Curso Inferencia. Miguel Ángel Chong R. 17 de septiembre del 2013

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso Inferencia. Miguel Ángel Chong R. 17 de septiembre del 2013"

Transcripción

1 Curso Estadística Miguel Ángel Chong R. 17 de septiembre del 2013

2 Estimador insesgado de minima varianza Definición Estimador insesgado uniformemente de mínima varianza. Diremos que el estimador insesgado ˆ 0, es insesgado y uniformemente de mínima varianza (UMVUE) para el parámetro, si dado cualquier otro estimador insesgado ˆ de él, se verifica que Var(ˆ 0 ) apple Var(ˆ ) para todos los valores posibles de. Para llegar a obtener el UMVUE, si es que éste existe, tendríamos calcular las varianzas de todos los estimadores insesgados para y quedarnos con el estimador que tenga la varianza más chica. Afortunadamente existe un resultado que nos garantiza que existe una cota inferior para la varianza de un estimador. Si bien no nos da este resultado el estimador de mínima varianza, sí nos dice si hemos alcanzado la cota o no.

3 Las condiciones de regularidad sobre f (x; ) son: i) El modelo f (x; ) para la distribución de la población es tal que el soporte de f no depende de, esdecir que los puntos tales que f (x) > 0noesunintervalo que depende de. ii) La funcion ln(f (x; )) es dos veces diferenciable y continua, es decir, de clase C 2. iii) Las operaciones de derivación e integración (o suma en caso discreto) son intercambiables

4 Cota inferior de Cramer y Rao Sea (X 1,...,X n)unamuestraaleatoriadetamafion, deunapoblaciónconfunciónde densidad f (x; ). Entonces la función de densidad conjunta de la muestra cumple con que Z R L (x 1,...,x n; ) = f (x 1,...,x n; ) Z f (x 1,...,x n; ) dx 1...dx n = 1. R Por otro lado, sea ˆ = g (X 1,...,X n)unestimadorinsesgadoparaelparámetro. Ysisecumplenlascondicionesderegularidad,entonceslavarianzadelestimadorestá acotada inferiormente de la siguiente manera Var ˆ = 1 ln f (x; ) 2 1 h ne 2 ln f (x; 2 A E ln f (x; ) 2 se le conoce como la información de

5 Si el estimador ˆ hubiera sido sesgado, es decir i E hˆ = + B(ˆ ), en donde B(ˆ ) es el sesgo del estimador, entonces la Cota Inferior de Cramer y Rao tiene la forma Var(ˆ ) 2 1+B ˆ 0 apple 2, ln f (x; siendo B 0 (ˆ ) laderivadarespectode del sesgo del estimador.

6 Observaciones Si el modelo de población, X es una variable aleatoria discreta, en vez de usar la función de densidad f (x; ) usamos la función de masa de probabilidad P (X = x). La Cota Inferior de Cramer Rao (CICR) nos da un ĺımite inferior para la varianza del estimador ˆ.

7 Estimador eficiente La propiedad de eficiencia de un estimador la definiremos comparando su varianza con la varianza de los demás estimadores insesgados. Así pues, el estimador más eficiente entre un grupo de estimadores insesgados será el que tenga menor varianza. Definición Estimador eficiente. Un estimador ˆ del parámetro poblacional, es eficiente si es insesgado y además su varianza alcanza la CICR, es decir Var(ˆ ) = 1 apple ln f (x; 2

8 Definición Eficiencia de un estimador. La eficiencia de un estimador insesgado, ˆ del parámetro como e (ˆ ) = CICR, Var ˆ donde e (ˆ )apple1. Por otro lado, si tenemos dos estimadores insesgados ˆ 1 y ˆ 2 con respecto a el parámetro, diremos que el estimador ˆ 1,esmás eficiente que el estimador ˆ 2,siseverifica oequivalentemente e (ˆ 1 ) e (ˆ 2 ), Var(ˆ 1 ) apple Var(ˆ 2 ).

