Algebra de Boole. Introducción a los Sistemas Lógicos y Digitales 2018

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Algebra de Boole. Introducción a los Sistemas Lógicos y Digitales 2018"

Transcripción

1 Introducción a los Sistemas Lógicos y Digitales 2018 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales

2 Los sistemas digitales emplean generalmente señales que pueden adoptar dos estados bien diferenciados donde (en teoría) pueden ser referenciados a dos niveles de alguna condición física tal como corriente ó tensión (circuitos integrados), campo eléctrico (memorias EEPROM, FLSH), campo magnético (diskettes, cintas magnéticas), condición óptica (CD, DVD), etc.. Consecuentemente es posible representar datos binarios e interrelacionarlos a través de algún grupo de reglas. El LGEBR DE BOOLE es un formalismo que conlleva a la creación de FUNCIONES LÓGICS donde las mismas relacionan una variable binaria de salida con una o mas de entrada. Dichas funciones se basan en una serie de postulados y teoremas que imponen las reglas de juego entre dichas variables.

3 Operadores Lógicos: sí como los operadores matemáticos (+, -, x,/, etc.) los operadores lógicos son los que interrelacionan a las variables lógicas de entrada entre sí. Estos son: ND cuyo símbolo es ó ó & OR cuyo símbolo es + ó ó # NOT cuyo símbolo es ó / ó! EJEMPLOS: B = B = & B = B (sólo hay una separación entre variables) C + D = C D = C # D = / =! Con combinaciones entre estos 3 operadores se pueden implementar cualquier función lógica posible.

4 CONECTIVIDDES: Dada una serie de variables lógicas (que generalmente se designan con letras), existe un número finito de funciones diferentes (conectividades) que pueden obtenerse. La cantidad de CONECTIVIDDES se puede calcular mediante la expresión: 2 2 n donde n es el número de variables lógicas de entrada a la función EJEMPLOS: Si hay una sola variable El nº de conectividades es 4. Si hay una dos variables El nº de conectividades es 16. Si hay una tres variables El nº de conectividades es 48. etc.

5 CONECTIVIDDES DE UN SOL VRILE Son 4: F=0 (ó Falso), F=1 (ó Verdadero), F=, F=Ā ó NOT (negación de : Si =0 F=1 y viceversa). CONECTIVIDDES DE DOS VRILES Son 16, de las cuales las mas relevantes son: F = F = F = B F = B F = 0 F = 1 F = B ó ND B F = + B ó OR B F = B ó NND B F = + B ó NOR B F = B ó OR-Exclusiva B F = B ó NOR-Exclusiva B

6 lgebra de Bolee Métodos de representación de funciones lógicas Ecuaciones Lógicas ó booleanas. Tabla de verdad. Operadores lógicos gráficos (compuertas). Diagramas de Karnaugh (método gráfico). Diagramas de Venn (método gráfico). Representación temporal.

7 Tablas de verdad de funciones de 1, 2 y 3 variables: F 0 1 F B F B C Si una función tiene n variables de entrada existirán 2 n combinaciones diferentes entre las mismas n=1 2 n=2 4 n=3 8 n=4 16 etc

8 Tablas de verdad de funciones de 1, 2 y 3 variables: EJEMPLOS: Ā ND B NND B F F F B F B

9 Tablas de verdad de funciones de 1, 2 y 3 variables: EJEMPLOS: OR B NOR B B NOT EXCL. B F B F B F B F B

10 Tablas de verdad de funciones de 1, 2 y 3 variables: EJEMPLOS: ND OR OR-EXCL. F B C F B C F B C

11 Operadores lógicos gráficos (compuertas) NOT OR NOR ND NND Operadores lógicos básicos OR-EXCL. NOR-EXCL.

12 ECUCIONES LÓGICS PROPIEDDES: + 1 = 1; 1 = ; + 0 = ; 0 = 0; = ; + = ; / = 0; + / = 1 [Negar un nº par de veces a ] = [Negar un nº impar de veces a ] = / + B = ; ( + B) = ; DISTRIBUTIV (B + C) = B + C + B C = ( + B) ( + C) CONMUTTIV B = B ; C + H = H + C Teorema de De Morgan + B = B B = + B

13 Implementación de funciones lógicas: EJEMPLOS C B C B C B D C = + B C = B D = ( + B) C NOT: quí se asume que el estado lógico de una llave normal abierta (N) es 0 si está abierta. La lámpara es 0 si está apagada.

14 Implementación de funciones lógicas: EJEMPLOS Del 3er. ejemplo anterior, si hay además una llave normal cerrada (NC), tendríamos: D C CIRCUITO EQUIVLENTE B E B E D E = ( + B) C /D C

15 Implementación de funciones lógicas: Todo NND Todo NOR + B B ó + B + B B ó + B B B ó + B B B ó + B 1 ó + 0

16 COMPUERT OR C B REPRESENTCIÓN TEMPORL B t t COMPUERT IDEL COMPUERT ND C B C B No existen retardos!!! t t t COMPUERT IDEL C t

17 COMPUERT NOR C B REPRESENTCIÓN TEMPORL B t t COMPUERT IDEL COMPUERT NND C B C B No existen retardos!!! t t t COMPUERT IDEL C t

18 DIGRMS DE KRNUGH FUNCIONES CNÓNICS: Son aquellas formadas por términos especiales que contienen a todas las variables de entrada de la función. Dependiendo de que términos una función canónica puede ser de dos tipos: PRIMER FORM ó SEGUND FORM. PRIMER FORM: Está formada por mintérminos (intersección entre las variables en juego). SEGUND FORM: Está formada por maxitérminos (unión entre las variables en juego).

