinámica. La Segunda Ley de la ermodinámica establece que odo sistema que tenga ciertas restricciones especificadas y que tenga un límite superior para su volumen puede alcanzar, partiendo de cualquier estado de equilibrio estable sin que haya un efecto neto sobre los alrededores. Esta Ley permite determinar: El sentido de las interacciones energéticas como calor El sentido general de los procesos Las restricciones de conversión de calor en trabajo Límites máximos de rendimiento de dispositivos cíclicos La calidad de la energía 2. Depósitos o Reservorios de Energía Son sistemas cerrados que se caracterizan por: Las únicas interacciones dentro de ellos son las interacciones térmicas Los cambios que ocurren dentro de los depósitos son internamente reversibles 3

4 EM 5: SEGUND LEY DE L Su temperatura debe permanecer uniforme y constante durante un proceso. Los reservorios pueden ser: Fuentes de Calor o Sumideros de Calor según la dirección de la transferencia de calor sea desde ellos o hacia ellos. Como un resultado de esa transferencia de calor se produce una disminución o aumento de la energía interna del reservorio. 3. Máquinas érmicas Definición Son dispositivos que operan en ciclo termodinámico y que producen una cantidad neta de trabajo positivo intercambiando calor desde un cuerpo de alta temperatura hacia uno de baja temperatura. En un sentido más amplio, las máquinas térmicas incluyen todos los dispositivos que producen trabajo ya sea por intercambio de calor o por combustión, incluso sino operan en un ciclo. En general, se define una máquina térmica como un sistema cerrado que produce trabajo intercambiando calor a través de sus fronteras. Las máquinas térmicas difieren considerablemente unas de otras, pero en general, todas se caracterizan por lo siguiente: - Reciben calor de una fuente de alta temperatura (energía solar, hornos, reactores nucleares) - ransforman parte de ese calor en trabajo - Liberan calor de desecho remanente en un depósito de baja temperatura (atmósfera, ríos, lagos) - Operan cíclicamente Descripción del Ciclo ermodinámico La representación más sencilla de una máquina térmica se observa en la figura. 4

5 EM 5: SEGUND LEY DE L Donde: H ; calor transferido de la fuente de alta temperatura ( entra ). L ; calor transferido de la fuente de baja temperatura ( sale ). Figura : Representación sencilla de una Máquina érmica Los elementos de las máquinas térmicas son: Caldera, urbina, Condensador y omba, todos operando cíclicamente como se muestra a continuación: Depósito de alta emperatura H Depósito de alta emperatura Figura 2: Máquina érmica En la figura 2, se muestra como ejemplo una planta termoeléctrica, en la que el fluido de trabajo (vapor) regresa periódicamente a su estado original. En esta planta de energía el ciclo (en su forma más sencilla) tiene las siguientes etapas: - El agua líquida se bombea a una caldera a alta presión. - El calor de un combustible se transfiere en la caldera al agua convirtiendo esta última en vapor a alta temperatura a la presión de la caldera. 5

6 EM 5: SEGUND LEY DE L - La energía se transfiere como trabajo del vapor a los alrededores mediante un dispositivo tal como una turbina (las partículas de gas chocan con los álabes de la turbina produciendo el movimiento y de esta forma se realiza un trabajo sobre la rueda de la turbina), en la cual el vapor se expande. - El vapor que sale de la turbina se condensa, mediante transferencia de calor a los alrededores, produciendo agua líquida, la cual es impulsada de nuevo a la caldera, a través de la bomba para concluir el ciclo. Eficiencia Siempre que se hable de máquinas térmicas se hablará de rendimiento térmico o eficiencia que no es más que el cociente de lo producido y el consumo. La producción (energía producida) de un ciclo de potencia es el trabajo neto; el consumo (energía consumida) es el calor añadido a la sustancia de trabajo desde una fuente exterior de calor. El trabajo neto (W) es la diferencia entre el trabajo que sale y el trabajo que entra ya que parte del trabajo que se produce es para alimentar la bomba del sistema (W entra) W = Wsale Wentra La eficiencia de una máquina térmica mide la razón entre lo que obtenemos de la máquina (el trabajo), y lo que le suministramos o pagamos como combustible quemado el calor H, durante cada ciclo. Eficiencia o Rendimiento térmico: Salida deseada Rendimiento Entrada requerida W t neto, sale entra Para un ciclo la ecuación se puede escribir: W neto, sale entra sale t entra entra sale entra t L H 6

7 EM 5: SEGUND LEY DE L Enunciado de Kelvin-Planck Debido a que las máquinas térmicas deben liberar calor en un depósito de baja temperatura para completar su ciclo termodinámico y no pueden convertir todo el calor que reciben en trabajo, Kelvin Planck postula lo siguiente: Es imposible para un dispositivo que funcione en un ciclo recibir calor de un solo depósito y producir una cantidad neta de trabajo. Es decir, para mantenerse en operación una máquina térmica debe intercambiar calor tanto con un sumidero de baja temperatura como con una fuente de alta temperatura. El enunciado de Kelvin Planck también se expresa como: Ninguna máquina térmica puede tener una eficiencia térmica de 00 %, o para que una planta de energía funcione, el fluido de trabajo debe intercambiar calor con el ambiente y con la fuente de temperatura alta. 4. Máquinas de Refrigeración y ombas de Calor La transferencia de calor de acuerdo a la ley cero de la termodinámica se produce de un cuerpo de alta a uno de baja temperatura, sin embargo para transferir calor de un depósito de baja temperatura a uno de alta temperatura es necesario el uso de las máquinas de refrigeración y las bombas de calor. Las Máquinas érmicas, se definen como un sistema cerrado que opera como un dispositivo en un ciclo termodinámico, que requiere trabajo para transferir calor de un cuerpo de baja temperatura hacia un cuerpo de alta temperatura. El fluido de trabajo se denomina refrigerante. a. Máquinas de Refrigeración: Son dispositivos que operan en un ciclo termodinámico que requiere trabajo y que tiene como objetivo transmitir calor de una fuente de baja temperatura a una fuente de temperatura alta. Ejemplo: el aire acondicionado (figura 3) Características: Realiza trabajo (W) sobre el sistema (mediante un compresor). Extrae calor de una región de baja temperatura. Expulsa calor a una región de alta temperatura. 7