9 Eficiencia relativa. Dados dos estimadores insesgados ˆ 1 y ˆ 2 del parámetro, definimos la eficiencia relativa de ˆ 1 a ˆ 2 como e. relat ˆ 1, ˆ 2 = Var ˆ 2 = Var ˆ 1 e e ˆ 2 ˆ 1. Yporlotantosi e. relat ˆ 1, ˆ 2 8 >< < 1 ˆ 2 es más eficiente que ˆ 1 =1 ˆ 1 y ˆ 2 son igual de eficientes >: > 1 ˆ 1 es más eficiente que ˆ 2

10 Definición Estimador asintóticamente eficiente. Diremos que un estimador ˆ es asintóticamente eficiente si se verifica ĺım n!1 CICR = 1. Var ˆ

11 Estimador consistente Hasta ahora hemos considerado las propiedades de los estimadores puntuales usando una muestras aleatorias de tamaño n, con n fijo. Parece lógico suponer que un estimador será mejor en la medida que el tamaño de muestra n aumente. Además usando el teorema de Glivenko-Cantelli que nos dice que para una muestra aleatoria X 1, X 2,...,X n proveniente de una población con función de distibución F (x). Si a partir de la muestra calculamos la función de distribución empirica F n(x) = 8 0 x 2 1, X (1) >< u x 2 X n (u), X (u+1) y u 2{1,...,n 1} >: 1 x 2 X (n), 1. Entonces d n = sup F (x) F n(x) entonces P ĺım x n!1 dn =0 =1. Es decir, que cuando el tamaño de la muestra es suficientemente grande entonces la distribución de la muestra se parece mucho la de la población y por el valor del estimador tiende a coincidir con el valor del parámetro.

12 Sean ˆ 1, ˆ 2,...,ˆ n una sucesión de estimadores del parámetro, obtenidos a partir de muestras de tamaño 1, 2,...,n, respectivamente, es decir: ˆ 1 = g (X 1 ) ˆ 2 = g (X 1, X 2 ). ˆ n = g (X 1, X 2,...,X n ), de manera que el estimador basado en la muestra de tamaño n lo notaremos por ˆ n, en donde el subíndice n lo empleamos para hacer más evidente la dependencia del tamaño muestral. En o general esta sucesión de estimadores se representa por nˆ n.

13 Definición Estimador consistente. o Diremos que una sucesión de estimadores nˆ n es consistente, si la sucesión converge en probabilidad hacia el parámetro. Esdecir,si ĺım P ˆ n < n!1 = 1 y cada elemento de la sucesión se dirá que es un estimador consistente.

14 Ejemplo Si se lanzara una moneda n veces que tiene probabilidad p de ser águila, entonces Y, el número de águilas en los n lanzamientos, tiene una distribución binomial. Si p es desconocido se puede estimar con Y /n. Qué pasa con esta proporción muestral si aumenta el número de lanzamientos n? IntuitivamentesepensaríaqueY /n debería estar más cerca de p. Esto en términos de probabilidad se escribe así P Y p apple. n Esta probabilidad debería ser cercana a la unidad para valores grandes de n. Si la probabilidad de arriba tiende a uno cuando n!1entonces Y /n es un estimador consistente de p. En general un estimador ˆ de es consistente si para cualquier número positivo, lim P ˆ n apple =1. n!1

15 Suficiencia Cuando hacemos inferencia sobre un parámetro, usando una muestra aleatoria (X 1,...,X n )yunestadísticoˆ (X 1,...,X n )que resume la información proporcionada por la muestra. Podríamos preguntarnos lo siguiente: El resumen que realiza ˆ (X 1,...,X n ) con respecto a (X 1,...,X n ) es tal que no se pierde información que pudiera contener la muestra acerca del (los) parámetro(s) poblacional(es)? Según Fisher, un estadístico es suficiente para hacer inferencia sobre un parámetro, si resume el conjunto de información relevante suministrada por la muestra y ningún otro estadístico (otra función de la muestra) puede proporcionar información adicional a cerca del parámetro desconocido.

16 Definición Estadístico suficiente Un estadístico es suficiente respecto al parámetro si la distribución de probabilidad de la muestra (X 1,...,X n ) condicionada al estadístico no depende del parámetro. Es decir F (X 1,...,X n ) ˆ (X 1,...,X n ) = t) nodependede

17 Existe otra manera que nos permitirá de manera más fácil decir si un estadístico es suficiente. Teorema de Factorización Una condición necesaria y suficiente para que el estadístico ˆ (X ) sea suficiente, es que la función de verosimilitud de la muestra la podamos escribir de la siguiente forma ny L( ; X )= f (x i ; ) i=1 = g ˆ (X ); h(x ) donde g(ˆ (X ); ) dependedelparámetroydelamuestra,através del estadístico ˆ (X ), y h(x ) no depende de.