19 DIGRMS DE KRNUGH FUNCIÓN CNÓNIC DE PRIMER Y SEGUND FORM Para 2 variables y B, hay 2 2 términos en total. Los mintérminos son: / /B, / B, /B y B. Los maxtérminos son: +B, +/B, /+B y /+/B. Para 3 variables, tendremos 2 3 términos en total. Los mintérminos son: /C /D /E, /C /D E, /C D /E, /C D E, C /D /E, C /D E, C D /E y C D E. L UNIÓN COMPLET DE MINTÉRMINOS D L FUNCIÓN 1 Los maxtérminos son: C+D+E, C+D+/E, C+/D+E, C+/D+/E, /C+D+E, /C+D+/E, /C+/D+E y /C+/D+/E L INTERSECCIÓN COMPLET DE MXTÉRMINOS D L FUNCIÓN 0

20 DIGRMS DE KRNUGH FUNCIÓN CNÓNIC DE PRIMER FORM EJEMPLOS: FUNCIÓN CNÓNIC DE 2 VRILES FUNCIÓN CNÓNIC DE 3 VRILES E B B E ( m1, m2) ( 12, ) J P Q R P Q R P Q R J ( m1, m2, m7) ( 12,, 7)

21 DIGRMS DE KRNUGH FUNCIÓN CNÓNIC DE SEGUND FORM EJEMPLOS: FUNCIÓN CNÓNIC DE 2 VRILES T ( E F) ( E F) ( E F) T ( M 0, M 2, M3) (0, 2,3) FUNCIÓN CNÓNIC DE 3 VRILES ( B C D) (M 2) (2)

22 DIGRMS DE KRNUGH CONVERSIÓN FUNCIÓN CNÓNIC DE PRIMER FORM Convertir la siguiente función: F B C F = ( /B/C + /BC + B/C + BC) + BC ( / + ) F = /B/C + /BC + /C + C + C + /C F = /C + /B/C + /BC + /C + C

23 DIGRMS DE KRNUGH CONVERSIÓN FUNCIÓN CNÓNIC DE SEGUND FORM Convertir la siguiente función: P = ( Q + R) S Por un lado: ( Q + R) = ( Q + R) + /S S = ( Q + R) = ( Q + R + /S) ( Q + R + S) Por el otro: S = S + ( /Q + /R) ( /Q + R) ( Q + /R) ( Q + R) = ( /Q + /R + S ) ( /Q + R + S ) ( Q + /R + S ) ( Q + R + S ) Combinando: P = ( /Q + /R + S) ( /Q + R + S) ( Q + /R + S) ( Q + R + S) ( Q + R + /S)

24 DIGRMS DE KRNUGH CONVERSIÓN DE UN FUNCIÓN CNÓNIC L OTR Pasar de 1ra forma a 2da: EJEMPLO: G = /B /C /D + /B C D + B /C /D + B C /D + B C D Se trabaja con el complemento de G: /G = /B /C D + /B C /D + B /C D (Los mintérminos que faltan en G) Negando ambos miembros se mantiene la igualdad: G = /B /C D + /B C /D + B /C D plicando De Morgan dos veces: G = ( /B /C D ) ( /B C /D ) ( B /C D ) G = ( B+C+/D) ( B+/C+D) ( /B+C+/D) De tener 5 mintérminos pasamos a tener 3 maxtérminos.. POQUÉ?

25 DIGRMS DE KRNUGH PRIMER FORM: 2 VRILES B B B B B B B 2 3 quí indica que la variable B está en toda la columna sin negar Este número indica si la variable en la columna está negada o nó. Este número indica la posición del mintérmino Este número indica si la variable en la fila está negada o nó. quí indica que la variable está en toda la fila sin negar CD MINTÉRMINO TIENE UN LUGR SIGNDO DENTRO DEL DIGRM DE KRNUGH

26 DIGRMS DE KRNUGH PRIMER FORM: 3 VRILES BC BC BC BC BC C C C C C C C C NO son adyacentes cambian las variables y C. Son adyacentes ya que sólo cambia la variable. Para armar cualquier Diagrama de Karnaugh los casilleros contiguos verticales u horizontales deben contener mintérminos adyacentes, es decir, donde sólo cambie una variable entre uno y otro.

27 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD 15 CD 14 CD CD 8 9 CD 11 CD 10

28 DIGRMS DE KRNUGH 5 VRILES: La representación se realiza con dos diagramas de Karnaugh de 4 variables cada una, donde la quinta variable se representa en uno negada y en el otro sin negar. 6 VRILES: Idem al caso anterior pero ahora con 4 Karnaugh de 4 variables cada una. Cada Karnaugh corresponderá a una combinación de la 5ta. y 6ta. variable (son 4 combinaciones diferentes) L SÍNTESIS Y SIMPLIFICCIÓN UTILIZNDO KRNUGH ES UTIL HST 5 VRILES. mayor número puede dar lugar a errores en la determinación de los términos a simplificar.

29 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES Representación de funciones canónicas CD CD CD CD CD EJEMPLO: CD + CD + CD + CD + CD + CD

30 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES Representación de funciones en general CD CD CD CD CD La unión de todos estos mintérminos no dan la función: F = /

31 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES Representación de funciones en general CD CD CD CD CD La unión de todos estos mintérminos no dan la función: F =

32 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES Representación de funciones en general CD CD CD CD CD La unión de todos estos mintérminos no dan la función: F = B

33 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES Representación de funciones en general CD CD CD CD CD La unión de los mintérminos de y de B forman la función: F = + B Esta operación de unión toma los términos comunes y no comunes de las variables y B.