8 EM 5: SEGUND LEY DE L Descripción del Ciclo: Figura 3: Máquina de Refrigeración Figura 4: Ciclo simple de Refrigeración En la figura 4 se muestran las etapas de un ciclo simple de refrigeración: i. Evaporador: El refrigerante entra al evaporador donde absorbe calor del espacio refrigerado evaporándose y luego repetir el proceso. ii. Compresor: El refrigerante entra como vapor saturado y se comprime a la presión del condensador iii. Condensador: El refrigerante sale del compresor a una temperatura relativa alta y se enfrían y condensa conforme fluye por el serpentín liberando calor hacia el medio exterior. iv. Válvula: El refrigerante sale del condensador y entra en la válvula donde su presión y su temperatura descienden drásticamente, debido a la estrangulación. b. omba de Calor El objetivo de una bomba de calor es mantener un espacio calentado a alta temperatura, lo cual se consigue al absorber el calor de una fuente de baja temperatura, como el agua o aire frio. (Figura 5) 8

9 EM 5: SEGUND LEY DE L 9 Figura 5: omba de Calor Coeficiente de Operación o Realización (COP) La eficiencia de una máquina de refrigeración y una bomba de calor se expresa como coeficiente de realización u operación y se denota como COP. l igual que una máquina térmica es la relación entre la energía solicitada y la entrada requerida. Para una máquina de refrigeración, la energía solicitada es L el calor transmitido al refrigerante desde el espacio refrigerado El COP R puede ser mayor que la unidad debido a que la cantidad de calor absorbido puede ser mayor que el trabajo de entrada Para una bomba de calor la energía objetivo es H, el calor transmitido desde el refrigerante al cuerpo de alta temperatura entra neto L R W COP, requeridaentradadeseadasalida L H L H L neto L R W COP entra neto H C W COP, requeridaentradadeseadasalida H L L H H neto H C W COP COP C

10 EM 5: SEGUND LEY DE L Enunciado de Clausius: Clausius, postula lo siguiente: Es imposible construir un dispositivo que funcione en un ciclo y cuyo único efecto sea producir la transferencia de calor desde un cuerpo de temperatura más baja a un cuerpo de temperatura más alta. De esta manera, el efecto neto sobre los alrededores implica el consumo de alguna energía en forma de trabajo, además de la transferencia de calor de un cuerpo más frío a uno más caliente. 5. Procesos Reversibles e Irreversibles Un proceso reversible (proceso ideal) es el que puede invertirse sin dejar huella en los alrededores, es decir, que el sistema y los alrededores regresan a su estado original (ver figura 6). Para que esto suceda es necesario que las magnitudes de interacciones de calor para el proceso original sean iguales pero de signo opuesto a las del proceso inverso; por lo cual el proceso debe ser cuasiequilibrio para que todas las propiedades varíen uniformemente y el sistema y los alrededores puedan regresar a su condición original por la misma trayectoria. odos los procesos reales son irreversibles. Por lo que los procesos reversibles son idealizaciones de los procesos reales: no ocurren naturalmente. Los procesos ideales o reversibles establecen los límites teóricos (de eficiencia) que sirven corno modelo para poder compararse con los procesos reales o irreversibles correspondientes. Figura 6: Dos procesos reversible familiares 0

11 EM 5: SEGUND LEY DE L Un proceso irreversible es el que no puede invertirse por sí sólo, de forma espontánea y regresar a su estado original. Existen factores que hacen un proceso irreversible, estos son: Fricción: Cuando dos cuerpos en contacto están obligados a moverse uno respecto del otro, se genera una fuerza de fricción en la interfaz de los cuerpos que se opone al movimiento y se requiere cierto trabajo para superarla. Cuando se invierte la dirección del movimiento la interfaz no se enfriará y el calor no se convertirá de nuevo en trabajo, por lo que el sistema (cuerpos en movimiento) y los alrededores no regresarán a su estado original; por lo tanto es proceso es irreversible. Expansión y Compresión de no Cuasiequilibrio: un sistema puede recuperar su estado original fácilmente si libera energía interna en forma de calor a los alrededores, pero los alrededores no pueden transformar todo ese calor en trabajo porque estaría violando la 2 da Ley de la ermodinámica, por lo que el sistema, pero no él y los alrededores regresan a su estado original, haciendo irreversible el proceso, como se muestra en la figura 7. Figura 7: Procesos de Expansión y Compresión Irreversibles ransferencia de calor a través de una diferencia finita de temperatura: una transferencia de calor se da cuando existe una diferencia de temperatura entre el sistema y los alrededores, a medida que esa diferencia se hace cero el proceso es reversible. Si se tiene un sistema formado por un cuerpo de alta temperatura y otro de baja temperatura, la transferencia se da del cuerpo de alta al de baja temperatura, invertir el proceso requiere trabajo y calor del entorno, lo cual hace irreversible el proceso (ver figura 8).

12 EM 5: SEGUND LEY DE L Figura 8: Proceso de ransferencia de Calor Irreversible Un proceso reversible se puede representar por una sucesión de puntos de equilibrio, es decir, mediante una curva en un diagrama presión-volumen, como se muestra en la figura 9, donde cada punto sobre la curva representa un estado de equilibrio intermedio. Por otro lado, en un proceso irreversible el sistema pasa de un estado inicial a otro final a través de estado intermedios de no equilibrio, los cuales no están caracterizados por una temperatura y presión única en toda su extensión. Por esta razón no es posible representar el proceso irreversible por una curva continua. Figura 9: Diagrama PV para representar proceso reversible e irreversible 6. Ciclo de Carnot Es el ciclo que ocurre entre dos depósitos que se encuentran a la misma temperatura. odos los equipos involucrados trabajan de forma reversible, de forma tal, que el ciclo completo sea reversible. 2

13 EM 5: SEGUND LEY DE L Una máquina térmica que operara en un ciclo ideal reversible entre dos fuentes de calor, sería la máquina más eficiente posible. Una máquina ideal de este tipo, llamada máquina de Carnot, establece un límite superior en la eficiencia de todas las máquinas. Esto significa que el trabajo neto realizado por una sustancia de trabajo llevada a través de un ciclo de Carnot, es el máximo posible para una cantidad dada de calor suministrado a la sustancia de trabajo. Este ciclo es aplicable en sistemas cerrados o de flujo permanente. Consta de cuatro procesos que se ilustran a continuación: Depósito de alta emperatura H L Depósito de alta emperatura Figura 0: Ciclo de Carnot Proceso 2: ransmisión de calor reversible del depósito de alta temperatura al fluido de trabajo Proceso 2 3: Expansión adiabática reversible, en la cual la temperatura del fluido desciende de la temperatura alta ( H ) a la temperatura baja ( L ) Proceso 3 4: ransmisión de calor reversible mediante el cual es expulsado del fluido de trabajo al depósito de baja temperatura Proceso 4 - : Compresión adiabática reversible, en la cual el fluido de trabajo aumenta desde la temperatura baja ( L ) hasta la temperatura alta ( H ) 3