18 Teorema Si el estadístico ˆ 1 (X ) es suficiente y existe una función inyectiva tal que ˆ 2 (X )=f ˆ 1 (X ) entonces el estadístico ˆ 2 (X ) es también suficiente. Demostración Por ser f inyectiva tenemos que si ˆ 2 (X )=f ˆ 1 (X ) entonces está bien definida ˆ 1 1 (X )=f ˆ 2 (X ). Por otro lado como ˆ 1 (X ) es suficiente tenemos que donde g 1 ˆ 2 (X ); = g f. L( ; X) = g ˆ 1 (X ); h(x ) 1 ˆ 2 = g f (X ) ; h(x ) = g 1 ˆ 2 (X ); h(x ), 1 ˆ 2 (X );. Entonces ˆ 2 (X ) es suficiente para De manera intuitiva podríamos entender este resultado como, si ˆ 1 (X ) se puede calcularse a partir de ˆ 2 (X ), entonces el conocimiento de ˆ 2 (X ), debe ser al menos tan bueno como el de ˆ 1 (X ).

19 Notemos que un recíproco al último teorema sería el siguiente: Si los estadísticos estadisticos ˆ 1 (X )yˆ 2 (X ) son suficientes para el parámetro entonces están relacionados funcionalmente, es decir uno se puede ver como una función del otro.

20 Ahora si una distribución depende de dos parámetros 1 y 2,tambiénpodemos encontrar vía el criterio de factorización estimadores suficientes ˆ 1 (X )yˆ 2 (X )para 1 y 2 respectivamente, esto es lo que nos dice el siguiente resultado. Teorema Los estadísticos ˆ 1 (X )yˆ 2 (X ) son conjuntamente suficientes para 1 y 2 respectivamente si solo si L( 1, 2 ; X )=g 1 ˆ 1 (X ); 1 g 2 ˆ 2 (X ); 2 h(x) donde g 1 ˆ 1 (X ); 1 depende del parámetro 1 ydelamuestra,atravésdelestadístico ˆ 1 (X ), g 2 ˆ 2 (X ); 2 depende del parámetro 2 ydelamuestra,atravésdelestadístico ˆ 2 (X )y h(x ) no depende de.

21 Suficiencia Minimal A continuación veremos un método general para encontrar un estadístico que resuma la información de la muestra lo más posible y sin pérdida de información sobre el parámentro, y a este estadístico lo llamaremos suficiente minimal. Definición Estadístico suficiente y minimal Un estimador es suficiente minimal, si es suficiente y cualquier reducción de la información definida por el ya no es suficiente, es decir desprecia información que está contenida en la muestra, acerca del parámetro.

22 Existe un método general 1 para encontrar estadístico(s) suficiente(s) minimal(es), este método supone la existencia de dos muestras aleatorias de tamaño n, X =(X 1 = x 1,...,X n = x n )y Y =(Y 1 = y 1,...,Y n = y n ), y se calcula el cociente de sus verosimilitudes, es decir Q n i=1 f (x i; ) Q n i=1 f (y i; ) = L( ; X ) g ˆ (X ); h (X ) L( ; X ) =. g ˆ (Y ); h (Y ) Para que esta última igualdad no dependa del parámetro necesitamos que g ˆ (X ); = g ˆ (Y );, y entonces diremos que ˆ (X )essuficienteyminimalpara. 1 Debido a Lehmann y She é

Curso Inferencia. Miguel Ángel Chong R. 24 de septiembre del 2013

Curso Inferencia. Miguel Ángel Chong R. 24 de septiembre del 2013 Curso Estadística Miguel Ángel Chong R. miguel@sigma.iimas.unam.mx 24 de septiembre del 2013 Suficiencia Cuando hacemos inferencia sobre un parámetro, usando una muestra aleatoria (X 1,...,X n )yunestadísticoˆ

Más detalles

Curso Inferencia. Miguel Ángel Chong R. 10 de septiembre del 2013

Curso Inferencia. Miguel Ángel Chong R. 10 de septiembre del 2013 Curso Estadística Miguel Ángel Chong R. miguel@sigma.iimas.unam.mx 10 de septiembre del 013 Distribución de la diferencia de medias muestrales cuando se conoce la varianza poblacional. En muchas situaciones

Más detalles

Curso Inferencia. Miguel Ángel Chong R. 1 de octubre del 2012

Curso Inferencia. Miguel Ángel Chong R. 1 de octubre del 2012 Curso Estadística Miguel Ángel Chong R. miguel@sigma.iimas.unam.mx 1 de octubre del 2012 Definición Estadístico suficiente Un estadístico es suficiente respecto al parámetro si la distribución de probabilidad

Más detalles

Introducción a la Inferencia Estadística

Introducción a la Inferencia Estadística MÁSTER EN ESTADÍSTICA PÚBLICA Experto Universitario: Estadística Aplicada y Técnicas de Encuestación 1 Introducción a la Inferencia Estadística Estimación puntual paramétrica M a Teresa Gómez Departamento

Más detalles

Tema 6. Estimación puntual

Tema 6. Estimación puntual 1 Tema 6. Estimación puntual En este tema: Planteamiento del problema. Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Métodos

Más detalles

Suficiencia y Completitud. Estimadores IMVU.