34 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES Representación de funciones en general CD CD CD CD CD La intersección de los mintérminos que forman a y B dan F = B Esta operación de intersección toma sólo los términos comunes de las variables y B.

35 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES Representación de funciones en general CD CD CD CD CD Esto dá: F = C Esta operación de intersección toman los términos comunes de las variables / y C.

36 DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES REPRESENTCIÓN DE FUNCIONES EN GENERL Ejemplo: + B C CD CD CD CD CD B C

37 DIGRMS DE KRNUGH ESTRUCTURS PRTICULRES CD CD CD CD CD F = / /B /C D + / /B C /D + / B /C /D + / B C D B /C D + B C /D + /B /C /D + /B C /D = / /B (/C D + C /D) + B (/C D + C /D) + / B (/C /D + C D) + /B (/C /D + C D) = / /B (C D) + B (C D) + / B (C Θ D) + /B (C Θ D) = (C D) [/ /B + B] + (C Θ D) [/ B + /B] = (C D) [ Θ B] + (C Θ D) [ B] = B C D

38 SIMPLIFICCIÓN DE FUNCIONES LÓGICS Simplificar una función lógica significa hallar otra manera de expresarla pero que utilice la menor cantidad de términos y/o variables a fin de conseguir una representación mas compacta. Esto en realidad depende de la estructura de hardware que se utilice para la generación de sub-funciones lógicas. Método clásico. Diagramas de Karnaugh (método gráfico). Métodos tabulares (Quine-McCluskey). Métodos algorítmicos. etc..

39 SIMPLIFICCIÓN DE FUNCIONES LÓGICS MÉTODO CLÁSICO: Utiliza las reglas generales del lgebra de Boole para ver si es posible reducir la función lógica a su menor expresión. EJEMPLOS: ( + B) + B + B utilizando una de las propiedades antes citada. B + B B por lo que puede implementarse con una sola compuerta OR-Exclusiva.

40 DIGRMS DE KRNUGH SIMPLIFICCIÓN DE FUNCIONES B B B B B B B B 2 3 B B B B B B 2 3 SI SE TOMN DOS MINTÉRMINOS DYCENTES EN EL DIGRM SE ELIMIN UN VRILE EJEMPLO 3: / B + B = B EJEMPLO 2: / /B + /B = /B

41 DIGRMS DE KRNUGH SIMPLIFICCIÓN DE FUNCIONES B B B B B B B B 2 3 B B B B B B 2 3 SI SE TOMN DOS MINTÉRMINOS DYCENTES EN EL DIGRM SE ELIMIN UN VRILE EJEMPLO 1: / /B + / B = / EJEMPLO 2: /B + B =

42 SIMPLIFICCIÓN DE FUNCIONES DIGRMS DE KRNUGH PRIMER FORM: 3 VRILES SI SE TOMN DOS MINTÉRMINOS DYCENTES EN EL DIGRM SE ELIMIN UN VRILE. BC BC BC BC BC C C C C C C C C EJEMPLO 1: / /B /C + /B /C = /B /C. SI SE TOMN CUTRO, SE ELIMINN DOS VRILES EJEMPLO 2: / /B /C + /B /C + / /B C + /B C = /B

43 SIMPLIFICCIÓN DE FUNCIONES DIGRMS DE KRNUGH PRIMER FORM: 3 VRILES BC BC BC BC BC C C C C C C C C La función vale /C tomando los 4 mintérminos La función vale Cómo se obtiene BC? y?

44 SIMPLIFICCIÓN DE FUNCIONES DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES CD CD CD CD CD B CD CD CD CD CD CD CD CD CD CD CD 15 CD 14 CD CD 8 9 CD 11 CD 10 La función vale /B tomando los 8 mintérminos Tomando estos 8 se tiene /C Tomando estos 8 se tiene C

45 SIMPLIFICCIÓN DE FUNCIONES DIGRMS DE KRNUGH PRIMER FORM: 4 VRILES CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD 15 CD 14 CD CD 8 9 CD 11 CD 10 Tomando estos 8 se tiene / Tomando estos 8 se tiene Tomando estos 8 se tiene D Cómo se obtiene /D?

46 DIGRMS DE KRNUGH SIMPLIFICCIÓN DE FUNCIONES PRIMER FORM: 4 VRILES Ejemplo: Simplificar la función /C + /B + / B C + C CD CD CD CD CD B C RESULTDO: + B C

47 DIGRMS DE KRNUGH ESTRUCTURS CON DON T CRE SIMPLIFICCIÓN DE FUNCIONES Son funciones que son incompletamente definidas (hay combinaciones de variables que no se utilizan en la función). CD CD CD CD CD X 0 X X 0 1 X 10 X 0 X X EST X L DEJO EN 0. LS DEMÁS EN 1 F = /C /D + C

48 RIESGOS DE TEMPORIZCIÓN (TIMING HZRDS) Posibles comportamientos que pueden experimentar las salidas de un circuito digital si es excitado con alguna combinación de señales a su entrada que den como resultado una respuesta transitoria diferente a la prevista en el diseño debido a la existencia de retardos que existen en todo dispositivo físico. Este comportamiento depende además de la estructura del circuito (como se lo implementa en forma lógica). Riesgo estático: Es aquél que puede hacer que una salida vaya a temporalmente a un estado diferente al definitivo. Riesgo estático de 1 : Cuando el circuito responde momentáneamente a una dada excitación con un 0. Riesgo estático de 0 : Idem pero donde se establece temporariamente un 1 a la salida. Riesgo dinámico: Respuesta de una salida la cual cambia de estado repetidas veces al generarse un simple cambio a su entrada. Sergio Noriega Introducción a los Sistemas Lógicos y Digitales

49 RIESGOS DE TEMPORIZCIÓN Riesgo estático de 1 : Una salida que debe tener un estado lógico final 1 puede momentáneamente ponerse a 0 si se dá que hay al menos dos fuentes D concurrentes que habilitan un B /B 1 y una de ellas difiere temporalmente en su respuesta E respecto de la otra. EJEMPLO B C t F =C= 1 /B D E F t t t t

50 RIESGOS DE TEMPORIZCIÓN BC BC BC BC BC En el Karnaugh de la salida se puede apreciar como los términos marcados con rojo ( /B) y amarillo ( B C) si en algún momento son ambos 0 la salida también lo será.

