OLAP 2 OLAP 1 OLAP 4 OLAP 3 OLAP 5 OLAP 6

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OLAP 2 OLAP 1 OLAP 4 OLAP 3 OLAP 5 OLAP 6"

Transcripción

1 OLAP EXPLOTACIÓN UN DW: EXPLOTACIÓN UN DW:... OLAP 1 OLAP 2 EXPLOTACIÓN UN DW: MOLO UN AMBIENTE OLAP EXPLOTACIÓN UN DW: LAS HERRAMIENTAS OLAP PRESENTAN AL USUARIO UNA VISIÓN MULTIDIMENSIONAL LOS DATOS O ESQUEMA MULTIDIMENSIONAL, PARA CADA ACTIVIDAD QUE ES OBJETO ANÁLISIS. EL USUARIO FORMULA CONSULTAS A LA HERRAMIENTA OLAP SELECCIONANDO ATRIBUTOS ESTE ESQUEMA MULTIDIMENSIONAL SIN CONOCER LA ESTRUCTURA INTERNA O ESQUEMA FÍSICO L ALMACÉN DATOS. LA HERRAMIENTA OLAP GENERA LA CORRESPONDIENTE CONSULTA Y LA ENVÍA AL GESTOR CONSULTAS L SISTEMA: P.EJ. MEDIANTE UNA SENTENCIA SELECT. OLAP 3 OLAP 4 EXPLOTACIÓN UN DW: UNA CONSULTA A UN ALMACÉN DATOS CONSISTE GENERALMENTE EN LA OBTENCIÓN MEDIDAS SOBRE LOS HECHOS PARAMETRIZADAS POR ATRIBUTOS LAS DIMENSIONES Y RESTRINGIDAS POR CONDICIONES IMPUESTAS SOBRE LAS DIMENSIONES. EJ.: CUÁL ES EL IMPORTE TOTAL LAS VENTAS DURANTE EL AÑO 2002 LOS PRODUCTOS L PARTAMENTO BEBIDAS, POR TRIMESTRE Y POR CATEGORÍA??: MEDIDA: IMPORTE. HECHO: VENTAS. RESTRICCIONES: PRODUCTOS L BEBIDAS, VENTAS DURANTE EL AÑO PARÁMETROS LA CONSULTA: PRODUCTO Y POR TRIMESTRE. POR PARTAMENTO CATEGORÍA OLAP 5 EXPLOTACIÓN UN DW: OLAP 6

2 EXPLOTACIÓN UN DW: EXPLOTACIÓN UN DW: OLAP 7 OLAP 8 EXPLOTACIÓN UN DW: OLAP 9 OLAP 10 ARQUITECTURAS OLAP EL ALMACÉN DATOS Y LAS SE PUEN BASAR FÍSICAMENTE EN VARIAS ORGANIZACIONES: SISTEMAS ROLAP: SE IMPLEMENTAN SOBRE TECNOLOGÍA RELACIONAL, PERO DISPONEN ALGUNAS FACILIDAS PARA MEJORAR EL RENDIMIENTO (ÍNDICES MAPAS BITS, ÍNDICES JOIN). SISTEMAS MOLAP: DISPONEN ESTRUCTURAS ALMACENAMIENTO ESPECÍFICAS (ARRAYS) Y TÉCNICAS COMPACTACIÓN DATOS QUE FAVORECEN EL RENDIMIENTO L ALMACÉN. SISTEMAS HOLAP: SISTEMAS HÍBRIDOS ENTRE AMBOS. OLAP 11 OLAP 12

3 SISTEMAS ROLAP: EL ALMACÉN DATOS SE CONSTRUYE SOBRE UN SGBD RELACIONAL. LOS FABRICANTES SGBD RELACIONALES OFRECEN EXTENSIONES Y HERRAMIENTAS PARA POR UTILIZAR EL SGBDR COMO UN SISTEMA GESTOR DW. SISTEMAS ROLAP: EXTENSIONES LOS SGBD RELACIONALES: ÍNDICES MAPA BITS. ÍNDICES JOIN. TÉCNICAS PARTICIONAMIENTO LOS DATOS. OPTIMIZADORES CONSULTAS. EXTENSIONES L SQL (OPERADOR CUBE, ROLL-UP). OLAP 13 OLAP 14 SISTEMAS MOLAP: SISTEMA PROPÓSITO ESPECÍFICO: ESTRUCTURAS DATOS (ARRAYS). TÉCNICAS COMPACTACIÓN. EL OBJETIVO LOS SISTEMAS MOLAP ES: ALMACENAR FÍSICAMENTE LOS DATOS EN ESTRUCTURAS MULTIDIMENSIONALES FORMA QUE LA REPRESENTACIÓN EXTERNA Y LA REPRESENTACIÓN INTERNA COINCIDAN. EL SERVIDOR MOLAP: CONSTRUYE Y ALMACENA MULTIDIMENSIONALES. LA HERRAMIENTA OLAP: DATOS EN ESTRUCTURAS PRESENTA ESTAS ESTRUCTURAS MULTIDIMENSIONALES. OLAP 15 OLAP 16 MOLAP: DATOS: ARRAYS. EXTRAÍDOS L ALMACÉN DATOS. ALMACENAMIENTO Y PROCESOS EFICIENTES. LA COMPLEJIDAD LA BD SE OCULTA A LOS USUARIOS. EL ANÁLISIS SE HACE SOBRE DATOS AGREGADOS MÉTRICAS O INDICADORES PRECALCULADOS. Y OLAP 17 OLAP 18