14 EM 5: SEGUND LEY DE L En la figura, se muestra un esquema de los procesos que se llevan a cabo en el Ciclo de Carnot Figura : Esquema de representación del Ciclo de Carnot En las figuras 2 y 3, se muestra el ciclo de Carnot representado en diagramas Presión Volumen y emperatura Entropía, respectivamente ramo D- Compresión adiabática hasta que la temperatura aumente de 2 a. ramo - Expansión isoterma a un punto arbitrario con absorción de calor a la temperatura. ramo -C Expansión adiabática hasta que la temperatura disminuye 2. ramo C-D Compresión isoterma hasta el estado inicial con disipación de calor 2 a la temperatura 2. Figura 2: Representación del ciclo de Carnot en un diagrama P vs. V 4

15 EM 5: SEGUND LEY DE L Figura 3: Representación del ciclo de Carnot en un diagrama vs. S o Postulados de Carnot La segunda ley de la termodinámica impone limitaciones en la operación de dispositivos cíclicos, según lo expresan los enunciados de Kelvin-Planck y Clausius. Una máquina térmica no opera si intercambia calor con un solo depósito, y un refrigerador no puede operar sin una entrada de trabajo neto de una fuente externa. Dos conclusiones valiosas de estos enunciados se refieren a la eficiencia de máquinas térmicas reversibles e irreversibles, y se conocen como los Postulados de Carnot (Figura 4) y se expresan de la siguiente manera:. La eficiencia de una máquina irreversible (real) siempre es menor que la eficiencia de una maquina reversible (ideal) que opera entre los mismos depósitos de temperatura. 2. La eficiencia todas las máquinas térmicas reversibles que operan entre los mismos depósitos son iguales. asados en el segundo postulado de Carnot la eficiencia de una máquina térmica únicamente es una función de la temperatura f, ). térmica ( H L 5

16 EM 5: SEGUND LEY DE L Fuente de lta emperatura a H M M Irrev rev 2 t, t,2 t,2 t, 3 M rev 3 Fuente de aja emperatura a L Figura 4: Postulados de Carnot 7. Escala bsoluta de emperatura La base para una escala absoluta de temperatura, es el hecho de que la eficiencia del Ciclo de Carnot es independiente de la sustancia de trabajo y depende únicamente de la temperatura. De esta manera, Lord Kelvin propone la Escala ermodinámica de emperatura, que establece: H L rev H L Con esta escala, se define el cero absoluto como la temperatura de una fuente en la cual una máquina de Carnot no liberará calor alguno. Esta escala absoluta recibe el nombre de Kelvin y las temperaturas varían entren cero e infinito. Sin embargo, para definir esta escala hace falta definir primeramente la magnitud de un kelvin. En la Conferencia Internacional de Pesas y Medidas efectuada en 954, al punto triple del agua se le asigno el valor de 273,6k; la magnitud de un kelvin entonces es /273,6 del intervalo de temperatura entre el cero absoluto y la temperatura del punto triple del agua. Las magnitudes de las unidades de temperatura sobre las escalas Kelvin y Celsius son idénticas (K C). Las temperaturas es estas dos escalas difieren por una constante de 273,5: ( C) = (K) 273,5 6

17 EM 5: SEGUND LEY DE L 8. Eficiencia de Carnot La eficiencia térmica de cualquier maquina térmica, reversible o irreversible, viene dada por: Donde H es el calor transferido a la máquina térmica desde un depósito de alta temperatura a H, y L es el calor desechado en un depósito de baja temperatura a L. En máquinas térmicas reversibles, el cociente de transferencia de calor en la relación anterior puede ser sustituido por el cociente de temperaturas absolutas de los depósitos. En este caso, la eficiencia de una máquina de Carnot, o de cualquier máquina térmica reversible, se expresa como: Esta relación se conoce como Eficiencia de Carnot, ya que la máquina térmica de Carnot es la máquina térmica reversible más conocida. Ésta es la eficiencia más alta que puede tener una máquina térmica que opere entre los dos depósitos de energía térmica L y H. odas las máquinas térmicas irreversibles (reales) que operen entre estos límites de temperatura ( L y H ) tendrán eficiencias más bajas. Una máquina térmica real no puede alcanzar este valor de eficiencia teórica máxima porque es imposible eliminar por completo todas las irreversibilidades asociadas al ciclo real. Las eficiencias térmicas de máquinas térmicas reales y reversibles que operan entre los mismos límites de temperatura se comparan de la siguiente manera: M,rev Máquina érmica Irreversible M M,rev Máquina érmica Reversible M,rev Máquina érmica Imposible 7

18 EM 5: SEGUND LEY DE L 9. Coeficientes de Operación de Carnot El coeficiente de operación de cualquier refrigerador o bomba de calor, reversible o irreversible, viene dado por: COP R H L COP C L H Donde L es la cantidad de calor absorbida de un medio de baja temperatura, y H es la cantidad de calor desechada en un medio de alta temperatura. Los COP de todos los refrigeradores o bombas de calor reversibles (como los de Carnot) se determinan al sustituir los cocientes de transferencia de calor en las relaciones anteriores por las relaciones de temperaturas absolutas de los medios de alta y de baja temperatura. En los COP para refrigeradores y bombas de calor reversibles, quedan de la siguiente manera: COP R, rev H L COP C, rev ' L H Estos son los coeficientes de calor más altos que pueden tener un refrigerador o una bomba de calor que operan entre los límites de temperatura L y H. odos los refrigeradores o bombas de calor reales que operen entre esos límites de temperatura ( L y H ) tendrán COP inferiores. Los coeficientes de operación de refrigeradores y bombas de calor reales y reversibles (como el de Carnot) que operen entre los mismos límites de temperatura, pueden compararse de la siguiente manera: COP REF,C,rev M. Irreversible COP REF,C COP REF,C,rev M. Reversible COP REF,C,rev M. Imposible 8

19 EM 5: SEGUND LEY DE L Los COP tanto de refrigeradores como de bombas de calor disminuyen conforme L disminuye, es decir, requiere más trabajo absorber calor de un medio de temperatura menor. Cuando la temperatura del espacio refrigerado se aproxima a cero la cantidad de trabajo requerido para producir una cantidad finita de refrigeración tiende a infinito y el COP R se aproxima a cero. 0. Ejercicios Resueltos Ejercicio Nº Una máquina térmica reversible opera entre un depósito de calor a temperatura y otro depósito a temperatura 500 R. En régimen estacionario, la máquina desarrolla una tasa de trabajo neto de 54 hp mientras cede 950 tu/min de energía por transferencia de calor al depósito de calor de baja temperatura. Determínese a) en R, b) la eficiencia máxima de la máquina térmica. SOLUCIÓN: nálisis: La resolución de este problema comenzará por dibujar un esquema de la máquina térmica en donde el depósito de temperatura necesariamente será llamado el depósito que suministrará calor. La configuración sería: M. H L W neta 54 hp 950 tu/min 500 R 9