51 RIESGOS DE TEMPORIZCIÓN Solución: BC BC BC BC BC B C /B D E F Con esta estructura aunque redundante se evita que ocurra el riesgo de 1 ya que la compuerta adicional evita que el retardo del negador pueda dar una falsa respuesta.

52 RIESGOS DE TEMPORIZCIÓN Riesgo estático de 0 : Una salida que debe tener un estado lógico final 0 puede momentáneamente ponerse a 1 si se dá que hay al menos dos fuentes concurrentes que habilitan un 0 y una de ellas difiere temporalmente en su respuesta respecto de la otra. B C D E

53 Bibliografía: puntes de teoría: Diagramas de karnaugh. S. Noriega. Libros: Sistemas Digitales. R. Tocci, N. Widmer, G. Moss. Ed. Prentice Hall. Diseño Digital. M. Morris Mano. Ed. Prentice Hall. 3ra edición. Diseño de Sistemas Digitales. John Vyemura. Ed. Thomson. Diseño Lógico. ntonio Ruiz, lberto Espinosa. Ed. McGraw-Hill. Digital Design:Principles & Practices. John Wakerly. Ed. Prentice Hall. Diseño Digital. lan Marcovitz. Ed. McGraw-Hill. Electrónica Digital. James Bignell, R. Donovan. Ed. CECS. Técnicas Digitales con Circuitos Integrados. M. Ginzburg. Fundamentos de Diseño Lógico y Computadoras. M. Mano, C. Kime. Ed. Prentice Hall. Teoría de conmutación y Diseño lógico. F. Hill, G. Peterson. Ed. Limusa Sergio Noriega Introducción a los Sistemas Lógicos y Digitales

Algebra de Boole Introducción a los Sistemas Lógicos y Digitales 2008 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales

Algebra de Boole Introducción a los Sistemas Lógicos y Digitales 2008 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales lgebra de Boole Introducción n a los Sistemas Lógicos y Digitales 28 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 28 lgebra de Boole Los sistemas digitales emplean generalmente señales

Más detalles

Sistemas informáticos industriales. Algebra de Boole

Sistemas informáticos industriales. Algebra de Boole Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de

Más detalles

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3

Más detalles

Algebra de Boole. » a + a = 1» a a = 0

Algebra de Boole. » a + a = 1» a a = 0 Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello

Más detalles

Análisis y Síntesis. Introducción a los Sistemas Lógicos y Digitales 2008

Análisis y Síntesis. Introducción a los Sistemas Lógicos y Digitales 2008 Introducción a los Sistemas Lógicos y Digitales 2008 Métodos de análisis: Tabla de verdad. Heurístico. Diagramas de estado. Simulación. Test del hardware. etc... Ejemplo de análisis heurístico (planteo

Más detalles

Conversores ADC y DAC. Introducción n a los Sistemas Lógicos y Digitales 2008

Conversores ADC y DAC. Introducción n a los Sistemas Lógicos y Digitales 2008 Conversores ADC y DAC Introducción n a los Sistemas Lógicos y Digitales 2008 Conversores Digital-analógicos (DAC) Clasificación de DAC: Formato Serie. Paralelo. Tecnología Resistencias pesadas (obsoleto).

Más detalles

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E. Prof. Rodrigo Araya E. raraya@inf.utfsm.cl Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta

Más detalles

SIMPLIFICACIÓN DE FUNCIONES LÓGICAS

SIMPLIFICACIÓN DE FUNCIONES LÓGICAS LABORATORIO # 4 Realización: SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. OBJETIVOS Los objetivos de este laboratorio es que Usted, aprenda a: Simplificar funciones utilizando mapas de Karnaugh Utilizar compuertas

Más detalles

Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:

Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas: Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar

Más detalles

Tema 3. 2 Sistemas Combinacionales

Tema 3. 2 Sistemas Combinacionales Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores

Más detalles

Flip-Flops. Flops. Introducción n a los Sistemas Lógicos y Digitales 2009

Flip-Flops. Flops. Introducción n a los Sistemas Lógicos y Digitales 2009 Introducción n a los Sistemas Lógicos y Digitales 29 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 28 CLASIFICACIÓN SEGÚN TIPO DE SINCRONISMO FLIP-FLOPS ASINCRÓNICOS (No hay entrada

Más detalles

El número decimal 57, en formato binario es igual a:

El número decimal 57, en formato binario es igual a: CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato

Más detalles

TEMA 3. Álgebra de Boole

TEMA 3. Álgebra de Boole Fundamentos de los Computadores. Álgebra de oole. T3-1 INDICE: TEM 3. Álgebra de oole EL ÁLGER DE OOLE TEOREMS DEL ÁLGER DE OOLE REPRESENTCIÓN DE FUNCIONES LÓGICS o TL DE VERDD o FORMS CNÓNICS o CONVERSIÓN

Más detalles

TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES

TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES TEMA 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES Exponer los conceptos básicos de los fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre sistemas digitales y sistemas analógicos.

Más detalles

Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR

Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y XOR y Con las puertas básicas podemos implementar cualquier función booleana. Sin embargo existen

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6] ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.