4 ROLAP / MOLAP: VENTAJAS E INCONVENIENTES: ROLAP: PUEN APROVECHAR LA TECNOLOGÍA RELACIONAL. PUEN UTILIZARSE SISTEMAS RELACIONALES GENÉRICOS (MÁS BARATOS O INCLUSO GRATUITOS). EL DISEÑO LÓGICO CORRESPON AL FÍSICO SI SE UTILIZA EL DISEÑO KIMBALL. MOLAP: GENERALMENTE MÁS EFICIENTES QUE LOS ROLAP. EL COSTE LOS CAMBIOS EN LA VISIÓN LOS DATOS. LA CONSTRUCCIÓN MULTIDIMENSIONALES. LAS ESTRUCTURAS OLAP 19 OLAP 20 LO INTERESANTE NO ES POR REALIZAR CONSULTAS QUE, EN CIERTO MODO, SE PUEN HACER CON SELECCIONES, PROYECCIONES, CONCATENACIONES Y AGRUPAMIENTOS TRADICIONALES. LO REALMENTE INTERESANTE LAS SON SUS OPERADORES REFINAMIENTO O MANIPULACIÓN CONSULTAS: DRILL. ROLL. SLICE & DICE. PIVOT. OLAP 21 OLAP 22 EL CARÁCTER AGREGADO LAS CONSULTAS EN EL ANÁLISIS DATOS, ACONSEJA LA FINICIÓN NUEVOS OPERADORES QUE FACILITEN LA AGREGACIÓN (CONSOLIDACIÓN) Y LA DISGREGACIÓN (DIVISIÓN) LOS DATOS: AGREGACIÓN (ROLL): PERMITE ELIMINAR UN CRITERIO AGRUPACIÓN EN EL ANÁLISIS, AGREGANDO LOS GRUPOS ACTUALES. DISGREGACIÓN (DRILL): PERMITE INTRODUCIR UN NUEVO CRITERIO AGRUPACIÓN EN EL ANÁLISIS, DISGREGANDO LOS GRUPOS ACTUALES. SI SE SEA INTRODUCIR LA DIMENSIÓN ALMACÉN EN EL ANÁLISIS ANTERIOR E INCLUIR UN NUEVO CRITERIO AGRUPACIÓN SOBRE LA CIUDAD L ALMACÉN: IMPORTE TOTAL LAS VENTAS DURANTE EL AÑO 2002 LOS PRODUCTOS L PARTAMENTO BEBIDAS, POR TRIMESTRE, POR CATEGORÍAS Y POR CIUDAD L ALMACÉN?. RESTRICCIONES: PRODUCTOS L BEBIDAS, VENTAS DURANTE EL AÑO PARTAMENTO PARÁMETROS LA CONSULTA: POR CATEGORÍA PRODUCTO, POR TRIMESTRE Y POR CIUDAD L ALMACÉN. OLAP 23 OLAP 24

5 Marca Bebidas Categoría Departamento Nro_producto Día Día de la semana Mes Año Trimestre importe unidades 2002 Almacén Importe total de ventas en el año 2002, del departamento de Bebidas, por categoría, trimestre y ciudad Ciudad Región OLAP 25 OLAP 26 OLAP 27 OLAP 28 SI SE SEA ELIMINAR EL CRITERIO AGRUPACIÓN SOBRE LA DIMENSIÓN TIEMPO EN LA CONSULTA ORIGINAL: IMPORTE TOTAL LAS VENTAS DURANTE EL AÑO 2002 LOS PRODUCTOS L PARTAMENTO BEBIDAS, POR CATEGORÍAS??. Marca Departamento Categoría Nro_producto Bebidas Día Día de la semana Mes Año Trimestre importe unidades 2002 Almacén Importe total de ventas en el año 2002, del departamento de Bebidas, por categorías Ciudad Región OLAP 29 OLAP 30

6 OLAP 31 OLAP 32 LAS OPERACIONES DISGREGACIÓN (DRILL) Y AGREGACIÓN (ROLL) SE PUEN HACER SOBRE: ATRIBUTOS UNA DIMENSIÓN SOBRE LOS QUE SE HA FINIDO UNA JERARQUÍA: DRILL-DOWN, DOWN, ROLL-UP: PARTAMENTO CATEGORÍA - PRODUCTO (PRODUCTO). AÑO - TRIMESTRE MES - DÍA (TIEMPO). SOBRE DIMENSIONES ROLL-ACROSS: INPENDIENTES: PRODUCTO ALMACÉN TIEMPO. DRILL-ACROSS, OLAP 33 OLAP 34 OTRAS OPERACIONES OLAP SON LAS SIGUIENTES: SLICE & DICE: SELECCIONAR Y PROYECTAR DATOS EN EL INFORME. PIVOT: REORIENTACIÓN INFORME. LAS DIMENSIONES EN EL OLAP 35 OLAP 36

7 OLAP 37 OLAP 38 LAS HERRAMIENTAS OLAP SE CARACTERIZAN POR: OFRECER UNA VISIÓN MULTIDIMENSIONAL LOS DATOS (MATRICIAL). NO IMPONER DIMENSIONES. RESTRICCIONES SOBRE EL OFRECER SIMETRÍA PARA LAS DIMENSIONES. NÚMERO PERMITIR FINIR FORMA FLEXIBLE LIMITACIONES) SOBRE LAS DIMENSIONES: (SIN RESTRICCIONES, AGREGACIONES Y JERARQUÍAS ENTRE ELLAS. OFRECER OPERADORES INTUITIVOS MANIPULACIÓN: DRILL-DOWN, DOWN, ROLL-UP, SLICE-AND AND-DICE, DICE, PIVOT. SER TRANSPARENTES AL TIPO TECNOLOGÍA SOPORTA EL ALMACÉN DATOS (ROLAP O MOLAP). QUE LAS MENCIONADAS SON UN SUBCONJUNTO LAS 12 REGLAS PROPUESTAS POR E.F. CODD PARA A.D. OLAP 39

EXPLOTACIÓN DE UN DW: HERRAMIENTAS OLAP OLAP EXPLOTACIÓN DE UN DW: HERRAMIENTAS OLAP EXPLOTACIÓN DE UN DW: HERRAMIENTAS OLAP

EXPLOTACIÓN DE UN DW: HERRAMIENTAS OLAP OLAP EXPLOTACIÓN DE UN DW: HERRAMIENTAS OLAP EXPLOTACIÓN DE UN DW: HERRAMIENTAS OLAP OLAP... OLAP 1 OLAP 2 MODELO DE UN AMBIENTEOLAP LAS HERRAMIENTAS DE OLAP PRESENTAN AL USUARIO UNA VISIÓN MULTIDIMENSIONAL DE LOS DATOS O ESQUEMA MULTIDIMENSIONAL, PARA CADA ACTIVIDAD QUE ES OBJETO DE ANÁLISIS.

Más detalles

La herramienta OLAP genera la correspondiente consulta y la envía al gestor de consultas del sistema (p.ej. mediante una sentencia SELECT).

La herramienta OLAP genera la correspondiente consulta y la envía al gestor de consultas del sistema (p.ej. mediante una sentencia SELECT). 9. OLAP 9.1 Introducción Las herramientas de OLAP (Online Analytical Processing) presentan al usuario una visión multidimensional de los datos (esquema multidimensional) para cada actividad que es objeto

Más detalles

Área Académica: Sistemas Computacionales. Profesor: Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Profesor: Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Sistemas ROLAP y MOLAP Profesor: Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords: ROLAP, MOLAP,HOLAP Tema: Sistemas ROLAP y MOLAP Abstract

Más detalles

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

Área Académica: Sistemas Computacionales. Tema: Explotación de un Almacén de Datos: Herramientas OLAP. Profesor: Mtro Felipe de Jesus Nuñez Cardenas

Área Académica: Sistemas Computacionales. Tema: Explotación de un Almacén de Datos: Herramientas OLAP. Profesor: Mtro Felipe de Jesus Nuñez Cardenas Área Académica: Sistemas Computacionales Tema: Explotación de un Almacén de Datos: Herramientas OLAP Profesor: Mtro Felipe de Jesus Nuñez Cardenas Periodo:Agosto Noviembre 2011 Keywords Herramientas OLAP,

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 5 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 5 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 5 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Data Warehouse Modelo multidimensional Diagrama

Más detalles

CAPÍTULO 2 DATA WAREHOUSES

CAPÍTULO 2 DATA WAREHOUSES CAPÍTULO 2 DATA WAREHOUSES Un Data Warehouse (DW) es un gran repositorio lógico de datos que permite el acceso y la manipulación flexible de grandes volúmenes de información provenientes tanto de transacciones

Más detalles

Inteligencia de Negocios

Inteligencia de Negocios Inteligencia de Negocios Las herramientas de exploración: El análisis multidimensional, el reporte y distribución pro activa. 1 Esquema de la clase 1. Distintos tipos de necesidades de información 2. Herramientas

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE Técnicas, herramientas y aplicaciones María Pérez Marqués Business Intelligence. Técnicas, herramientas y aplicaciones María Pérez Marqués ISBN: 978-84-943055-2-8 EAN: 9788494305528

Más detalles

Capítulo 2 Tecnología data warehouse

Capítulo 2 Tecnología data warehouse Capítulo 2 Tecnología data warehouse El objetivo de éste capítulo es mostrar la tecnología data warehouse (DW) como una herramienta para analizar la información. Este capítulo se encuentra organizado de

Más detalles

ALMACENES DE DATOS * Transparencias basadas parcialmente en el tutorial DW de Matilde Celma

ALMACENES DE DATOS * Transparencias basadas parcialmente en el tutorial DW de Matilde Celma Temario PARTE II: ALMACENES DE DATOS * Transparencias basadas parcialmente en el tutorial DW de Matilde Celma José Hernández Orallo jorallo@dsic.upv.es Departamento de Sistemas Informáticos y Computación

Más detalles

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición (cont.) Un Data Warehouse es una colección de

Más detalles

Licencia GNU FDL. Detalle del cambio. Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Versión incial. 05/11/2009

Licencia GNU FDL. Detalle del cambio. Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Versión incial. 05/11/2009 Licencia GNU FDL Copyright 2009 Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Se otorga permiso para copiar, distribuir y/o modificar este documento bajo los términos de la Licencia

Más detalles

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II Carlos A. Olarte Bases de Datos II Contenido 1 Introducción 2 OLAP 3 Data Ware Housing 4 Data Mining Introducción y Motivación Cómo puede analizarse de forma eficiente volúmenes masivos de datos? La consulta,

Más detalles

Construcción de cubos OLAP utilizando Business Intelligence Development Studio

Construcción de cubos OLAP utilizando Business Intelligence Development Studio Universidad Católica de Santa María Facultad de Ciencias e Ingenierías Físicas y Formales Informe de Trabajo Construcción de cubos OLAP utilizando Business Intelligence Development Studio Alumnos: Solange

Más detalles

Contenido XIII. Capítulo 1. Capítulo 2. Alfaomega. Bases de datos - Reinosa, Maldonado, Muñoz, Damiano, Abrutsky

Contenido XIII. Capítulo 1. Capítulo 2. Alfaomega. Bases de datos - Reinosa, Maldonado, Muñoz, Damiano, Abrutsky XIII Contenido Capítulo 1 Estructura y tipos de bases de datos...1 1.1 Introducción... 2 1.2 Definición de base de datos... 3 1.3 Sistema de Gestión de Bases de Datos... 4 1.4 Usuarios de la base de datos...

Más detalles

CAPÍTULO 4 IMPLEMENTACIÓN DE SARP. Este capítulo describe los detalles de la implementación de SARP. Una vez explicado el

CAPÍTULO 4 IMPLEMENTACIÓN DE SARP. Este capítulo describe los detalles de la implementación de SARP. Una vez explicado el CAPÍTULO 4 IMPLEMENTACIÓN DE SARP Este capítulo describe los detalles de la implementación de SARP. Una vez explicado el diseño del sistema SARP (ver Capítulo 3) es posible realizar su implementación.

Más detalles

Módulo Minería de Datos

Módulo Minería de Datos Módulo Minería de Datos Diplomado Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Análsis Dimensional OLAP On-Line Analytical Processing Estructura del Proceso

Más detalles

Comparing the MOLAP the ROLAP storage models

Comparing the MOLAP the ROLAP storage models REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 26 No.3, DICIEMBRE DE 2006 (135-142) Análisis del modelo de almacenamiento MOLAP frente al modelo de almacenamiento ROLAP Comparing the MOLAP the ROLAP storage models

Más detalles

SQL Server Business Intelligence parte 1

SQL Server Business Intelligence parte 1 SQL Server Business Intelligence parte 1 Business Intelligence es una de las tecnologías de base de datos más llamativas de los últimos años y un campo donde Microsoft ha formado su camino a través de

Más detalles

Las empresas han comenzado a aprovechar los cada vez más numerosos datos en línea para tomar mejores decisiones sobre sus actividades.

Las empresas han comenzado a aprovechar los cada vez más numerosos datos en línea para tomar mejores decisiones sobre sus actividades. Las empresas han comenzado a aprovechar los cada vez más numerosos datos en línea para tomar mejores decisiones sobre sus actividades. Para ejecutar de manera eficiente las consultas sobre datos tan diferentes

Más detalles

Herramientas de Business Intelligence

Herramientas de Business Intelligence Herramientas de Business Intelligence Curso 2012-2013 Departamento de Lenguajes y Sistemas Informáticos II http://www.kybele.es ISI/SI - 1 Sistemas de Datawarehousing Son el núcleo de las aplicaciones

Más detalles

ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS

ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS 1. Realizado por: Stephanie Herrera Bautista 2. Introducción: 2.1. Propósito: Se busca realizar el planteamiento de las diversas arquitecturas que se pueden

Más detalles

Modulo II Data Warehouse y OLAP

Modulo II Data Warehouse y OLAP Diplomado en Minería de Datos para la Toma de Decisiones Modulo II Data Warehouse y OLAP 2 Arquitectura Data Warehouse Objetivos 2.1 Niveles y Componentes. 2.2 Modelo de Datos Multidimensional. 2.3 Tipos

Más detalles

CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER. 40 horas 60 días

CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER. 40 horas 60 días CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER DURACIÓN DÍAS DE CONEXIÓN 40 horas 60 días CONTACTO: formacion@fgulem.es El Campus Virtual ha sido concebido con una metodología dinámica e

Más detalles

FACULTAD DE INGENIERÍA. Bases de Datos Avanzadas

FACULTAD DE INGENIERÍA. Bases de Datos Avanzadas FACULTAD DE INGENIERÍA Ingeniería en Computación Bases de Datos Avanzadas Datawarehouse Elaborado por: MARÍA DE LOURDES RIVAS ARZALUZ Septiembre 2015 Propósito Actualmente las empresas necesitan contar

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza (raqueltl@unizar.es) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

Escalabilidad y Rendimiento en una Solución BI. Copyright 2008, Solid Quality Mentors. All rights reserved.

Escalabilidad y Rendimiento en una Solución BI. Copyright 2008, Solid Quality Mentors. All rights reserved. Escalabilidad y Rendimiento en una Solución BI Agenda Escalabilidad Rendimiento Escalabilidad SSIS Podemos instalar SSIS de forma independiente en un servidor Podemos escalar utilizando varios servidores

Más detalles

La Base de Datos OLAP Analysis Services (SSAS) Agenda. Agenda. Construyendo una Solución de BI paso a paso con SQL Server 2005

La Base de Datos OLAP Analysis Services (SSAS) Agenda. Agenda. Construyendo una Solución de BI paso a paso con SQL Server 2005 Construyendo una Solución de BI paso a paso con SQL Server 2005 La Base de Datos OLAP Analysis Services (SSAS) Ing. José Mariano Alvarez Jose.Mariano.Alvarez@SqlTotalConsulting.com Agenda Por qué Analysis

Más detalles

ÍNDICE CAPÍTULO 1. TIPOS DE ALMACENAMIENTO DE LA INFORMACIÓN... 13

ÍNDICE CAPÍTULO 1. TIPOS DE ALMACENAMIENTO DE LA INFORMACIÓN... 13 ÍNDICE CAPÍTULO 1. TIPOS DE ALMACENAMIENTO DE LA INFORMACIÓN... 13 1.1 SISTEMAS LÓGICOS DE ALMACENAMIENTO DE LA INFORMACIÓN...13 1.2 ALMACENAMIENTO EN FICHEROS...13 1.2.1 Registros físicos y registros

Más detalles

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Económicas Departamento de Sistemas Asignatura: INTELIGENCIA DE NEGOCIOS Código: 715 Plan 1997 Cátedra: DEPARTAMENTO DE SISTEMAS Carrera: Licenciado en

Más detalles

Virtual 100%. Disponibilidad del aula 24 horas. Servidores Universidad El Bosque. $1 000.000 (Un Millón de Pesos)

Virtual 100%. Disponibilidad del aula 24 horas. Servidores Universidad El Bosque. $1 000.000 (Un Millón de Pesos) División de Educación Continuada Facultad de Ingeniería Programa de Ingeniería de Sistemas Diplomado Business Intelligence and Data Mining Dirigido a: Profesionales en Ingeniería de Sistemas, Ingeniería

Más detalles

Almacenes de datos espaciales y SOLAP utilizando software libre. Leonardo Pandolfi González

Almacenes de datos espaciales y SOLAP utilizando software libre. Leonardo Pandolfi González Almacenes de datos espaciales y SOLAP utilizando software libre Leonardo Pandolfi González Agenda Por qué SOLAP? Modelo Multidimensional Operaciones OLAP Arquitectura Esquema conceptual (caso práctico)

Más detalles

Desarrollo Business Intelligence sobre tecnología Microsoft

Desarrollo Business Intelligence sobre tecnología Microsoft MICSQLBIRA Desarrollo Business Intelligence sobre tecnología Microsoft Fabricante: Microsoft Grupo: Bases de Datos Subgrupo: Microsoft SQL Server 2008 R2 Formación: Presencial Horas: 20 Introducción Este

Más detalles

Concepción - Chile Marcela Varas Universidad de Concepción Chile - 2012

Concepción - Chile Marcela Varas Universidad de Concepción Chile - 2012 Presentación Concepción - Chile www.udec.cl Universidad de Concepción - Chile Estudiantes Universidad de Concepción Departamento de Ingeniería Informática y Ciencias de la Computación Facultad de Ingeniería

Más detalles

ALMACENES PARA GESTIÓN MASIVOS.... ALMACENES PARA GESTIÓN MASIVOS 1 ALMACENES PARA GESTIÓN MASIVOS 2 EL OBJETIVO ES EL ANÁLISIS PARA EL SOPORTE EN LA TOMA DE DECISIONES. GENERALMENTE, LA INFORMACIÓN QUE

Más detalles

Capítulo 4 Implementación

Capítulo 4 Implementación Capítulo 4 Implementación Este capítulo describe los detalles de implementación del sistema. La sección 4.1 habla sobre las herramientas utilizadas y detalla la arquitectura para la implementación de ATEXEM.

Más detalles

Sistemas de Información Orientados a la Toma de Decisiones: el enfoque multidimensional

Sistemas de Información Orientados a la Toma de Decisiones: el enfoque multidimensional Isabel Dapena Bosquet Ingeniera Informática del ICAI (Promoción ). En ingresó en el Instituto de Investigación Tecnológica como Investigadora en Formación, donde desarrolla su actividad en el Área de Sistemas

Más detalles

Sistemas de Información

Sistemas de Información Sistemas de Información Félix Gómez Mármol 5 o Ingeniería Informática Curso 2005-2006 Profesor: José Samos Jiménez (jsamos@ugr.es) http://lsi.ugr.es/ bdf/jsamos/ii/si/ Departamento de Lenguajes y Sistemas

Más detalles

Data Mining, OLAP y Data Warehousing. Robert Antonio Romero Flores Mg. Ingeniería de Sistemas Mg. Administración

Data Mining, OLAP y Data Warehousing. Robert Antonio Romero Flores Mg. Ingeniería de Sistemas Mg. Administración Data Mining, OLAP y Data Warehousing Robert Antonio Romero Flores Mg. Ingeniería de Sistemas Mg. Administración Contenidos 1. Sistemas de ayuda a la toma de decisiones 2. Análisis de datos y Procesamiento

Más detalles

DISEÑO MICROCURRICULAR

DISEÑO MICROCURRICULAR DISEÑO MICROCURRICULAR Código: F-GAC-03D Versión: 01 Edición: 22/08/2007 Nombre del Programa DIPLOMADO EN INTELIGENCIA DE NEGOCIOS Facultad articulada: Duración: Ingenierías 120 Horas Justificación: Actualmente

Más detalles

Sistemas de Data Warehousing

Sistemas de Data Warehousing Federación Médica del Interior (FEMI) Sociedad Uruguaya de Informática en la Salud (SUIS) Información en Salud Edición 2009 Sistemas de Data Warehousing Dr. Ing. Adriana Marotta (In.Co - F.Ing - UDELAR)

Más detalles

BASES DE DATOS TEMA 1

BASES DE DATOS TEMA 1 BASES DE DATOS TEMA 1 Contenido 1. Qué es una base de datos? 2. Un ejemplo 3. Personas que interactúan con la base de datos 4. Inconvenientes de los sistemas de ficheros 5. Modelos de datos 6. Lenguajes

Más detalles

Bases de Datos Multimedia

Bases de Datos Multimedia Bases de Datos Multimedia Introducción Los Objetos Multimedia Sistemas de Gestión de Bases de Datos Multimedia (SGBDM) Almacenamiento Recuperación de objetos multimedia Introducción Los Sistemas de Bases

Más detalles

,QWURGXFFLyQDO 'DWD:DUHKRXVLQJ

,QWURGXFFLyQDO 'DWD:DUHKRXVLQJ &XUVRGH'RFWRUDGR ³([WUDFFLyQGH&RQRFLPLHQWRHQ%DVHVGH'DWRV,QWURGXFFLyQDO 'DWD:DUHKRXVLQJ )HUQDQGR%HU]DO*DOLDQR!" $#% & ' (*),+-.0/1-23)546/879:);< )54:= -?9:)A@>-B;72C+EDF/1-:= < G4*)EH 46/8) @ < IJ)54:=

Más detalles

Bases de Datos Masivas

Bases de Datos Masivas Bases de Datos Masivas Data Warehouse Bases de Datos Multidimensionales Banchero, Santiago Septiembre 2015 Concepto de DW. Definición según W. H. Inmon: A data warehouse is a subject-oriented, integrated,

Más detalles

Bases de Datos Otoño 2012 Maestría en Ingeniería de Software L.I Yessica Sugeidy Morales Mateo. 22/09/2012 Bases de Datos

Bases de Datos Otoño 2012 Maestría en Ingeniería de Software L.I Yessica Sugeidy Morales Mateo. 22/09/2012 Bases de Datos Bases de Datos Otoño 2012 Maestría en Ingeniería de Software L.I Yessica Sugeidy Morales Mateo 22/09/2012 Bases de Datos 1 Antecedentes A principios de la década de los sesenta, el software de acceso a

Más detalles

Cursos SQL Server 2008 R2

Cursos SQL Server 2008 R2 Cursos SQL Server 2008 R2 Cursos SQL Server 2008 R2 Quiénes Somos Centro de Formación Reglada Superior especializado en la Informática desde 1970. Formamos exclusivamente en áreas vinculadas al uso de

Más detalles

Por qué DW y DM? Data Warehouse and Data Mining. Información en las empresas. Data Warehouse

Por qué DW y DM? Data Warehouse and Data Mining. Información en las empresas. Data Warehouse Data Warehouse and Data Mining José A. Royo http://www.cps.unizar.es/~jaroyo email: joalroyo@unizar.es Departamento de Informática e Ingeniería de Sistemas Por qué DW y DM? Mayor poder de procesamiento

Más detalles

Área Académica: Sistemas Computacionales. Tema: Arquitectura de un sistema de almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Tema: Arquitectura de un sistema de almacén de datos. Profesor: Mtro Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Arquitectura de un sistema de almacén de datos Profesor: Mtro Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords Almacen de Datos, Datawarehouse,

Más detalles

2.6.2.- Aplicaciones de las vistas. 2.6.1.- Concepto de vista. 2.6.3.- Vistas en SQL. 2.6.3.- Vistas en SQL.

2.6.2.- Aplicaciones de las vistas. 2.6.1.- Concepto de vista. 2.6.3.- Vistas en SQL. 2.6.3.- Vistas en SQL. 2.6.1.- Concepto de vista. Una vista es una tabla derivada de otras tablas (básicas o virtuales). Una vista se caracteriza porque: Se considera que forma parte del esquema externo. Una vista es una tabla

Más detalles

Base de datos relacional

Base de datos relacional Base de datos relacional Una base de datos relacional es una base de datos que cumple con el modelo relacional, el cual es el modelo más utilizado en la actualidad para modelar problemas reales y administrar

Más detalles

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Redundancia e inconsistencia de datos: Puesto que los archivos que mantienen almacenada la información son creados por

Más detalles

Base de Datos Oracle 10g: Introducción a SQL Código: D17216 - Duración: 5 días (40 horas)

Base de Datos Oracle 10g: Introducción a SQL Código: D17216 - Duración: 5 días (40 horas) Base de Datos Oracle 10g: Introducción a SQL Código: D17216 - Duración: 5 días (40 horas) Lo que aprenderá Esta clase es aplicable para los usuarios de Oracle8i, Oracle9i y Oracle Database 10g. En este

Más detalles

Temario Curso Bases de Datos

Temario Curso Bases de Datos Temario Curso Bases de Datos TEMA 1. INTRODUCCION A LAS BASES DE DATOS 1. Cualidades De La Información 2. Sistemas de Información 2.1. Componentes de un Sistema de Información 3. Niveles de Gestión de

Más detalles

Repositorios (data warehouses) OLAP

Repositorios (data warehouses) OLAP Repositorios (data warehouses) OLAP Carlos Hurtado Larrain Profesor Asistente, Departamento de Ciencias de la Computación, Universidad de Chile Contenido Motivación Nivel Lógico de un Repositorio OLAP

Más detalles

PROYECTO DE TESIS DIEGO GALLARDO. ESPEL - Diego Gallardo

PROYECTO DE TESIS DIEGO GALLARDO. ESPEL - Diego Gallardo PROYECTO DE TESIS DIEGO GALLARDO TEMA DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE ADMINISTRACIÓN DE TIEMPOS EN PROYECTOS DE DESARROLLO DE SOFTWARE Y CONTROL DE DESEMPEÑO MEDIANTE CUBOS DE INFORMACIÓN PARA

Más detalles

El diseño de la base de datos de un Data Warehouse. Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias

El diseño de la base de datos de un Data Warehouse. Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias El diseño de la base de datos de un Data Warehouse Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias El modelo Multidimensional Principios básicos Marta Millan millan@eisc.univalle.edu.co

Más detalles

DATA WAREHOUSE DATA WAREHOUSE

DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE Autor: Roberto Abajo Alonso Asignatura: Sistemas Inteligentes, 5º Curso Profesor: José Carlos González Dep. Ing. Sistemas Telemáticos, E.T.S.I. Telecomunicación Universidad

Más detalles

Tutorial JPivot Del Giudice Glenda Della Mea Mariela Universidad Nacional de Córdoba 18-08-2011

Tutorial JPivot Del Giudice Glenda Della Mea Mariela Universidad Nacional de Córdoba 18-08-2011 Del Giudice Glenda Della Mea Mariela Universidad Nacional de Córdoba 18-08-2011 Contenido Introducción... 2 Qué es JPivot y para que se utiliza?... 2 Qué es OLAP?... 2 Primeros Pasos... 2 1. Login... 2

Más detalles

ADMINISTRACIÓN DE BASES DE DATOS

ADMINISTRACIÓN DE BASES DE DATOS ADMINISTRACIÓN DE BASES DE DATOS Descripción del curso: Con la nueva legislación, para desarrollar la actividad profesional de ADMINISTRACIÓN DE BASES DE DATOS, ya sea en entidades públicas o privadas,

Más detalles

INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2

INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2 Programa de Capacitación y Certificación. INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2 Contenido PERFIL DE UN ESPECIALISTA EN BASES DE DATOS.... 3 6231. MANTENIENDO UNA BASE DE DATOS DE SQL SERVER 2008

Más detalles

BASES DE DATOS TEMA 1. INTRODUCCION

BASES DE DATOS TEMA 1. INTRODUCCION Contenidos generales BASES DE DATOS TEMA 1. INTRODUCCION Bases de datos, Sistemas de gestión de bases de datos y Sistemas de bases de datos Bases de datos vs. Sistemas de archivos Objetivos de los Sistemas

Más detalles

BUSINESS INTELLIGENCE POWER BI

BUSINESS INTELLIGENCE POWER BI BUSINESS INTELLIGENCE POWER BI o Introducción El Business Intelligence o inteligencia empresarial nos proporciona todo el soporte para la toma de decisiones críticas del negocio. Gracias a un potente sistema

Más detalles

Almacenes de datos. (Data Warehouses) Wladimiro Díaz Villanueva. Universitat de València. Wladimiro.Diaz@uv.es. 13019 Diseño de bases de datos p.

Almacenes de datos. (Data Warehouses) Wladimiro Díaz Villanueva. Universitat de València. Wladimiro.Diaz@uv.es. 13019 Diseño de bases de datos p. Almacenes de datos (Data Warehouses) Wladimiro Díaz Villanueva Wladimiro.Diaz@uv.es Universitat de València 13019 Diseño de bases de datos p.1/72 Almacenes de datos 1. Introducción. 2. Almacenes de datos:

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

Bases de Datos Heterogéneas

Bases de Datos Heterogéneas Bases de Datos Heterogéneas Autores: Sandra Navarro Carlos Castellano INTRODUCCION A LOS SISTEMAS GESTORES DE BASES DE DATOS El principal criterio que suele utilizarse para clasificar los SGBD es el modelo

Más detalles

EJ-DSI. Ejemplo - Diseño del Sistema de Información

EJ-DSI. Ejemplo - Diseño del Sistema de Información EJ-DSI Ejemplo - Diseño del Sistema de Información 1 Estructura DSI 1 Definición de la Arquitectura del Sistema DSI 2 Diseño de la arquitectura de soporte DSI 3 Diseño de Casos de Uso Reales DSI 4 Diseño

Más detalles

Bases de Datos. Marta Elena Zorrilla Pantaleón Rafael Duque Medina DPTO. DE MATEMÁTICAS, ESTADÍSTICA Y COMPUTACIÓN. Tema 06. Otros modelos de datos

Bases de Datos. Marta Elena Zorrilla Pantaleón Rafael Duque Medina DPTO. DE MATEMÁTICAS, ESTADÍSTICA Y COMPUTACIÓN. Tema 06. Otros modelos de datos Bases de Datos Tema 06. Otros modelos de datos Marta Elena Zorrilla Pantaleón Rafael Duque Medina DPTO. DE MATEMÁTICAS, ESTADÍSTICA Y COMPUTACIÓN Este tema se publica bajo Licencia: Creative Commons BY-NC-SA

Más detalles

Analysis Server 2008 Diseño multidimensional. Tecnología OLAP Tutorial

Analysis Server 2008 Diseño multidimensional. Tecnología OLAP Tutorial Analysis Server 2008 Diseño multidimensional. Tecnología OLAP Tutorial Marta Zorrilla Universidad de Cantabria 2010 Tabla de contenidos 1. Uso de Microsoft Analysis Services 3 1.1. Cómo crear un cubo OLAP

Más detalles

PARTE II: Almacenes de Datos

PARTE II: Almacenes de Datos PARTE II: Almacenes de Datos Marcelo Fernández Garrido M.fernandez.garrido@gmail.com Agradecimientos a Matilde Celma G. Universidad Politécnica de Valencia Junio, 2008 Temario 1. Introducción 1.1. Finalidades

Más detalles

Tema 1. Conceptos básicos

Tema 1. Conceptos básicos Conceptos básicos Sistema de Gestión de Bases de Datos, SGBD (DBMS, Database Management System): software diseñado específicamente para el mantenimiento y la explotación de grandes conjuntos de datos 1

Más detalles

CONSTRUCCIÓN DEL MODELO DE VENTAS MULTIDIMENSIONAL BASADO EN LA INFORMACIÓN HISTÓRICA DE LA ORGANIZACIÓN TDM TRANSPORTES S.A.S.

CONSTRUCCIÓN DEL MODELO DE VENTAS MULTIDIMENSIONAL BASADO EN LA INFORMACIÓN HISTÓRICA DE LA ORGANIZACIÓN TDM TRANSPORTES S.A.S. CONSTRUCCIÓN DEL MODELO DE VENTAS MULTIDIMENSIONAL BASADO EN LA INFORMACIÓN HISTÓRICA DE LA ORGANIZACIÓN TDM TRANSPORTES S.A.S. HAROLD DARIO JIMENEZ ARBELAEZ DANNE ARLEY RAMIREZ ZAPATA ASESOR: JOSE EUCARIO

Más detalles

BI Data Warehouse. Índice UTN FRRO - SISTEMAS DE GESTION II

BI Data Warehouse. Índice UTN FRRO - SISTEMAS DE GESTION II Índice ÍNDICE...2 RESUMEN...3 INTRODUCCIÓN...5 DATOS OPERACIONALES Y DATOS INFORMATIVOS...6 DATA WAREHOUSE...7 SISTEMAS DE SOPORTE DE DECISIONES...8 INTELIGENCIA DE NEGOCIO...8 PROBLEMAS QUE DAN ORIGEN

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA CENTRO DE EXTENSIÓN Y PROYECCIÓN SOCIAL

UNIVERSIDAD NACIONAL DE INGENIERÍA CENTRO DE EXTENSIÓN Y PROYECCIÓN SOCIAL UNIVERSIDAD NACIONAL DE INGENIERÍA CENTRO DE EXTENSIÓN Y PROYECCIÓN SOCIAL AREA DE CURSOS DE ESPECIALIZACIÓN EN TECNOLOGÍAS DE LA INFORMACIÓN TALLER DE INVESTIGACION EN INTELIGENCIA DE NEGOCIOS CON LA

Más detalles

SÍLABO. : Obligatorio : Ingeniería de Sistemas : IS0704. : VII Ciclo : 03 Teoría y 02 Práctica : 04 : Lenguaje de Programación II

SÍLABO. : Obligatorio : Ingeniería de Sistemas : IS0704. : VII Ciclo : 03 Teoría y 02 Práctica : 04 : Lenguaje de Programación II SÍLABO I. DATOS GENERALES 1.1. Nombre de la Asignatura 1.2. Carácter 1.3. Carrera Profesional 1.4. Código 1.5. Semestre Académico : 2014-I 1.6. Ciclo Académico 1.7. Horas de Clases 1.8. Créditos 1.9. Pre

Más detalles

PROGRAMAS DE ESTUDIO FORMATO 7 INTRODUCCIÓN A SQL. Área de Formación Profesional

PROGRAMAS DE ESTUDIO FORMATO 7 INTRODUCCIÓN A SQL. Área de Formación Profesional PROGRAMAS DE ESTUDIO FORMATO 7 NOMBRE DE LA ASIGNATURA INTRODUCCIÓN A SQL CICLO, AREA O MODULO Área de Formación Profesional CLAVE DE LA ASIGNATURA IT222 OBJETIVOS GENERALES DE LA ASIGNATURA Al final del

Más detalles

Manual imprescindible SQL Server 2012 (c) Francisco Charte Ojeda

Manual imprescindible SQL Server 2012 (c) Francisco Charte Ojeda Manual imprescindible SQL Server 2012 (c) Francisco Charte Ojeda Agradecimientos Introducción Gestores de bases de datos Servidores de bases de datos Microsoft SQL Server 2012 Qué puede hacer con SQL Server

Más detalles

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012.

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012 programa Plan 2008 Área Complementaria Carga horaria semanal Anual/ cuatrimestral Coordinador de Cátedra Objetivos

Más detalles

Modelos Multidimensionales con Analysis Services Primeros Pasos

Modelos Multidimensionales con Analysis Services Primeros Pasos Modelos Multidimensionales con Analysis Services Primeros Pasos Marco Tulio Gómez mgomez@solcomp.com MSc. Tecnologías de la Información MCITP Business Intelligence Developer MCTS Business Intelligence

Más detalles

SYLLABUS I. DESCRIPCIÓN

SYLLABUS I. DESCRIPCIÓN CIBERTEC Dirección de Extensión Profesional División de Alta Tecnología (DAT) Programa : Business Intelligence Application Developer Curso : Diseño e implementación de soluciones OLAP con Analysis Services

Más detalles

SYLLABUS de la Asignatura Inteligencia de Negocios

SYLLABUS de la Asignatura Inteligencia de Negocios Escuela de Informática Sazié 2325 +56 2 2661 8256 contactofi@unab.cl SYLLABUS de la Asignatura Negocios 1. Descripción de la asignatura Este curso presenta el diseño y análisis de sistemas de información

Más detalles

Aplicación de las tecnologías OLAP y Data Warehousing para la gestión hospitalaria utilizando software libre.

Aplicación de las tecnologías OLAP y Data Warehousing para la gestión hospitalaria utilizando software libre. Aplicación de las tecnologías OLAP y Data Warehousing para la gestión hospitalaria utilizando software libre. Autores: Ing. Sandro Martínez Folgoso, Ing. Jorge Recio Capote, Ing. Eduardo Rodríguez Reyes.

Más detalles

Arquitectura Cliente/Servidor

Arquitectura Cliente/Servidor Arquitectura Cliente/Servidor Claudio Cubillos Escuela de Ingeniería Informática Pontificia Universidad Católica de Valparaíso, Chile claudio.cubillos@ucv.cl Arquitectura cliente/servidor v Servidor: rol

Más detalles

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

Consultas con combinaciones

Consultas con combinaciones UNIDAD 1.- PARTE 2 MANIPULACIÓN AVANZADA DE DATOS CON SQL. BASES DE DATOS PARA APLICACIONES Xochitl Clemente Parra Armando Méndez Morales Consultas con combinaciones Usando combinaciones (joins), se pueden

Más detalles

Introducción al Business Intelligence. Marta Zorrilla Universidad de Cantabria 2010/11

Introducción al Business Intelligence. Marta Zorrilla Universidad de Cantabria 2010/11 Introducción al Business Intelligence Marta Zorrilla Universidad de Cantabria Tabla de contenido Qué es Business Intelligence? Campos de aplicación Evolución de los sistemas de gestión de datos hacia los

Más detalles

Capítulo 1: Introducción a los Sistemas de Gestión de Bases de Datos (SGBD)

Capítulo 1: Introducción a los Sistemas de Gestión de Bases de Datos (SGBD) Capítulo 1: Introducción a los Sistemas de Gestión de Bases de Datos (SGBD) Fernando Cano Espinosa Universidad de Oviedo. Departamento de Informática fcano@uniovi.es Produced with L A T E X seminar style

Más detalles

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 8. Elementos Básicos

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 8. Elementos Básicos FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA Tema 8. Elementos Básicos 1.- Ejemplo Introductorio. 2.- Dominios. 3.- Relaciones. 4.- Bases de Datos Relacionales. (Capítulo 11 del Date) EJEMPLO

Más detalles

Unidad 10: DATAWAREHOUSING y OLAP. Cátedra Bases de Datos

Unidad 10: DATAWAREHOUSING y OLAP. Cátedra Bases de Datos Unidad 10: DATAWAREHOUSING y OLAP Cátedra Bases de Datos Introducción Dentro de una organización o empresa coexisten dos grupos diferentes de aplicaciones Aplicaciones Tradicionales Aplicaciones de Análisis

Más detalles

Sistemas de Gestión de Bases de Datos

Sistemas de Gestión de Bases de Datos Sistemas de Gestión de Bases de Datos Página 1 de 7 Programa de: Sistemas de Gestión de Bases de Datos UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina

Más detalles

Tema 11 Bases de datos. Fundamentos de Informática

Tema 11 Bases de datos. Fundamentos de Informática Tema 11 Bases de datos Fundamentos de Informática Índice Evolución Tipos de modelos de datos y SGBD El modelo relacional y el Diseño de una Base de Datos Operaciones básicas: consulta, inserción y borrado.

Más detalles

OpenLab. Módulo OLStat

OpenLab. Módulo OLStat OpenLab Módulo OLStat OpenLab Módulo OLstat OpenLab es un acrónimo de Open for Labs GIIS, nexus IT. nexus IT, An LBi Group Company C \ José Echegaray,8 Edificio 3 Parque Empresarial Alvia 28232 Las Rozas

Más detalles

Nivel Básico/Intermedio. Instalar y Configurar SQL Server 2008. Diseñar una Base de Datos. Optimización de consultas

Nivel Básico/Intermedio. Instalar y Configurar SQL Server 2008. Diseñar una Base de Datos. Optimización de consultas SQL SERVER 2008 Nivel Básico/Intermedio Instalar y Configurar SQL Server 2008 Diseñar una Base de Datos Optimización de consultas Administración y seguridad de una base de datos Analista de sistema, profesionales

Más detalles

SpagoBI Open Source Business Intelligence

SpagoBI Open Source Business Intelligence SpagoBI Open Source Business Intelligence La plataforma SpagoBI Open Source Business Intelligence Conceptos Inteligencia empresarial (Business Intelligence) es un agregado de aplicaciones y herramientas

Más detalles

DIPLOMADO EN BASE DE DATOS

DIPLOMADO EN BASE DE DATOS Universidad Tecnológica de Panamá Facultad de Ingeniería de Sistemas Computacionales Vicedecanato de Investigación Post Grado y Extensión Academia de Especialización Profesional ACADEMIA DE ESPECIALIZACION

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA CENTRO DE INVESTIGACIÓN EN TECNOLOGÍAS DE INFORMACIÓN Y SISTEMAS TESIS DE MAESTRÍA EN CIENCIAS COMPUTACIONALES UTILIZACIÓN

Más detalles

Temario. Índices simples Árboles B Hashing

Temario. Índices simples Árboles B Hashing Temario Introducción y fundamentos Introducción a SQL Modelo Entidad / Relación Modelo relacional Diseño relacional: formas normales Consultas Cálculo relacional Álgebra relacional Implementación de bases

Más detalles

Resumen. El rol del lenguaje SQL en los SGBDR y en la Relacional. cjimenez@inf.udec.cl, tamrstro@inf.udec.cl

Resumen. El rol del lenguaje SQL en los SGBDR y en la Relacional. cjimenez@inf.udec.cl, tamrstro@inf.udec.cl El rol del lenguaje SQL en los SGBDR y en la Relacional. cjimenez@inf.udec.cl, tamrstro@inf.udec.cl Resumen demandas de almacenamiento y procesamiento de datos. Es el conjunto de estas dos capacidades

Más detalles