20 EM 5: SEGUND LEY DE L Resolviendo la máquina : W neta H L Entonces: despejando tu 42.4 H 54hp min hp tu 950 min tu min W H neta tu (54hp)(42.4 / hp) min tu min hora bien para la máquina reversible la eficiencia puede determinarse por la relación: Sustituyendo 500R 705.3R Comentario final: Observe que las ecuaciones están diseñadas considerando solo valores absolutos de los parámetros que por ende deben ser siempre positivos. Ejercicio N 2 Dos máquinas térmicas de Carnot están colocadas en serie. La primera máquina recibe calor a 000 K y descarga calor a un depósito que está a temperatura. La segunda máquina recibe calor que descarga la primera máquina y a su vez suministra calor a un depósito a 280 K. Calcúlese la temperatura, en grados centígrados, para la situación en que: ) los 20

21 EM 5: SEGUND LEY DE L trabajos de las dos máquinas sean iguales. ) las eficiencias de las dos máquinas sean iguales. Solución: Hagamos la representación grafica de ambas máquinas: 000 K H L L=H= H W 280 K L W Parte : Si W =W W H y W H Entonces: H H () Pero, las eficiencias en función de las temperaturas son: L H - H 2

22 EM 5: SEGUND LEY DE L 22 L H L - H L H H - H L L L H H - L L H H - L H L H L H L H Ó L H H - Sustituyendo estas dos últimas ecuaciones en (): éngase presente que: sí que: Reacomodando: (.a) hora bien para una máquina térmica de Carnot, la relación de los calores puede ser sustituida por la relación de temperaturas. su vez, recuérdese que: Sustituyendo esto último en (.a):

23 EM 5: SEGUND LEY DE L Desarrollando las operaciones indicadas: H L H L La que aparece en ambos denominadores se puede cancelar, así que: H L Despejando : H L ( ) K 640K 367C 2 2 Parte : Si L H - H Igualándolas: L H - L Despejando : - H L 2 H L 23

24 EM 5: SEGUND LEY DE L Sustituyendo valores: ( 000K 280K) K C Ejercicio N 3 Para el ciclo de potencia que se muestra y para las condiciones indicadas: a) Calcule la eficiencia máxima o límite del ciclo. b) Calcule la eficiencia real del ciclo. DEPÓSIO DE CLOR H 5 omba H Caldera 2 urbina W 4 Condensador 3 L DEPÓSIO DE CLOR L abla de datos Punto # 300 psia 600 F h = 34.7 tu/lbm Vapor sobrecalentado Punto # psia 550 F h = tu/lbm Vapor sobrecalentado Punto # 3 2 psia X = 0.93 h = tu/lbm Mezcla Punto # 4.9 psia 0 F h = tu/lbm Líquido comprimido Punto # psia Líquido comprimido rabajo de entrada a la bomba = 3 tu/lbm 24

25 EM 5: SEGUND LEY DE L Solución: Parte a: El límite máximo de eficiencia de máquina térmica, quedará determinado por el cálculo de la eficiencia de Carnot, considerando la temperatura máxima y mínima del ciclo. max Carnot L H - (0 460)R (Resp.) ( ) R Parte b: La eficiencia real de la máquina térmica se obtendrá a partir de la definición general de eficiencia: W neto real H Debido a que la masa se desconoce esta ecuación puede manejarse con el trabajo y el calor por unidad de masa, así: real w neto qh El trabajo neto viene dado por: wneto wturbina wbomba El trabajo de la turbina se obtendrá tomando un volumen de control que solo involucre la turbina y aplicando la ecuación de Primera Ley, en estado estable: 2 2 V gz V gz ent ent sal sal m ( hent ) m ( hsal ) W 2gc gc 2gc gc Consideraciones: ) Despreciaremos los términos de energía cinética y potencial. 2) El calor en una turbina, generalmente, es despreciable. sí que: W turb m ( hent hsal ) 25

26 EM 5: SEGUND LEY DE L Como la masa que circula por la máquina es desconocida, podemos calcular el trabajo por unidad de masa, pasando a dividir la masa al miembro izquierdo: W turb m hent hsal tu wturb hent hsal w h2 h3 ( ) Lbm 244 tu Lbm Entonces el trabajo neto será: tu tu tu w neto 244 ( 3 ) 24 Lbm Lbm Lbm El calor alto, es el calor que se suministra en la caldera, el mismo se obtendrá tomando como un volumen de control uno que involucre solamente a este equipo y aplicando la ecuación de Primera Ley, en estado estable: 2 2 V gz V gz ent ent sal sal m ( hent ) m ( hsal ) W 2gc gc 2gc gc Consideraciones: ) Despreciaremos los términos de energía cinética y potencial. 2) El trabajo en este equipo es nulo. sí que: cald m ( hsal hent ) l igual que con el trabajo: cald m hsal hent qcald qh h h 5 26

27 EM 5: SEGUND LEY DE L En esta última ecuación h 5 es desconocida, por lo que la misma se obtendrá tomando como volumen de control uno que involucre solamente a la bomba y aplicando la ecuación de Primera Ley en estado estable. Con las mismas consideraciones que para el caso de la turbina: W bomba m ( hent hsal ) wbomba h4 h5 Despejando h 5 : h 5 h 4 w bomba Sustituyendo: tu h 5 [77.9 ( 3)] Lbm 80.9 tu Lbm Entonces: tu q cald qh ( ) Lbm tu Lbm Finalmente la eficiencia real es: real w neto qh tu 24 Lbm tu Lbm 0.95 (Resp.). Ejercicios Propuestos ) Una máquina térmica reversible intercambia calor con tres depósitos y produce trabajo por la cantidad de 700 kj. El depósito tiene una temperatura de 500 K y proporciona 200 kj a la máquina. Si los depósitos y C tienen temperaturas de 400 K y 300 K, respectivamente, ué cantidad de calor en kj intercambia con cada uno de los depósitos? Y Cuál es la dirección de los intercambios de calor? 27

28 EM 5: SEGUND LEY DE L 2) Una bomba de calor opera con un ciclo de Carnot inverso (calentador), toma calor de una fuente a baja temperatura de -5 C y descarga calor al sumidero a 26 C. Si la electricidad cuesta 5.9 centavos por kw-h, determínese el costo de operación al suministrar a una casa kj/h. 3) Una maquina térmica de Carnot que opera entre los niveles de 340 F y 80 F, se surte con 500 tu/min. Un 60 % del trabajo se utiliza para accionar una bomba de calor que descarga al ambiente a 80 F. Si la bomba de calor extrae 050 tu/min de un depósito de baja temperatura, determínese: a) el calor total que se descarga al ambiente por parte de los dos dispositivos, b) la temperatura del depósito de donde la bomba sustrae calor. 4) Una maquina térmica de Carnot se utiliza para accionar un refrigerador. La maquina térmica recibe a y descarga 2 a 2. El refrigerador toma una cantidad de calor 3 de una fuente 3 y descarga una gran cantidad de calor 4 a 4. Desarróllese una expresión para la relación 3 / en función de las diferentes temperaturas de los depósitos de calor. 5) Determínese la eficiencia (real) de la siguiente planta de vapor simple, de acuerdo a los datos presentados: Cald Gen. de Vapor (Caldera) Econ Economizador (precalentador) omba urbina W urb W Condensador Cond Flujo de Vapor = kg/h Potencia de la bomba = 400 hp Diámetros de las tuberías: Del generador de vapor a la turbina: 20.3 cm Del Condensador al generador de vapor: 7.6 cm Velocidad de salida de la turbina: 83 m/s 28

29 EM 5: SEGUND LEY DE L Condiciones de operación: Entrada a la turbina Salida de la turbina y entrada al condensador Salida del condensador y entrada a la bomba Salida de la bomba 5.5. MPa, 500 C, h=3428 kj/kg, v= m 3 /kg kpa, X=0.92, h= kj/kg, v=2.4 m 3 /kg 0 kpa, 42 C, h=75.92 kj/kg, v= m 3 /kg 6 MPa Entrada al economizador 5.9 MPa, 45 C, h=88.45 kj/kg, v= kj/kg Salida del economizador y entrada al generador de vapor 5.8 MPa, 70 C, h=79.22 kj/kg, v= m 3 /kg Salida del generador de Vapor 5.6 MPa, 50 C, h= kj/kg, v= m 3 /kg 6) Un ciclo de Carnot de bomba térmica (refrigerador), tiene el amoniaco como sustancia de trabajo. El calor se transmite desde el amoniaco a 00 F y durante este proceso el amoniaco cambia de vapor saturado a liquido saturado. El calor se transmite a la sustancia de trabajo a 0 F. a) Hágase un bosquejo de este ciclo en un diagrama -s. b) Si la masa que circula por el equipo es lbm/s, determine el calor que absorbe el dispositivo y el trabajo de entrada del mismo (use la ecuación de Primera Ley). c) Calcule el coeficiente de operación, usando la formula general y la formula de Carnot. Compare y comente. d) Cuál es la calidad al comenzar y terminar el proceso isotérmico? 7) Un ciclo de Refrigeración (no de Carnot) tiene las siguientes condiciones de operación: Entrada al compresor 20 psia, Vapor saturado Salida del compresor (isoentropico: S ent =S sal ) Salida del condensador Salida de la válvula (isoentálpica: h ent =h sal ) 20 psia (vapor sobrecalentado) 20 psia, Liquido Saturado 20 psia (mezcla) 29

30 EM 5: SEGUND LEY DE L Si el flujo de masa es 0. lbm/s, determine: a) La tasa de remoción de calor del espacio refrigerado. b) La potencia de entrada al compresor. c) El calor expulsado al medio ambiente. d) El coeficiente (real) de operación (COP). e) Grafique este ciclo en e diagrama P-h anexo. (Sugerencia: lea los valores de entalpia necesarios en el mismo diagrama). f) Si este ciclo fuera de Carnot, cual seria el COP del mismo. cond Condensador Valvula de Estrangulamiento Comp. W Evaporador Evap 8) Un ciclo de potencia de Carnot cuya sustancia de trabajo es agua, opera entre las temperaturas de 47 C y 207 C. Determine a partir del diagrama -s anexo: a) La presión de operación de la caldera y del condensador. b) La calidad de entrada y salida del condensador. c) El trabajo por unidad de masa producido en la turbina. d) El calor por unidad de masa suministrado en la caldera. e) El calor por unidad de masa cedido por el condensador. 2. Referencias ibliográficas Van Wylen, Gordon J. & Sonntag, Richard E. Fundamentos de ermodinámica. Editorial Limusa. México págs. López rango, Diego. ermodinámica. Editorial Escuela Colombiana de Ingeniería. Segunda Edición. Colombia págs. Çengel, Yunus. & oles, Michael. ermodinámica. Editorial McGraw- Hill. Cuarta Edición. México págs. Wark, Kenneth & Richards, Donald E. ermodinámica. Editorial McGraw- Hill. Sexta Edición. México págs. 30

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Sistemas de refrigeración: compresión y absorción

Sistemas de refrigeración: compresión y absorción Sistemas de refrigeración: compresión y absorción La refrigeración es el proceso de producir frío, en realidad extraer calor. Para producir frío lo que se hace es transportar calor de un lugar a otro.

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica IES Antonio Glez Glez Principios de máquinas Página 1 F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9562 EQUIPOS E INSTALACIONES TÉRMICAS E HIDRAULICAS TOPICO II NIVEL 05 EXPERIENCIA E-952 TURBINA

Más detalles

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones

Más detalles

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA

EQUIPOS PARA LA GENERACIÓN DE VAPOR Y POTENCIA Diagrama simplificado de los equipos componentes de una central termo-eléctrica a vapor Caldera (Acuotubular): Quemadores y cámara de combustión (hogar): según el tipo de combustible o fuente de energía

Más detalles

Carrera: MCT 0540. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería

Carrera: MCT 0540. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Termodinámica Ingeniería Mecánica MCT 0540 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración

Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Termotecnia y Mecánica de Fluidos (DMN) Mecánica de Fluidos y Termodinámica (ITN) TD. T6.- Ciclos de Refrigeración Las trasparencias son el material de apoyo del profesor para impartir la clase. No son

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Capítulo 8. Termodinámica

Capítulo 8. Termodinámica Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

FUNDAMENTOS DE REFRIGERACION

FUNDAMENTOS DE REFRIGERACION FUNDAMENTOS DE REFRIGERACION PRESENTACION EN ESPAÑOL Mayo 2010 Renato C. OLvera Index ESTADOS DE LA MATERIA LOS DIFERENTES ESTADOS DE LA MATERIA SON MANIFESTACIONES DE LA CANTIDAD DE ENERGIA QUE DICHA

Más detalles

Los principios de Carnot son:

Los principios de Carnot son: IV.- Principios de Carnot La segunda ley de termodinámica pone límites en la operación los ciclos. Una máquina térmica no puede operar intercambiando calor con un reservorio simple, y un refrigerador no

Más detalles

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen

Más detalles

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS

CICLOS DE POTENCIAS DE GAS AIRE CERRADOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA CICLOS DE POTENCIAS DE

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURADE TERMODINÁMICA 1. Competencias Plantear y solucionar problemas con base en los principios y

Más detalles

Clase 2: Sustancias puras

Clase 2: Sustancias puras Teórico Física Térmica 2012 02 de Marzo de 2012 Agenda... 1 Referencias 2 Sustancias puras Intro Propiedades independientes 3 Fases Definiciones Cambios (o transiciones) de fase Mezcla Superficies P-v-T

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

Guía Teórica Experiencia Motor Stirling

Guía Teórica Experiencia Motor Stirling Universidad de Chile Escuela de Verano 2009 Curso de Energía Renovable Guía Teórica Experiencia Motor Stirling Escrito por: Diego Huarapil Enero 2009 Introducción El Motor Stirling es un motor térmico,

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

UTN Facultad Regional La Plata Integración III

UTN Facultad Regional La Plata Integración III Balance de energía El concepto de balance de energía macroscópico, es similar al concepto del balance de materia macroscópico. Acumulación Transferencia Transferencia Generación Consumo de energía de energía

Más detalles

EJERCICIOS DE TERMOQUÍMICA

EJERCICIOS DE TERMOQUÍMICA EJERCICIOS DE TERMOQUÍMICA En los exámenes de Acceso a la Universidad se proponen una serie de cuestiones (más teóricas) y problemas (prácticos) para resolver. En estos apuntes vamos a resolver ambos tipos

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Estudiar el fenómeno de trasferencia de calor en los procesos de fundido y evaporación del agua. Calcular el calor latente de vaporización del agua.

Estudiar el fenómeno de trasferencia de calor en los procesos de fundido y evaporación del agua. Calcular el calor latente de vaporización del agua. CAMBIOS DE FASE. OBJETIVO: Estudiar el fenómeno de trasferencia de calor en los procesos de fundido y evaporación del agua. Calcular el calor latente de vaporización del agua. INTRODUCCION. Los procesos

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

Propiedades de sustancias

Propiedades de sustancias Propiedades de sustancias Objetivos Entender conceptos clave... como fase y sustancia pura, principio de estado para sistemas simples compresibles, superfice p-v-t, temperatura de saturación y presión

Más detalles

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos.

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos. Física Forestales. Examen A. 7-0-0 Instrucciones. La parte de teoría se contestará en primer lugar utilizando la hoja de color, sin consultar libros ni apuntes, durante el tiempo que el estudiante considere

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Cantidades fundamentales Cantidades básicas y unidaded Unidad I: ropiedades y Leyes de la ermodinámica Cantidades fundamentales ropiedades de estado Función de estado y ecuación de

Más detalles

Ciclos de Potencia Curso 2007. Ejercicios

Ciclos de Potencia Curso 2007. Ejercicios Ejercicios Cuando no se indica otra cosa, los dispositivos y ciclos se asumen ideales. En todos los casos, bosqueje los ciclos y realice los diagramas apropiados. Se indican las respuestas para que controle

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades.

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. UNIDAD 5 TERMODINÁMICA - HIDRAULICA TERMODINÁMICA La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. ENERGIA TERMICA: Todos los cuerpos se componen de pequeñas

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue

Datos ELV, Fracciones molares de n-c 6 H 14, 1 atm x (líquido) 0,0 0,1 0,3 0,5 0,55 0,7 1,0 y (vapor) 0,0 0,36 0,70 0,85 0,90 0,95 1,0 Sigue Método del polo de operación (I) - Destilación Problemas PROBLEMA 1*. Cierta cantidad de una mezcla de vapor de alcohol etílico y agua, 50 % molar, a una temperatura de 190 ºF, se enfría hasta su punto

Más detalles

TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS. Técnica Diseñada para la regulación dela temperatura

TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS. Técnica Diseñada para la regulación dela temperatura TECNICAS DE ENFRIAMIENTO DE EFLUENTES CON ALTAS TEMPERATURAS Técnica Diseñada para la regulación dela temperatura DESCRIPCIÓN Las torres de enfriamiento son equipos diseñados para disminuir la temperatura

Más detalles

Capítulo 17. Temperatura. t(h) = 100 h h 0

Capítulo 17. Temperatura. t(h) = 100 h h 0 Capítulo 17 Temperatura t(h) = 100 h h 0 h 1 00 h 0 rincipio cero de la termodinámica. Temperatura empírica. La temperatura empírica de un sistema en equilibrio termodinámico se puede asignar mediante

Más detalles

TEMA 13: Termodinámica

TEMA 13: Termodinámica QUÍMICA I TEMA 13: Termodinámica Tecnólogo Minero Temario ü Procesos espontáneos ü Entropía ü Segunda Ley de la Termodinámica ü Energía libre de Gibbs ü Energía libre y equilibrio químico Procesos espontáneos

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO

AHORRO DE ENERGÍA EN UNA CALDERA UTILIZANDO AHORRO DE ENERÍA EN UNA CALDERA UTILIZANDO ECONOMIZADORES Javier Armijo C., ilberto Salas C. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos Resumen En el presente trabajo

Más detalles

TERMODINÁMICA. La TERMODINÁMICA estudia la energía y sus transformaciones

TERMODINÁMICA. La TERMODINÁMICA estudia la energía y sus transformaciones TERMODINÁMICA La TERMODINÁMICA estudia la energía y sus transformaciones SISTEMA Y AMBIENTE Denominamos SISTEMA a una porción del espacio que aislamos de su entorno para simplificar su estudio y denominamos

Más detalles

INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO

INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO I. DATOS GENERALES: INGENIERÍA AERONÁUTICA TERMODINÁMICA SÍLABO 1.1 ASIGNATURA : Termodinámica 1.2 CÓDIGO : 3301-33212 1.3 PRE-REQUISITO : 3301-33108 y 3301-33111 1.4 HORAS SEMANALES : 05 1.4.1 TEORÍA

Más detalles

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y

TEMPERATURA DILATACIÓN. 9. En la escala Celsius una temperatura varía en 45 C. Cuánto variará en la escala Kelvin y TEMPERATURA 1. A cuántos grados kelvin equivalen 50 grados centígrados? a) 303 b) 353 c) 453 d) 253 2. Si un cuerpo presenta una temperatura de 20 C Cuál será la lectura de esta en la escala Fahrenheit?

Más detalles

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR:

PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE FUGA DE CALOR: ciclo doble / simple etapa ORC con un innovador motor rotativo termovolumetrico patentada de alta eficiencia 0.Resumen Se presentan algunos resultados

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS.

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA: ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA DE TRABAJO: ES LA PORCIÓN DE MATERIA QUE ACTUANDO EN UN SISTEMA ES CAPAZ DE ABSORBER O CEDER ENERGÍA. EN ESE PROCESO

Más detalles

IER. Curso Pre-Congreso ISES-ANES Universidad del Caribe 31 de octubre al 2 de noviembre de 2013 Cancún, Quintana Roo, México

IER. Curso Pre-Congreso ISES-ANES Universidad del Caribe 31 de octubre al 2 de noviembre de 2013 Cancún, Quintana Roo, México IR Curso Pre-Congreso ISS-ANS Universidad del Caribe 31 de octubre al 2 de noviembre de 2013 Cancún, uintana Roo, México Cálculo de una instalación frigorífica por absorción NH 3 H 2 O para la producción

Más detalles

EFICIENCIA EN SISTEMAS TÉRMICOS

EFICIENCIA EN SISTEMAS TÉRMICOS EFICIENCIA EN SISTEMAS TÉRMICOS Juan Ricardo Vidal medina, Dr. Ing. Universidad Autónoma de occidente Departamento de energética y mecánica Santiago de Cali, 2013 Energía consumida en forma improductiva

Más detalles

EXPOINDUSTRIAL 2015 Cali Tecnología y Soluciones para mejorar la Eficiencia en Generación de Energía. Ciclo de Vapor con Ciclo Regenerativo

EXPOINDUSTRIAL 2015 Cali Tecnología y Soluciones para mejorar la Eficiencia en Generación de Energía. Ciclo de Vapor con Ciclo Regenerativo EXPOINDUSTRIAL 2015 Cali Tecnología y Soluciones para mejorar la Eficiencia en Generación de Energía Ciclo de Vapor con Ciclo Regenerativo Mayo de 2015 UNIDADES DE NEGÓGIO SERTÃOZINHO/SP PARQUE INDUSTRIAL

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

La bombilla consume una potencia de 60 W y sabemos que la potencia viene dada por la ecuación:

La bombilla consume una potencia de 60 W y sabemos que la potencia viene dada por la ecuación: Problema resuelto Nº 1 (Fuente Enunciado: IES VICTORIA KENT.ACL. : A. Zaragoza López) 1. Una bombilla lleva la inscripción 60 W, 220 V. Calcula: a) La intensidad de la corriente que circula por ella; la

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O Calor y temperatura 1ª) Qué es la energía térmica? La energía térmica es la energía que posee un cuerpo (o un sistema material) debido al movimiento

Más detalles

Congeneración Aplicada a Generadores

Congeneración Aplicada a Generadores Congeneración Aplicada a Generadores En el presente artículo, se analizan las interesantes posibilidades de implementar sistemas de cogeneración, que poseen todas aquellas empresas que cuenten con generadores

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA DEPARTAMENTO DE ENERGETICA UNIDAD CURRICULAR: LAB. CONVERSION DE ENERGIA PRACTICA N 1 CICLO RANKINE SIMPLE AUTOR ING. CARACCIOLO

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p)

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) Unidad 3 OPCIÓN A 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) La ecuación que relaciona Q p y Q v es: Q p =

Más detalles

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo.

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. N 2 g 3 H 2 g 2 NH 3 g 2 NH 3 g N 2 g 3 H 2 g concentración H 2 N 2 NH 3 concentración NH 3 H 2

Más detalles

TECNOLOGIAS DE REFRIGERACIÓN ACTIVADAS TÉRMICAMENTE

TECNOLOGIAS DE REFRIGERACIÓN ACTIVADAS TÉRMICAMENTE De entre las tecnologías de refrigeración con activación térmica destaca la por ser - ampliamente conocida y estar desarrollada - utilizada en todo tipo de aplicaciones refrigeración y aire acondicionado

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión LOS GASES Un gas es una porción de materia cuya forma y volumen son variables ya que se adaptan a la del recipiente que lo contiene, el cual ocupan totalmente. LEYES DE LOS GASES Ley de Boyle Robert Boyle,

Más detalles

Práctico de Física Térmica 2 da Parte

Práctico de Física Térmica 2 da Parte Enunciados Lista 4 Práctico de Física Térmica 2 da Parte Nota: Los ejercicios 6.16, 6.22 y 6.34 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 6.12* Se propone calentar una casa en

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA PLANTAS DE VAPOR ING. GILBERTO ENRIQUE MORALES BAIZA AUX.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA PLANTAS DE VAPOR ING. GILBERTO ENRIQUE MORALES BAIZA AUX. UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA PLANTAS DE VAPOR ING. GILBERTO ENRIQUE MORALES BAIZA AUX. DIEGO NÁJERA Nombre Carnét José Ovidio Brenda Amarylys Cermeño Dávila 2006-10930

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

Problemas de Termotecnia

Problemas de Termotecnia Problemas de Termotecnia 2 o curso de Grado de Ingeniería en Explotación de Minas y Recursos Energéticos Profesor Gabriel López Rodríguez (Área de Máquinas y Motores Térmicos) Curso 2011/2012 Tema 2: Primer

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL)

Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL) Sistemas de vacío de múltiples etapas a chorro de vapor operando en circuito cerrado alcalino (Alkaline Closed Loop - ACL) Sistemas de vacío de múltiples etapas a chorro de vapor Los sistemas de vacío

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

CALOR Y TEMPERATURA CALOR

CALOR Y TEMPERATURA CALOR CALOR Y TEMPERATURA El calor y la temperatura no son sinónimos, podemos decir que están estrictamente relacionados ya que la temperatura puede determinarse por la cantidad de calor acumulado. El calor

Más detalles

LAS MÁQUINAS DE ABSORCIÓN

LAS MÁQUINAS DE ABSORCIÓN INTRODUCCIÓN LAS MÁQUINAS DE ABSORCIÓN INTRODUCCION MODOS DE FUNCIONAMIENTO Las máquinas frigoríficas de absorción se integran dentro del mismo grupo de producción de frío que las convencionales de compresión,

Más detalles

CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO

CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO 50 CAPÍTULO 3 EL MÉTODO DE ANÁLISIS EXERGÉTICO En este capítulo se desarrolla la metodología de análisis, cuya aplicación a una central termoeléctrica particular y el análisis de los resultados se llevan

Más detalles

La energía interna. Nombre Curso Fecha

La energía interna. Nombre Curso Fecha Ciencias de la Naturaleza 2.º ESO Unidad 10 Ficha 1 La energía interna La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas que la componen.