Más detalles

UNIDAD 4. Álgebra Booleana

UNIDAD 4. Álgebra Booleana UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,

Más detalles

Tabla de contenidos. 1 Lógica directa

Tabla de contenidos. 1 Lógica directa Tabla de contenidos 1 Lógica directa o 1.1 Puerta SI (YES) o 1.2 Puerta Y (AND) o 1.3 Puerta O (OR) o 1.4 Puerta OR-exclusiva (XOR) 2 Lógica negada o 2.1 Puerta NO (NOT) o 2.2 Puerta NO-Y (NAND) o 2.3

Más detalles

Álgebra Booleana y Simplificación Lógica

Álgebra Booleana y Simplificación Lógica Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo

Más detalles

Algebra de Boole y puertas lógicas

Algebra de Boole y puertas lógicas Algebra de Boole y puertas lógicas Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Postulados y propiedades fundamentales del Álgebra de Boole Funciones

Más detalles

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura

Más detalles

ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON

ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON ÁLGEBRA DE BOOLE El Algebra de Boole es importante pues permite representar matemáticamente el funcionamiento de los circuitos digitales. Los circuitos digitales son capaces de permanecer en 2 estados,

Más detalles

PUERTAS LOGICAS. Una tensión alta significa un 1 binario y una tensión baja significa un 0 binario.

PUERTAS LOGICAS. Una tensión alta significa un 1 binario y una tensión baja significa un 0 binario. PUERTAS LOGICAS Son bloques de construcción básica de los sistemas digitales; operan con números binarios, por lo que se denominan puertas lógicas binarias. En los circuitos digitales todos los voltajes,

Más detalles

Control y programación de sistemas automáticos: Algebra de Boole

Control y programación de sistemas automáticos: Algebra de Boole Control y programación de sistemas automáticos: Algebra de Boole Se denomina así en honor a George Boole, matemático inglés 1815-1864, que fue el primero en definirla como parte de un sistema lógico, a

Más detalles

Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas

Electrónica Digital. Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas Electrónica Digital Fco. Javier Expósito, Manuel Arbelo, Pedro A. Hernández 2001 Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas UNIVERSIDAD DE LA LAGUNA ii ÍNDICE Lección 0. Introducción...1

Más detalles

TEMA 3 ÁLGEBRA DE CONMUTACIÓN

TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES

Más detalles

SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole

SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole Definición SISTEMAS LÓGICOS UNIDAD 2: Álgebra De Boole Comenzaremos definiendo el Álgebra de Boole como el conjunto de elementos B que puede asumir dos valores posibles (0 y 1) y que están relacionados

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características

Más detalles

Registros de Desplazamiento. Introducción n a los Sistemas Lógicos y Digitales 2009

Registros de Desplazamiento. Introducción n a los Sistemas Lógicos y Digitales 2009 Registros de esplazamiento Introducción n a los Sistemas Lógicos y igitales 2009 Sergio Noriega Introducción a los Sistemas Lógicos y igitales - 2009 Registro de desplazamiento: Es todo circuito que transforma

Más detalles

ALGEBRA BOOLEANA (ALGEBRA LOGICA)

ALGEBRA BOOLEANA (ALGEBRA LOGICA) ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un

Más detalles

Lógica Programable -Introducción - Introducción n a los Sistemas Lógicos y Digitales 2008

Lógica Programable -Introducción - Introducción n a los Sistemas Lógicos y Digitales 2008 -Introducción - Introducción n a los Sistemas Lógicos y Digitales 2008 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 2008 Memorias Clasificación según acceso: Aleatorio Volátiles No

Más detalles

Operación de circuitos lógicos combinatorios.

Operación de circuitos lógicos combinatorios. Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes

Más detalles

UNIDAD 4. Algebra de Boole

UNIDAD 4. Algebra de Boole UNIDAD 4 Algebra de Boole Introducción a la unidad La tecnología nos permite construir compuertas digitales a través de transistores y mediante las compuertas diseñamos los circuitos digitales empleados

Más detalles

Sistemas Electrónicos Digitales

Sistemas Electrónicos Digitales Sistemas Electrónicos Digitales Profesor: Carlos Herrera C. I. Unidad COMPUERTAS LOGICAS Las compuertas lógicas son dispositivos que operan con aquellos estados lógicos Binarios y que funcionan igual que

Más detalles

Diseño de circuitos combinacionales

Diseño de circuitos combinacionales Diseño de circuitos combinacionales Mario Medina C. mariomedina@udec.cl Diseño de circuitos combinacionales Métodos de minimización vistos permiten obtener funciones de dos niveles Tópicos en diseño de

Más detalles

Definición y representación de los

Definición y representación de los Definición y representación de los circuitos lógicos. LÁMARA R + - + - OBJETIVO GENERAL BATERÍA Utilizar el álgebra booleana para analizar y describir el funcionamiento de las combinaciones de las compuertas

Más detalles

Horas Trabajo Estudiante: 128

Horas Trabajo Estudiante: 128 PROGRAMAS DE:: CIIENCIIAS BÁSIICAS E IINGENIIERÍÍAS DEPARTAMENTO DE MATEMÁTIICAS Y ESTADÍÍSTIICA CONTENIIDOSS PPROGRAMÁTIICOSS PPOR UNIIDADESS DE APPRENDIIZAJJE Curso: Créditos: 3 Lógica Matemática Horas

Más detalles

Contadores. Introducción n a los Sistemas Lógicos y Digitales 2009

Contadores. Introducción n a los Sistemas Lógicos y Digitales 2009 Introducción n a los Sistemas Lógicos y Digitales 29 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 29 Contador digital: Es todo circuito o dispositivo que genera una serie de combinaciones

Más detalles

Electrónica II. Carrera. Electromecánica EMM UBICACIÓN DE LA ASIGNATURA a) Relación con otras asignaturas del plan de estudios.