Suficiencia y Completitud. Estimadores IMVU. 1 Suficiencia y Completitud. Estimadores IMVU. Graciela Boente 1 1 Universidad de Buenos Aires and CONICET, Argentina 2 Definición X P θ con θ Θ. Se dice que T = t(x) es suficiente para θ si: la distribución

Más detalles

Suficiencia y Completitud. Estimadores IMVU.

Suficiencia y Completitud. Estimadores IMVU. 1 Suficiencia y Completitud. Estimadores IMVU. Graciela Boente 1 1 Universidad de Buenos Aires and CONICET, Argentina 2 Definición X P θ con θ Θ. Se dice que T = t(x) es suficiente para θ si: la distribución

Más detalles

Fundamentos para la inferencia. Estadística Prof. Tamara Burdisso

Fundamentos para la inferencia. Estadística Prof. Tamara Burdisso Fundamentos para la inferencia Estadística 018 - Prof. Tamara Burdisso 1 Distribución muestral de la varianza muestral Hasta aquí nos ocupamos de hacer inferencia sobre la media y/o la proporción de una

Más detalles

Tema 2: Introducción a la Inferencia Estadística

Tema 2: Introducción a la Inferencia Estadística Tema 2: Introducción a la Inferencia Estadística 1.- En m.a.s. el estadístico varianza muestral es: a) Un estimador insesgado de la varianza poblacional. b) Un estimador insesgado de la media poblacional.

Más detalles

Curso Inferencia. Miguel Ángel Chong R. 3 de septiembre del 2013

Curso Inferencia. Miguel Ángel Chong R. 3 de septiembre del 2013 Curso Estadística Miguel Ángel Chong R. miguel@sigma.iimas.unam.mx 3 de septiembre del 013 Definamos más formalmente que entenderémos por una muestra. Definción Sea X la v.a. correspondiente a una población

Más detalles

Tema 6. Estimación puntual

Tema 6. Estimación puntual Tema 6. Estimación puntual Contenidos Planteamiento del problema Criterios de comparación de estimadores: Insesgadez Estimadores de mínima varianza Error cuadrático medio Consistencia Métodos para obtener

Más detalles

Variables aleatorias. Utilizando el resultado anterior, vemos que

Variables aleatorias. Utilizando el resultado anterior, vemos que Variables aleatorias Utilizando el resultado anterior, vemos que Variables aleatorias Otro tipo de función generadora (generatriz) es la función generadora de momentos Para una variable aleatoria X y un

Más detalles

Probabilidades y Estadística

Probabilidades y Estadística Probabilidades y Estadística Profesor: Fernando Lema Auxiliares: Víctor Carmi - Abelino Jiménez Universidad de Chile Indice General 1 Indice General 1 Advertencias y Recomendaciones Tener presente siempre

Más detalles

CUESTIONES TEÓRICAS ESTADÍSTICA

CUESTIONES TEÓRICAS ESTADÍSTICA Gestión Aeronáutica: Estadística Teórica Facultad Ciencias Económicas y Empresariales Departamento de Economía Aplicada Profesor: Santiago de la Fuente Fernández CUESTIONES TEÓRICAS ESTADÍSTICA Gestión

Más detalles

Tema 3 - Introducción. Tema 2. Distribuciones en el muestreo Estadísticos y distribución muestral. Ejemplos: X y S 2.