Más detalles

EFICIENCIA EN PLANTAS DE TÉRMICAS

EFICIENCIA EN PLANTAS DE TÉRMICAS EFICIENCIA EN PLANTAS DE TÉRMICAS En el presente artículo se describen las alternativas de mejoramiento de eficiencia y reducción de costos, asociados a la generación de vapor. 1. Antecedentes Con el fin

Más detalles

UNIDAD 8 INECUACIONES. Objetivo general.

UNIDAD 8 INECUACIONES. Objetivo general. 8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en

Más detalles

Tema 2. Segundo Principio de la Termodinámica

Tema 2. Segundo Principio de la Termodinámica ema Segundo Principio de la ermodinámica EMA SEGUNDO PRINCIPIO DE LA ERMODINÁMICA. ESPONANEIDAD. SEGUNDO PRINCIPIO DE LA ERMODINÁMICA 3. ENROPÍA 4. ECUACIÓN FUNDAMENAL DE LA ERMODINÁMICA 5. DEERMINACIÓN

Más detalles

DESALACIÓN MEDIANTE COMPRESION DE VAPOR

DESALACIÓN MEDIANTE COMPRESION DE VAPOR DESALACIÓN MEDIANTE COMPRESION DE VAPOR Ecoagua Ingenieros Avda. Manoteras, 38, C-314 28050-Madrid (Spain) Tel.: +(34) 913 923 562 TEC-004 Edition: 01 Date: 18/04/09 Page: 1 de 5 1. DESCRIPCION DEL PROCESO

Más detalles

Sustitutos del R-12. Compuesto Puro. Mezcla Zeotropica. Mezcla Zeotropica. Mezcla Zeotropica

Sustitutos del R-12. Compuesto Puro. Mezcla Zeotropica. Mezcla Zeotropica. Mezcla Zeotropica Sustitutos del R-12 Mezcla Zeotropica Compuesto Puro Mezcla Zeotropica Mezcla Zeotropica Lubrican con alquilbenceno Se cargan en fase líquida Se puede actualizar De R-12 a cualquiera de las mezclas Sustitución

Más detalles

Condensación por aire Serie R Enfriadora con compresor de tornillo

Condensación por aire Serie R Enfriadora con compresor de tornillo Condensación por aire Serie R Enfriadora con compresor de tornillo Modelo RTAD 085-100-115-125-145-150-165-180 270 a 630 kw (50 Hz) Versión con recuperación de calor Unidades fabricadas para los mercados

Más detalles

Operaciones Básicas de Transferencia de Materia Problemas Tema 6

Operaciones Básicas de Transferencia de Materia Problemas Tema 6 1º.- En una torre de relleno, se va a absorber acetona de una corriente de aire. La sección de la torre es de 0.186 m 2, la temperatura de trabajo es 293 K y la presión total es de 101.32 kpa. La corriente

Más detalles

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4. 1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.- Calor de reacción. Ley de Hess. 5.- Entalpías estándar de formación.

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica MDSS/vcp

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica MDSS/vcp ASIGNATURA: LABORATORIO GENERAL II 15030 EXPERIENCIA: C226 BALANCE TERMICO DE UNA CALDERA CON SISTEMAS INTEGRADOS CARRERA: INGENIERIA CIVIL EN MECANICA NIVEL: 11 OBJETIVO GENERAL: Observar en terreno la

Más detalles

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia...

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia... Page 1 of 6 Departamento: Dpto Cs. Agua y Medio Ambiente Nombre del curso: INGENIERÍA DE SERVICIOS Clave: 004390 Academia a la que pertenece: ACADEMIA DE INGENIERÍA QUÍMICA APLICADA EN PROCESOS Requisitos:

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

Energía y metabolismo

Energía y metabolismo Energía y metabolismo Sesión 17 Introducción a la Biología Prof. Nelson A. Lagos Los sistemas vivos son abiertos y requieren energía para mantenerse La energía es la capacidad de hacer trabajo. Cinético

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

UNIVERSIDAD NACIONAL DEL SUR 1

UNIVERSIDAD NACIONAL DEL SUR 1 UNIVERSIDAD NACIONAL DEL SUR 1 PROGRAMA DE: Termodinámica Química para Ingeniería CODIGO: 6479 H O R A S D E C L A S E P R O F E S O R R E S P O N S A B L E T E O R I C A S P R A C T I C A S Dra. Susana

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste

Más detalles

Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química

Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química Lección 7 Ecuaciones diferenciales de primer orden: Aplicaciones a la Ingeniería Química 1 Ecuaciones Diferenciales en Cinética Química Ecuación estequiométrica: o a A b B = p P q Q 0 = a A b B... p P

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada S.L.)

ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada S.L.) : nuevo refrigerante sustitutivo del R-22 con bajo PCA (GWP). Comparación de rendimiento con seis refrigerantes ya existentes ESTUDIO REALIZADO POR DIRA S.L. (Desenvolupament, Investigació i Recerca Aplicada

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas I: ondas y sus características SGUICES001CB32-A16V1 Ítem Alternativa Habilidad 1 B Reconocimiento 2 D Reconocimiento 3 E Comprensión 4 C Comprensión 5 A Aplicación

Más detalles

DISEÑO DE SISTEMAS DE COGENERACIÓN

DISEÑO DE SISTEMAS DE COGENERACIÓN DISEÑO DE SISTEMAS DE COGENERACIÓN M. I. Liborio Huante Pérez Gerencia de Turbomaquinaria Junio, 2016 1. Que es la cogeneración 2. Diferencias respecto al ciclo convencional 3. Equipos que lo integran

Más detalles

CICLOS DE REFRIGERACION COMBINADOS CO2-AMONIACO. San José, Costa Rica Septiembre 2016

CICLOS DE REFRIGERACION COMBINADOS CO2-AMONIACO. San José, Costa Rica Septiembre 2016 CICLOS DE REFRIGERACION COMBINADOS CO2-AMONIACO San José, Costa Rica Septiembre 2016 TEMARIO Breve reseña histórica del CO2. Características del CO2. Que es un sistema subcrítico y un transcrítico? Aplicaciones

Más detalles