Electrónica II. Carrera. Electromecánica EMM UBICACIÓN DE LA ASIGNATURA a) Relación con otras asignaturas del plan de estudios. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la asignatura Horas teoría-horas práctica-créditos Electrónica II Electromecánica EMM-0516 3-2-8 2. HISTORIA DEL PROGRAMA Lugar y fecha

Más detalles

NOT. Ejemplo: Circuito C1

NOT. Ejemplo: Circuito C1 Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen

Más detalles

Electrónica Digital - Guión

Electrónica Digital - Guión Electrónica Digital - Guión 1. Introducción. 2. El álgebra de Boole. 3. Propiedades del álgebra de Boole. 4. Concepto de Bit y Byte. 5. Conversión del sistema decimal en binario y viceversa. 6. Planteamiento

Más detalles

Fundamentos de los Computadores. Álgebra de Boole. 1 3. ÁLGEBRA DE BOOLE

Fundamentos de los Computadores. Álgebra de Boole. 1 3. ÁLGEBRA DE BOOLE Fundamentos de los Computadores. Álgebra de oole. 1 3. ÁLGER DE OOLE Un sistema de elementos y dos operaciones binarias cerradas ( ) y (+) se denomina LGER de OOLE siempre y cuando se cumplan las siguientes

Más detalles

Temario TEMARIO. Sist. Electrónicos Digitales 1

Temario TEMARIO. Sist. Electrónicos Digitales 1 TEMARIO 1 TEMA 1. Introducción a los Sistemas Digitales. 1.1. Concepto de Sistema. Estructura y Comportamiento Señal analógica y señal digita Señal binarial 1.2. Sistemas de numeración. Binario Octal Hexadecimal

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009 ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2009 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.

Más detalles

Capítulo 3. Conjuntos. Continuar

Capítulo 3. Conjuntos. Continuar Capítulo 3. Conjuntos Continuar Introducción Georg Cantor definió el concepto de conjunto como una colección de objetos reales o abstractos e introdujo el conjunto potencia y las operaciones entre conjuntos.

Más detalles

PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES

PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

DISEÑO CURRICULAR ELECTRÓNICA DIGITAL

DISEÑO CURRICULAR ELECTRÓNICA DIGITAL DISEÑO CURRICULAR ELECTRÓNICA DIGITAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas. CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 116243 02 02 03 VI PRE-REQUISITO ELABORADO

Más detalles

INDICE. XVII 0 Introducción 0.1. Historia de la computación

INDICE. XVII 0 Introducción 0.1. Historia de la computación INDICE Prefacio XVII 0 Introducción 0.1. Historia de la computación 1 0.1.1. Los inicios: computadoras mecánicas 0.1.2. Primeras computadoras electrónicas 0.1.3. Las primeras cuatro generaciones de computadoras

Más detalles

TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA REDES Y TELECOMUNICACIONES.

TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA REDES Y TELECOMUNICACIONES. TECNICO SUPERIOR UNIVERSITARIO EN TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN ÁREA REDES Y TELECOMUNICACIONES. HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Sistemas

Más detalles

Unidad Didáctica Electrónica Digital 4º ESO

Unidad Didáctica Electrónica Digital 4º ESO Unidad Didáctica Electrónica Digital 4º ESO ÍNDICE 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN 3. PUERTAS LÓGICAS 4. FUNCIONES LÓGICAS 1.- Introducción Señal analógica. Señal digital Una señal analógica

Más detalles

Unidad 3: Circuitos digitales.

Unidad 3: Circuitos digitales. A-1 Appendix A - Digital Logic Unidad 3: Circuitos digitales. Diapositivas traducidas del libro Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix

Más detalles

UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES

UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO No. 4 Fundamentos de electrónica Compuertas Lógicas I. OBJETIVOS. Conocer el

Más detalles

6 10 3,5 2,0 4,5. PROGRAMA DE CURSO Código Nombre EL 4002. Sistemas Digitales Nombre en Inglés Digital Systems SCT

6 10 3,5 2,0 4,5. PROGRAMA DE CURSO Código Nombre EL 4002. Sistemas Digitales Nombre en Inglés Digital Systems SCT PROGRAMA DE CURSO Código Nombre EL 4002 Sistemas Digitales Nombre en Inglés Digital Systems SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3,5 2,0 4,5 Requisitos

Más detalles

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. Programa Analítico de la Asignatura: SISTEMAS LÓGICOS Código: E-3.23.2 Plan de Estudio: 1996 Carrera: INGENIERÍA ELECTRICISTA Departamento:

Más detalles

EIE SISTEMAS DIGITALES Tema 5: Análisis de la lógica combinacional. Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas

EIE SISTEMAS DIGITALES Tema 5: Análisis de la lógica combinacional. Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas EIE 446 - SISTEMS DIGITLES Tema 5: nálisis de la lógica combinacional Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas OJETIVOS DE L UNIDD nalizar los circuitos lógicos combinacionales

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS MATERIA O MODULO: ELECTROLOGIA Y CIRCUITOS LOGICOS CARRERA: Ingeniería de Sistemas NIVEL: Segundo No. CREDITOS: 6 CREDITOS TEORIA: 4 CREDITOS PRACTICA: 2 PROFESOR: ING. JOSE PUEBLA

Más detalles

PUERTAS LOGICAS. Objetivo específico Conectar los circuitos integrados CI TTL Comprobar el funcionamiento lógico del AND, OR, NOT, NAND y NOR

PUERTAS LOGICAS. Objetivo específico Conectar los circuitos integrados CI TTL Comprobar el funcionamiento lógico del AND, OR, NOT, NAND y NOR Cód. 25243 Laboratorio electrónico Nº 5 PUERTAS LOGICAS Objetivo Aplicar los conocimientos de puertas lógicas Familiarizarse con los circuitos integrados Objetivo específico Conectar los circuitos integrados

Más detalles

ELECTRÓNICA DIGITAL.