Tema 3 - Introducción. Tema 2. Distribuciones en el muestreo Estadísticos y distribución muestral. Ejemplos: X y S 2. Tema 3 - Introducción 1 Tema 2. Distribuciones en el muestreo Estadísticos y distribución muestral. Ejemplos: X y S 2. Tema 3. Estimación puntual Criterios de comparación de estimadores: Insesgadez. Estimadores

Más detalles

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006 EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 6 Problema ( ptos) Considera un experimento aleatorio con espacio muestral Ω. a) Definir una σ-álgebra A sobre Ω. b) Dar

Más detalles

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud

Más detalles

Comportamiento asintótico de estimadores

Comportamiento asintótico de estimadores Comportamiento asintótico de estimadores Seguimos con variable X con función de densidad/masa f (x; θ). Queremos estimar θ. Dada una muestra aleatoria, definimos un estimador T = h(x 1,..., X n ) Esperamos/deseamos

Más detalles

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM Inferencia Mauricio Olivares ITAM 19 de junio de 2015 Recuerda de nuestra clase anterior que m(x) = α + βx. Recuerda de nuestra clase anterior que m(x) = α + βx. Esta es una relación poblacional, no hay

Más detalles

Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso

Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso Fundamentos para la inferencia Estadísca 017 - Prof. Tamara Burdisso 1 Distribución muestral de la varianza muestral Hasta aquí nos ocupamos de hacer inferencia sobre la media y/o la proporción de una

Más detalles

Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso

Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso Fundamentos para la inferencia Estadísca 016 - Prof. Tamara Burdisso 1 Distribución muestral de la varianza muestral Hasta aquí nos ocupamos de hacer inferencia sobre la media y/o la proporción de una

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Part VII. Estadística I. Mario Francisco. Introducción a la inferencia. Estimación puntual. Propiedades deseables de los estimadores

Part VII. Estadística I. Mario Francisco. Introducción a la inferencia. Estimación puntual. Propiedades deseables de los estimadores Part VII La inferencia puede definirse como el conjunto de métodos mediante cuales podemos extraer información sobre distintas características de interés de cierta distribución de probabilidad de la cual

Más detalles

ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía

ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía Novedades en el Plan de Trabajo Desviación típica sesgada

Más detalles

Tema 4 - Introducción

Tema 4 - Introducción Tema 4 - Introducción 1 Tema 3. Estimación puntual Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Cómo obtener estimadores? Tema

Más detalles

Técnicas Cuantitativas II Estimación puntual de Parámetros. TC II Estimación puntual de parámetros 1 / 34

Técnicas Cuantitativas II Estimación puntual de Parámetros. TC II Estimación puntual de parámetros 1 / 34 Técnicas Cuantitativas II 2012-2013 Estimación puntual de Parámetros TC II Estimación puntual de parámetros 1 / 34 TC II Estimación puntual de parámetros 2 / 34 : concepto de estimador de un parámetro

Más detalles

INFERENCIA ESTADISTICA. Proferora: Lic. Gladis Mazza

INFERENCIA ESTADISTICA. Proferora: Lic. Gladis Mazza INFERENCIA ESTADISTICA Proferora: Lic. Gladis Mazza INFERENCIA ESTADISTICA Por este proceso es posible utilizar estadísticos calculados a partir de muestras para estimar los valores de los parámetros de

Más detalles

Inferencia Estadística

Inferencia Estadística Inferencia Estadística 2do C. 2018 Mg. Stella Figueroa Clase Nº10 Población y Muestra- Parámetro y Estimación puntual Población: Es el conjunto de todos los elementos o unidades elementales con características

Más detalles

Estimador de máxima verosimilitud (MLE)

Estimador de máxima verosimilitud (MLE) Estimador de máxima verosimilitud (MLE) Alvaro Gómez & Pablo Musé {agomez, pmuse}@fing.edu.uy Departamento de Procesamiento de Señales Instituto de Ingeniería Eléctrica Facultad de Ingeniería Marzo de

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud

Más detalles

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i.

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i. Índice Tema 5 Marisa Serrano, José Ángel Huidobro Universidad de Oviedo 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Definición 5. Sea {z n }, n N, una sucesión de números complejos. Se dice

Más detalles

Tema 4: VARIABLES ALEATORIAS BIDIMENSIONALES

Tema 4: VARIABLES ALEATORIAS BIDIMENSIONALES Tema 4: VAIABLES ALEATOIAS BIDIMENSIONALES 1 Concepto de variable aleatoria bidimensional Sea Ω el espacio muestral de un experimento aleatorio. Definimos variable aleatoria bidimensional, como una aplicación

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

3 ESTIMACION. 3.1 Introducción

3 ESTIMACION. 3.1 Introducción 3 ESTIMACION 3.1 Introducción En un problema estadístico, si los datos fueron generados a partir de una distribución de probabilidad F(x) desconocida, la Inferencia Estadística permite decir algo respecto

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda.

ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda. ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda. APRENDIZAJE AUTOMÁTICO, ESTIMACIÓN Y DETECCIÓN Introducción

Más detalles

Muestreo e intervalos de confianza

Muestreo e intervalos de confianza Muestreo e intervalos de confianza Intervalo de confianza para la media (varianza desconocida) Intervalo de confinza para la varianza Grados en Biología y Biología sanitaria M. Marvá. Departamento de Física

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD. Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de

Más detalles

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD. Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 romero@econ.unicen.edu.ar Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo

Más detalles

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como

Más detalles

Distribución Empírica

Distribución Empírica 1 Distribución Empírica X 1,...,X n i.i.d. X i F, X i P I A (X j (ω)) = { 1 Xj (ω) A 0 X j (ω) / A F n (x,ω) = 1 n P n (A,ω) = 1 n n i=1 n i=1 I (,x] (X j (ω)) = #{X j(ω) x} n I A (X j (ω)) = #{X j(ω)

Más detalles

Estadística Aplicada a la Educación

Estadística Aplicada a la Educación Estadística Aplicada a a la la Educación Estadística Aplicada a la Educación Tutor. UNED Madrid-Sur (A.U. Parla) Miguel Ángel Daza 2014/15 migdaza@madridsur.uned.es 1 2014/15 1 2 4 5 6 7 8 9 10 11 12 La

Más detalles

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid 6. Inferencia con muestras grandes 1 Tema 6: Inferencia con muestras grandes 1. Intervalos de confianza para μ con muestras grandes 2. Determinación del tamaño muestral 3. Introducción al contraste de

Más detalles

Tema 3: Estimación estadística de modelos probabilistas. (primera parte)

Tema 3: Estimación estadística de modelos probabilistas. (primera parte) Tema 3: Estimación estadística de modelos probabilistas. (primera parte) Estructura de este tema: 1. 2 Estimación por intervalos de confianza. 3 Contrastes de hipótesis. Planteamiento del problema Inconveniente:

Más detalles

Series de tiempo. Miguel Ángel Chong R. 2 de abril del 2013

Series de tiempo. Miguel Ángel Chong R. 2 de abril del 2013 Estadística Miguel Ángel Chong R miguel@sigmaiimasunammx de abril del 03 Autorregresivos Diremos que un proceso {X t } tt es un autorregresivo de orden p, y lo denotaremos como AR(p), si para p unenteroy,,

Más detalles

Estadística Clase 4. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 4. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 011 Clase 4 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 4 1. Pasos en un proceso estadístico. Inferencia Estadística 3. Estimación Puntual

Más detalles

Bootstrap. Patricia Kisbye. 13 de mayo, FaMAF

Bootstrap. Patricia Kisbye. 13 de mayo, FaMAF Bootstrap Patricia Kisbye FaMAF 13 de mayo, 2010 Técnica de bootstrap La técnica de Bootstrap fue introducida por B. Efron, 1982. Consiste en aproximar la precisión de un estimador a partir de una muestra

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES CARRERA DE: Licenciado en Estadística PROGRAMA DE LA ASIGNATURA DE INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DATOS GENERALES Departamento (División):

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN

BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN Aproximación intutitiva a la inferencia estadística La Estadística es la ciencia que se ocupa de la ordenación y análisis de datos procedentes

Más detalles

Estimación puntual. Estadística II. Curso 2011/2012. Universidad de Salamanca

Estimación puntual. Estadística II. Curso 2011/2012. Universidad de Salamanca Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 Introducción Una estimación puntual de algún parámetro poblacional θ es un valor único del estadístico θ. Por ejemplo,

Más detalles

Folleto de Estadísticas. Teoría del 2do Parcial

Folleto de Estadísticas. Teoría del 2do Parcial Folleto de Estadísticas Teoría del 2do Parcial 2012 Variables aleatorias conjuntas continuas: Sean X y Y dos variables aleatorias continuas con ellas se asocia una función denominada función de densidad

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA25 Clase 5: Series de potencias. Operaciones con series de potencias. Series de potencias Elaborado por los profesores Edgar Cabello y Marcos González Cuando estudiamos las series geométricas, demostramos

Más detalles

Estadística I Tema 5: Introducción a la inferencia estadística

Estadística I Tema 5: Introducción a la inferencia estadística Estadística I Tema 5: Introducción a la inferencia estadística Tema 5. Introducción a la inferencia estadística Contenidos Objetivos. Estimación puntual. Bondad de ajuste a una distribución. Distribución

Más detalles

Notas de clase Estadística R. Urbán R.

Notas de clase Estadística R. Urbán R. Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención

Más detalles

1. Muestreo e Inferencia Estadística

1. Muestreo e Inferencia Estadística Tema 6: Introducción a la Inferencia Estadística Objetivos Introducir los conceptos elementales en esta parte de la asignatura. Tratar con muestras aleatorias y su distribución muestral en ejemplos de

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

Juan Carlos Colonia INFERENCIA ESTADÍSTICA

Juan Carlos Colonia INFERENCIA ESTADÍSTICA Juan Carlos Colonia INFERENCIA ESTADÍSTICA PARÁMETROS Y ESTADÍSTICAS Es fundamental entender la diferencia entre parámetros y estadísticos. Los parámetros se refieren a la distribución de la población

Más detalles

Estimadores insesgados lineales óptimos (BLUE)

Estimadores insesgados lineales óptimos (BLUE) Estimadores insesgados lineales óptimos (BLUE) Alvaro Gómez & Pablo Musé {agomez, pmuse}@fing.edu.uy Departamento de Procesamiento de Señales Instituto de Ingeniería Eléctrica Facultad de Ingeniería Marzo

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 11 Estimadores puntuales y de intervalo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de los estimadores puntuales y de intervalo.

Más detalles

ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía

ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía VIDEOCLASE: Introducción a la estimación de parámetros

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez

INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez INFERENCIA ESTADÍSTICA Notas de clase Profesores: A. Leonardo Bañuelos S. Naelli Manzanarez Gómez TEMA II ESTIMACIÓN PUNTUAL DE PARÁMETROS POBLACIONALES La estimación puntual de un parámetro relativo a

Más detalles

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido Tema : Introducción a la Teoría de la Estimación Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f θ (x), donde θ Θ es el parámetro poblacional desconocido Objetivo:

Más detalles

UNIDAD 4. INFERENCIA ESTADÍSTICA. Prof. Eliana Guzmán U. Semestre A-2015

UNIDAD 4. INFERENCIA ESTADÍSTICA. Prof. Eliana Guzmán U. Semestre A-2015 UNIDAD 4. INFERENCIA ESTADÍSTICA Prof. Eliana Guzmán U. Semestre A-05 INFERENCIA ESTADÍSTICA La teoría de la Inferencia Estadística está conformada por aquellos métodos que permiten hacer generalizaciones,

Más detalles

ASIGNATURA: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA. (Especialidad: Mecánica) Troncal 1 cuatrimestre, 6 créditos: 3 teóricos, 3 prácticos

ASIGNATURA: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA. (Especialidad: Mecánica) Troncal 1 cuatrimestre, 6 créditos: 3 teóricos, 3 prácticos ASIGNATURA: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA (Especialidad: Mecánica) Troncal 1 cuatrimestre, 6 créditos: 3 teóricos, 3 prácticos (Código: 632079) 1. EQUIPO DOCENTE Dr. D. Vicente Novo Sanjurjo. Profesor

Más detalles

Tema 4: VECTORES ALEATORIOS

Tema 4: VECTORES ALEATORIOS Tema 4: VECTOES ALEATOIOS 1 Concepto de variable aleatoria bidimensional Sea Ω el espacio muestral de un experimento aleatorio. Definimos variable aleatoria bidimensional, como una aplicación ( ):Ω tal

Más detalles

Estimador de Máxima Verosimilitud

Estimador de Máxima Verosimilitud Estimador de Máxima Verosimilitud Tratamiento Estadístico de Señales Pablo Musé, Ernesto López, Luis Di Martino {pmuse,elopez,dimartino}@fing.edu.uy Departamento de Procesamiento de Señales Instituto de

Más detalles

Estimación de la desviación estándar

Estimación de la desviación estándar Estadística Española Volumen 59, número 192 / 2017, pp. 37-44 Estimación de la desviación estándar Mariano Ruiz Espejo (*) Universidad Católica San Antonio de Murcia Resumen En el presente artículo estudiamos

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Conceptos básicos de inferencia estadística (I): Inferencia estadística (repaso)

Conceptos básicos de inferencia estadística (I): Inferencia estadística (repaso) Conceptos básicos de inferencia estadística (I): Inferencia estadística (repaso) Tema 1 (I) Estadística 2 Curso 08/09 Tema 1 (I) (Estadística 2) Inferencia estadística Curso 08/09 1 / 24 Inferencia estadística

Más detalles

Estimación de Parámetros

Estimación de Parámetros Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: p Estimación de Parámetros Prueba de Hipótesis Estimación

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Estadística Económica y Estadística Empresarial

Estadística Económica y Estadística Empresarial Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Estadística y Econometría Licenciatura en Ciencias Económicas Sin docencia. Plan a extinguir Proyecto docente de:

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto

Más detalles

Series de tiempo. Miguel Ángel Chong R. 19 de marzo del 2013

Series de tiempo. Miguel Ángel Chong R. 19 de marzo del 2013 Estadística Miguel Ángel Chong R. miguel@sigma.iimas.unam.mx 19 de marzo del 2013 Promedios moviles Definición Diremos que {X t } t2t es un proceso de media movil de orden q, y lo denotaremos como MA(q),

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 011 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Teórica básica. Incluimos. - Temas

Teórica básica. Incluimos. - Temas Teórica básica Incluimos - Temas 1 - Tema 1: Fenómenos aleatorios. Conceptos de probabilidad. Propiedades. Independencia de sucesos. Teorema de Bayes. - Tema 2: Variables aleatorias. Variables discretas.

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenidas en una muestra

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS

PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS Estadística 1 PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS 1. Obtener un estimador insesgado para p en una m.a.s. de tamaño n de una distribución binomial B(m,p) con m conocido y calcular su error

Más detalles

Tema 6: Introducción a la inferencia estadística

Tema 6: Introducción a la inferencia estadística Tema 6: Introducción a la inferencia estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 6: Introducción a la inferencia estadística

Más detalles

VARIABLES ALEATORIAS

VARIABLES ALEATORIAS VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento

Más detalles

Juan José Hernández Ocaña

Juan José Hernández Ocaña Juan José Hernández Ocaña L A e s t a d í s t i c a i n fe r e n c i a l n o s permite estimar los p a r á me t r o s de l a p o b l a c ió n a partir d e l a n á l i s i s d e datos de u n a mu e s t

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química)

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química) Estadística Aplicada y Cálculo Numérico (Grado en Química) Valeri Makarov 10/02/2015 29/05/2015 F.CC. Matemáticas, Desp. 420 http://www.mat.ucm.es/ vmakarov e-mail: vmakarov@mat.ucm.es Capítulo 4 Variables

Más detalles

Academia Universitaria Vicálvaro Camino de la Fuente de arriba, 7 C.P Madrid Tel

Academia Universitaria Vicálvaro Camino de la Fuente de arriba, 7 C.P Madrid Tel Camino de la Fuente de arriba 7 C.P.803 Madrid SEP 008 DCE Examen Estadística Empresarial - 1 - TEORÍA: Pregunta correcta suman 05 puntos pregunta incorrecta resta 0 puntos. Mínimo para corregir la práctica.

Más detalles

PROGRAMA DE ASIGNATURA. CARÁCTER: Obligatoria CARRERA: Licenciatura en Ciencias de la Computación Profesorado en Física Profesorado en Matemática

PROGRAMA DE ASIGNATURA. CARÁCTER: Obligatoria CARRERA: Licenciatura en Ciencias de la Computación Profesorado en Física Profesorado en Matemática PROGRAMA DE ASIGNATURA ASIGNATURA: Probabilidad y Estadística Introducción a la Probabilidad y Estadísitica AÑO: 2012 CARÁCTER: Obligatoria CARRERA: Licenciatura en Ciencias de la Computación Profesorado

Más detalles

Tema 6: Introducción a la inferencia estadística Parte 1

Tema 6: Introducción a la inferencia estadística Parte 1 Tema 6: Introducción a la inferencia estadística Parte 1 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos Lecturas recomendadas:

Más detalles

Estadística Clase 3. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 3. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase 3 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri 1. Pasos en un proceso estadístico 1. Plantear una hipótesis sobre una población.. Diseñar

Más detalles

Universidad Técnica de Babahoyo INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

Universidad Técnica de Babahoyo INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA Universidad Técnica de Babahoyo INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA Ateneo Ruperto P. Bonet Chaple UTB-Julio 2016 OBJETIVO Aplicar las técnicas de Muestreo e Inferencia Estadística Determinar el tamaño

Más detalles

Estimación. Diseño Estadístico y Herramientas para la Calidad. Estimación. Estimación. Inferencia Estadística

Estimación. Diseño Estadístico y Herramientas para la Calidad. Estimación. Estimación. Inferencia Estadística Diseño Estadístico y Herramientas para la Calidad Estimación Epositor: Dr. Juan José Flores Romero juanf@umich.m http://lsc.fie.umich.m/~juan M. en Calidad Total y Competitividad Estimación Inferencia

Más detalles