ELECTRÓNICA DIGITAL. ELECTRÓNIC DIGITL. Una señal analógica es aquella que puede tener infinitos valores, positivos y/o negativos. Mientras que la señal digital sólo puede tener dos valores 1 o 0. En el ejemplo de la figura,

Más detalles

ASIGNATURA: ELECTRÓNICA DIGITAL PROGRAMA ACADÉMICO: INGENIERIA EN MECATRÓNICA TIPO EDUCATIVO: INGENIERIA MODALIDAD: MIXTA

ASIGNATURA: ELECTRÓNICA DIGITAL PROGRAMA ACADÉMICO: INGENIERIA EN MECATRÓNICA TIPO EDUCATIVO: INGENIERIA MODALIDAD: MIXTA INSTITUTO UNIVERSITARIO PUEBLA HOJA: 1 DE 3 PROGRAMA ACADÉMICO: INGENIERIA EN MECATRÓNICA TIPO EDUCATIVO: INGENIERIA MODALIDAD: MIXTA SERIACIÓN: NINGUNA CLAVE DE LA ASIGNATURA: IM45 CICLO: OCTAVO CUATRIMESTRE

Más detalles

INDICE Capitulo 1. Álgebra de variables lógicas Capitulo 2. Funciones lógicas

INDICE Capitulo 1. Álgebra de variables lógicas Capitulo 2. Funciones lógicas INDICE Prefacio XV Capitulo 1. Álgebra de variables lógicas 1 1.1. Variables y funciones 1 1.2. Variables lógicas 2 1.3. Valores de una variable lógica 2 1.4. Funciones de una variable lógica 3 1.5. Funciones

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

ELECTRÓNICA DIGITAL 4.1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.

ELECTRÓNICA DIGITAL 4.1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. 4.. 4.1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales que utilice. Llamamos

Más detalles

Compuertas lógicas y diseño de circuitos lógicos

Compuertas lógicas y diseño de circuitos lógicos Unidad ompuertas lógicas y diseño de circuitos lógicos Introducción ircuitos digitales Figura 3.1 Diagrama en bloques de un circuito lógico digital de n señales de entrada y m señales de salida. Los circuitos

Más detalles

INDICE 1. Operación del Computador 2. Sistemas Numéricos 3. Álgebra de Boole y Circuitos Lógicos

INDICE 1. Operación del Computador 2. Sistemas Numéricos 3. Álgebra de Boole y Circuitos Lógicos INDICE Prólogo XI 1. Operación del Computador 1 1.1. Calculadoras y Computadores 2 1.2. Computadores digitales electrónicos 5 1.3. Aplicación de los computadores a la solución de problemas 7 1.4. Aplicaciones

Más detalles

Tardó en darse cuenta que había perdido casi cinco años tratando de aprender las materias en vez de tener un profesor experto.

Tardó en darse cuenta que había perdido casi cinco años tratando de aprender las materias en vez de tener un profesor experto. George Boole Nacido el 2 de Noviembre de 1815 en Lincoln, Lincolnshire (Inglaterra), primero concurrió a una escuela en Lincoln, luego a un colegio comercial. Sus primeras instrucciones en matemática,

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS MATERIA O MODULO: ELECTROLOGIA Y CIRCUITOS LOGICOS CARRERA: Ingeniería de Sistemas NIVEL: Segundo No. CREDITOS: 6 CREDITOS TEORIA: 4 CREDITOS PRACTICA: 2 PROFESOR: ING. JOSE PUEBLA

Más detalles

Profesor: Rubén Alva Cabrera

Profesor: Rubén Alva Cabrera Profesor: Rubén lva Cabrera INDICE INTRODUCCIÓN RELCION DE PERTENENCI DETERMINCION DE CONJUNTOS DIGRMS DE VENN CONJUNTOS ESPECILES RELCIONES ENTRE CONJUNTOS CONJUNTOS NUMÉRICOS UNION DE CONJUNTOS INTERSECCIÓN

Más detalles

D.I.I.C.C Arquitectura de Sistemas Computacionales

D.I.I.C.C Arquitectura de Sistemas Computacionales CAPITULO 6.- ÁLGEBRA DE BOOLE INTRODUCCIÓN. En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

Algunos ejemplos de conjuntos pueden ser los siguientes:

Algunos ejemplos de conjuntos pueden ser los siguientes: 1. CONJUNTOS Y PRODUCTO CRTESINO. OBJETIVOS: 1) Establecer los conceptos básicos y las distintas notaciones para conjuntos. 2) Descripción de conjuntos en distintas formas: Lista, expresión verbal, expresión

Más detalles

INDICE Control de dispositivos específicos Diseño asistido por computadora Simulación Cálculos científicos

INDICE Control de dispositivos específicos Diseño asistido por computadora Simulación Cálculos científicos INDICE Parte I. La computadora digital: organización, operaciones, periféricos, lenguajes y sistemas operativos 1 Capitulo 1. La computadora digital 1.1. Introducción 3 1.2. Aplicaciones de las computadoras

Más detalles

FUNDAMENTOS DE ELECTRÓNICA

FUNDAMENTOS DE ELECTRÓNICA FUNDMENTOS DE ELECTRÓNIC 3 er Curso de Ingeniería Industrial Temas 8 : Electrónica Digital Sistema binario y álgebra de oole Profesores: Carlos Martínez-Peñalver Freire lfonso Lago Ferreiro ndrés. Nogueiras

Más detalles

Algebra de Boole. Algebra de Boole. Ing. José Alberto Díaz García. EL - 3307 Diseño Lógico. Página 1

Algebra de Boole. Algebra de Boole. Ing. José Alberto Díaz García. EL - 3307 Diseño Lógico. Página 1 Página 1 Simplificación de circuitos Como los circuitos lógicos son representaciones de funciones lógicas, se pueden utilizar los recursos disponibles para simplificarlos y así reducir la cantidad de componentes

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se

Más detalles

Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.

Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE JUNIO DE 2005 MATERIA: TECNOLOGÍA INDUSTRIAL II P1) Dado el sistema neumático mostrado en la figura: a) Identifica los elementos -y su funcionamiento- cuya sección

Más detalles

Introducción al álgebra de Boole. Operaciones lógicas básicas. Propiedades del álgebra de Boole. a b a+b

Introducción al álgebra de Boole. Operaciones lógicas básicas. Propiedades del álgebra de Boole. a b a+b Introducción al álgebra de Boole Muchos componentes utilizados en sistemas de control, como contactores y relés, presentan dos estados claramente diferenciados (abierto o cerrado, conduce o no conduce).

Más detalles

Carrera: SCB-9335 4-2-10. Proporciona conocimientos básicos para la programación de dispositivos de control digital.

Carrera: SCB-9335 4-2-10. Proporciona conocimientos básicos para la programación de dispositivos de control digital. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Sistemas Digitales Ingeniería en Sistemas Computacionales SCB-9335 4-2-10 2.- UBICACIÓN

Más detalles

Carrera: SCC Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCC Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Circuitos eléctricos y electrónicos Ingeniería en Sistemas Computacionales SCC

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: ARQUITECTURA DE COMPUTADORAS FECHA DE ELABORACIÓN: ENERO 2005 ÁREA DEL PLAN DE ESTUDIOS: AS (

Más detalles

Análisis y síntesis de sistemas digitales combinacionales

Análisis y síntesis de sistemas digitales combinacionales Análisis Algoritmo de análisis, para un circuito lógico combinacional Síntesis. Conceptos Circuitos combinacionales bien construidos Circuitos combinacionales mal construidos Criterios de optimización

Más detalles

La compuerta AND opera de tal forma que su salida será ALTA o 1,solo cuando todas sus entradas sean ALTAS. De otra forma la salida sera BAJA.

La compuerta AND opera de tal forma que su salida será ALTA o 1,solo cuando todas sus entradas sean ALTAS. De otra forma la salida sera BAJA. Eplicación del Tema Sesión 12. Operación ND, NOT, NND Y NOR. OPERCIÓN ND Si y son dos variables boolenas y se combinan con la operación OR la epresión quedaría: =. Donde el símbolo. representa la epresión

Más detalles

F.R.H. DEPARTAMENTO MECÁNICA

F.R.H. DEPARTAMENTO MECÁNICA PARTE 1. ÁLGEBRA DE BOOLE. FUNCIONES LÓGICAS. DIAGRAMAS DE KARNAUGH. 1.1. Diseñar el circuito lógico, por minitérminos y simplificado por Karnaugh, de la siguiente tabla de verdad: 1.2. Para el circuito

Más detalles

Temario de Electrónica Digital

Temario de Electrónica Digital Temario de Electrónica Digital TEMA 1. INTRODUCCIÓN A LOS SISTEMAS DIGITALES. Exponer los conceptos básicos de los Fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre Sistemas

Más detalles

Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son:

Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son: 3. Circuitos aritméticos ticos Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Introducción La realización de operaciones aritméticas y lógicas

Más detalles

Funciones Lógicas Y Métodos De Minimización

Funciones Lógicas Y Métodos De Minimización Circuitos Digitales I Tema III Funciones Lógicas Y Métodos De Minimización Luis Tarazona, UNEXPO Barquisimeto EL-3213 Circuitos Digitales I - 2004 75 Funciones lógicas Circuito combinacional: Un circuito

Más detalles

CAPÍTULO II TEORÍA DE CONJUNTOS

CAPÍTULO II TEORÍA DE CONJUNTOS TEORÍ DE ONJUNTOS 25 PÍTULO II TEORÍ DE ONJUNTOS 2.2 INTRODUIÓN Denotaremos los conjuntos con letras mayúsculas y sus elementos con letras minúsculas, si un elemento p pertenece a un conjunto escribiremos

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "

ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de

Más detalles

IN ST IT UT O POLIT ÉCN ICO N A CION A L SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

IN ST IT UT O POLIT ÉCN ICO N A CION A L SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS CARRERA: Ingeniería en Sistemas Computacionales PROGRAMA SINTÉTICO ASIGNATURA: Circuitos Lógicos I SEMESTRE: Tercero. OBJETIVO GENERAL: El alumno resolverá problemas de diseño de computadores digitales

Más detalles

Nombre de la asignatura : Sistemas Digitales. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCC-9335

Nombre de la asignatura : Sistemas Digitales. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCC-9335 1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Sistemas Digitales Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCC-95 Horas teoría-horas práctica-créditos

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles

Carrera: 2-4-8. Participantes Representante de las academias de ingeniería en Mecatrónica de los Institutos Tecnológicos.

Carrera: 2-4-8. Participantes Representante de las academias de ingeniería en Mecatrónica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Electrónica Digital Ingeniería Mecatrónica Clave de la asignatura: Horas teoría-horas práctica-créditos 2-4-8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles