Tema 4 - Introducción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4 - Introducción"

Transcripción

1 Tema 4 - Introducción 1 Tema 3. Estimación puntual Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Cómo obtener estimadores? Tema 4. Estimadores de máxima verosimilitud Métodos de cálculo. Propiedades.

2 Distribución temporal del temario Tema 1 T T T P Tema 2 T T T P T T T P P Tema 3 T T T P T T T P P Tema 4 T T T P T T T P P Tema 5 T T T P T T T P P Tema 6 T T T P T T T P P Tema 7 T T T P T T T P P T denota una hora de clase de teoría P denota una hora de clase práctica

3 3 Tema 4. Estimadores de máxima verosimilitud Los contenidos a desarrollar en este tema son los siguientes: Definición y propiedades. Técnicas de cálculo. Propiedades de los estimadores de máxima verosimilitud en muestras grandes. Lecturas recomendadas: Sección 7.6 del libro de Peña (2005).

4 Ejemplo 1. En una urna hay 4 bolas que pueden ser blancas o negras. La proporción, θ, de bolas blancas en la urna es desconocida y puede tomar valores en Θ = {0, 1/4, 1/2, 3/4, 1}. Para obtener más información extraemos de la urna 2 bolas con reemplazamiento. Supongamos que la primera bola observada es blanca (B) y la segunda es negra (N). Si calculamos la probabilidad de obtener ese resultado para cada valor posible de θ obtenemos: 0 si θ = 0 3/16 si θ = 1/4 Pr {B, N θ} = 1/4 si θ = 1/2 3/16 si θ = 3/4 0 si θ = 1 4 Qué valor de θ te resulta más verosímil? Verosímil: 1. adj. Que tiene apariencia de verdadero. 2. adj. Creíble por no ofrecer carácter alguno de falsedad. Real Academia Española c

5 Definiciones 5 Definición 1. Sea (X 1, X 2,..., X n ) una muestra aleatoria de una población X con función de probabilidad P θ (o con función de densidad f θ ) donde θ = (θ 1, θ 2,..., θ k ) es un vector de parámetros. La función de verosimilitud, L(x 1, x 2,..., x n ; θ), de la muestra (x 1, x 2,..., x n ) es la función de probabilidad (o de densidad) de (X 1, X 2,..., X n ) evaluada en (x 1, x 2,..., x n ). Definición 2. Sea (X 1, X 2,..., X n ) una muestra aleatoria simple de una población X con función de probabilidad P θ (o con función de densidad f θ ) donde θ = (θ 1, θ 2,..., θ k ) es un vector de parámetros. La función de verosimilitud de la muestra (x 1, x 2,..., x n ) es: L(x 1, x 2,..., x n ; θ) = P θ (x 1 )P θ (x 2 )... P θ (x n ), o L(x 1, x 2,..., x n ; θ) = f θ (x 1 )f θ (x 2 )... f θ (x n ).

6 6 Ejemplo 1. Por simplicidad supondremos que θ toma valores en Θ = {1/4, 1/2, 3/4}. Definimos la variable X que toma valor 1 si sale blanca y 0 si sale negra. (a) Escriba la función de verosimilitud en el caso de que las bolas se obtengan con reemplazamiento (m.a.s.). Definición 2. L(x 1, x 2 ; θ) = ( θ x 1 (1 θ) 1 x 1 ) ( θ x 2 (1 θ) 1 x 2 ). (b) Escriba la función de verosimilitud en el caso de que las bolas se obtengan sin reemplazamiento (No es m.a.s.). Definición 1. L(x 1, x 2 ; θ) = ( θ x 1 (1 θ) 1 x ) ( ( ) x2 ( 1 4θ x1 1 3 ( )) ) 1 x2 4θ x1 3

7 Definiciones 7 Definición 3. Sea (X 1, X 2,..., X n ) una muestra aleatoria de una población X con función de verosimilitud L(x 1, x 2,..., x n ; θ) donde θ = (θ 1, θ 2,..., θ k ) es un vector de parámetros. Un estimador, θ = θ 1, θ 2,..., θ k ) es el estimador de máxima verosimilitud de θ si L(x 1, x 2,..., x n ; θ) = máx θ Θ L(x 1, x 2,..., x n ; θ), para cada (x 1, x 2,..., x n ) X. Ejemplo 1. (c) Obtenga el estimador máximo verosímil (E.M.V.) de θ en el caso de muestras con reemplazamiento. L(x 1, x 2 ; θ) = θ (x 1+x 2 ) (1 θ) (2 x 1 x 2 ). Tenemos que Θ = {1/4, 1/2, 3/4}, así que bastará con evaluar la función de verosimilitud en estos valores. x1 + x2 θ

8 Definiciones 8 A menudo resulta más cómodo trabajar con ln f θ en lugar de con f θ, y buscamos el EMV mediante: ln L(x 1, x 2,..., x n ; θ) = máx θ Θ ln L(x 1, x 2,..., x n ; θ). La función l(x 1, x 2,..., x n ; θ) = ln L(x 1, x 2,..., x n ; θ) recibe el nombre de función soporte. Si la función de verosimilitud es derivable respecto de θ entonces el sistema de ecuaciones de verosimilitud: θ j l(x 1, x 2,..., x n ; θ) = 0, para j = 1, 2,..., k, proporcionan los máximos relativos de l(x, θ). Candidatos a EMV

9 9 Ejemplo 1. (d) Suponiendo que Θ = [0, 1], obtenga el estimador máximo verosímil (E.M.V.) de θ en el caso de muestras con reemplazamiento. l(x 1, x 2 ; θ) = (x 1 + x 2 ) ln(θ) + (2 x 1 x 2 ) ln(1 θ). l(x 1,x 2 ;θ) θ = (x 1 + x 2 ) 1 θ (2 x 1 x 2 ) 1 1 θ. Igualando a cero, obtenemos: θ = x 1+x 2 2. Es el EMV? (e) Obtenga la estimación máximo verosímil para la muestra x 1 = 1 y x 2 = 0. Bastará evaluar el estimador obtenido: θ = x 1+x 2 2 = 1 2. Ejercicio: Apartados (c) y (e) con muestras sin reemplazamiento.

10 10 Ejemplo 2. Obtenga los E.M.V. de los parámetros de las siguientes distribuciones suponiendo que dispone de una muestra aleatoria simple de tamaño n: X Bernoulli(p). X N (µ, σ 2 ) con σ conocida. X Poisson(λ). X Exponencial(λ). X N (µ, σ 2 ) con µ conocida. X N (µ, σ 2 ). Ejemplo 3. U(0, θ). Obtenga el E.M.V. para el parámetro θ de una distribución

11 Propiedades de los EMV 11 Principio de máxima verosimilitud: Si θ es el estimador máximo verosímil de θ, entonces µ = h( θ) es el E.M.V. de µ = h(θ). Consistencia y distribución asintótica: Bajo ciertas condiciones, se tiene que: θ es un estimadores consistente de θ. θ es asintóticamente normal: n( θ θ) A N (0, i(θ) 1 ), donde i(θ) = E [ ( θ ln f(x; θ)) 2 ] es la cantidad de información de Fisher correspondiente a una observación.

12 12 Ejemplo 4. (a) Obtenga el EMV del parámetro θ = e λ = Pr(X = 0) de una distribución P oisson(λ) si dispone de una m.a.s. de tamaño n. En el Ejemplo 2 obtuvimos que el EMV de λ es λ = x, entonces, por el principio de verosimilitud, el EMV de θ es: θ = e λ = e x. (b) Obtenga la distribución asintótica de λ. Tenemos que n( λ λ) A N (0, i(λ) 1 ), donde [ ( i(λ) = E λ ln λx e λ ) 2 ] [ ( ) ] 2 = E (X ln λ λ ln X!) X! λ [ (X ) ] 2 [ X 2 = E λ 1 = E λ 2 2 X ] λ + 1 = λ + λ2 λ 2 2 λ λ + 1 = 1 λ. Finalmente, n( λ λ) A N (0, λ).

13 13 (c) Obtenga la distribución asintótica de θ. Tenemos que n( θ θ) A N (0, i(θ) 1 ), donde i(θ) = E = E [ ( θ ln λx e λ X! ) 2 ] = E [ ( θ ln ( ) 2 ] ln(θ))x θ X! [ ( ) ] 2 (X ln( ln(θ)) + ln(θ) ln X!) θ = E [ ( X 1 θ ln θ + 1 ) ] 2 θ = λ + λ2 θ 2 ln 2 θ + 2 λ θ 2 ln θ + 1 θ 2 = ln θ + ln2 θ θ 2 ln 2 θ 2 ln θ θ 2 ln θ + 1 θ 2 = 1 θ 2 ln θ. Finalmente, n( θ θ) A N (0, θ 2 ln θ). La información de Fisher también [ puede calcularse ] mediante: 2 i(θ) = E ln f(x; θ). θ2

14 Propiedades de los EMV 14 Insesgadez asintótica: E[ θ] θ. Eficiencia asintótica: Var[ θ] A = 1/E [ ( θ ) ] 2 ln f(x; θ) = I(θ) 1 = (n i(θ)) 1. Cota de Frechet Cramer Rao. Var( ϑ) I(θ) 1, donde ϑ es un estimador centrado cualesquiera e I(θ) es la información de Fisher de una muestra de tamaño n.

15 15 Ejemplo 5. Supongamos que los rendimientos de las acciones de la empresa SEGURA.SL siguen una distribución normal de media µ euros y varianza σ 2. Se toma una m.a.s. de 20 rendimientos y se tiene: 5,29 3,66 5,71 6,62 4,30 5,85 6,25 3,40 3,55 5,57 4,60 5,69 5,81 5,71 6,29 5,66 6,19 3,79 4,98 4,84 (a) Calcular los valores de los estimadores máximo verosímiles de µ y σ en esa muestra. En el Ejemplo 2 obtuvimos que el EMV de (µ, σ 2 ) es ( x, s 2 ), entonces, por el principio de verosimilitud, tenemos que ( µ, σ) = ( x, s). x = 1 20 (5,29 + 3, ,84) = 5,188, s = 1 20 ((5,29 5,188)2 + (3,66 5,188) (4,84 5,188) 2 ) 0,9712.

16 16 Ejemplo 5. (b) El VaR (value at risk) es una medida de la máxima pérdida esperada en una cartera, durante período de tiempo específico con una probabilidad dada, α. Una manera de calcular el VaR es suponiendo que los beneficios diarios de un valor se distribuyen de acuerdo a la distribución normal. Esta simplificación permitió un importante avance de la teoría de carteras, y es frecuentemente empleada en cálculos estadísticos financieros. La empresa SEGURA.SL considera como pérdidas todos los rendimientos inferiores a 5 euros por acción. Es decir, los beneficios siguen una distribución N (µ 5, σ 2 ). En ese caso, las pérdidas máximas esperadas para un nivel α son: V ar = µ 5 z α σ. Obtenga la distribución asintótica del estimador V ar = µ 5 z α σ.

17 17 En primer lugar, obtenemos la distribución de ( µ, σ). Tenemos, f(x) = ( 1 exp 1 2πσ 2 (x µ) 2 ) σ 2 ln f(x) = ln 2π ln σ 1 (x µ) 2 2 σ 2. Obtenemos la derivadas parciales respecto de µ y σ: (x µ) ln f(x) = µ σ 2 σ ln f(x) = 1 σ (x µ)2 σ 3 y la matriz de segundas derivadas (Jacobiano): [ 2 µ µ ln f(x) ] [ 2 µ σ ln f(x) 2 σ µ ln f(x) 2 = σ σ ln f(x) 1 σ 2 2 (x µ) σ 3 2 (x µ) 1 3 (x µ)2 σ 3 σ 2 σ 4 ].

18 18 Obtenemos la matriz de información: [ i(θ) = i(µ, σ) = E 1 σ 2 2 (X µ) σ 3 2 (X µ) σ 3 1 σ (X µ)2 σ 4 ] = [ 1 σ σ σ2 σ 4 ] y la distribución de ( µ, σ) es:, ([ ] [ ]) µ A n N (0, i(θ) µ σ 1 ) = N σ ([ 0 0 ], [ σ σ 2 2 ]). [ Finalmente, como V ar = µ 5 z α σ = [1, z α ] µ σ ] 5, obtenemos: ) ( A n ( V ar V ar N 0, σ 2 + zα 2 σ 2 2 ).

19 Recapitulación 19 Tema 4. Estimadores de máxima verosimilitud Definición del estimador MV. Técnicas de cálculo. Cómo obtener estimadores? Propiedades de los estimadores de MV en muestras grandes. Insesgadez asintótica. Asintóticamente de mínima varianza. Consistentes. Distribución asintótica normal. Por qué elegir un EMV?

20 20 Tema 3. Estimación puntual Tema 4. Estimadores de máxima verosimilitud Generalización Tema 5. Intervalos de confianza Definición. Intervalos de confianza para medias y varianzas en poblaciones normales. Intervalos de confianza en muestras grandes. Determinación del tamaño muestral.

Tema 6. Estimación puntual

Tema 6. Estimación puntual Tema 6. Estimación puntual Contenidos Planteamiento del problema Criterios de comparación de estimadores: Insesgadez Estimadores de mínima varianza Error cuadrático medio Consistencia Métodos para obtener

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Tema 3: Estimadores de máxima verosimilitud

Tema 3: Estimadores de máxima verosimilitud Tema 3: Estimadores de máxima verosimilitud 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: motivación Método

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

Estadística I Tema 7: Estimación por intervalos

Estadística I Tema 7: Estimación por intervalos Estadística I Tema 7: Estimación por intervalos Tema 7: Estimación por intervalos Ideas a transmitir Definición e interpretación frecuentista. Intervalos de confianza para medias y varianzas en poblaciones

Más detalles

Introducción a la Inferencia Estadística

Introducción a la Inferencia Estadística MÁSTER EN ESTADÍSTICA PÚBLICA Experto Universitario: Estadística Aplicada y Técnicas de Encuestación 1 Introducción a la Inferencia Estadística Estimación puntual paramétrica M a Teresa Gómez Departamento

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud

Más detalles

Tema 6: Introducción a la Inferencia Bayesiana

Tema 6: Introducción a la Inferencia Bayesiana Tema 6: Introducción a la Inferencia Bayesiana Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid concepcion.ausin@uc3m.es CESGA, Noviembre 2012 Contenidos 1. Elementos básicos de

Más detalles

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13 Auxiliar 9 MNL y MLE Daniel Olcay IN4402 21 de octubre de 2014 Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de 2014 1 / 13 Índice Modelos no lineales Probabilidad lineal Probit Logit Máxima verosimilitud

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Estimación de Máxima Verosimilitud Utilizando la Función optim en R

Estimación de Máxima Verosimilitud Utilizando la Función optim en R Estimación de Máxima Verosimilitud Utilizando la Función optim en R Juan F. Olivares-Pacheco * 15 de diciembre de 2006 Resumen En este trabajo se muestra el método de verosimilitud para la estimación de

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza El concepto de intervalo de confianza (IC) IC aproximados basados en el TCL: intervalos para una proporción Determinación del mínimo tamaño

Más detalles

Estimador de Máxima Verosimilitud

Estimador de Máxima Verosimilitud Estimador de Máxima Verosimilitud Tratamiento Estadístico de Señales Pablo Musé, Ernesto López, Luis Di Martino {pmuse,elopez,dimartino}@fing.edu.uy Departamento de Procesamiento de Señales Instituto de

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Tema 2 - Introducción

Tema 2 - Introducción Tema 2 - Introducción 1 Tema 1. Introducción a la inferencia estadística Planteamientos y objetivos. Revisión de distribuciones multivariantes. Esperanza y varianza de sumas de v.a. independientes. Tema

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Lista de Ejercicios (Parte 1)

Lista de Ejercicios (Parte 1) ACT-11302 Cálculo Actuarial III ITAM Lista de Ejercicios (Parte 1) Prof.: Juan Carlos Martínez-Ovando 15 de agosto de 2016 P0 - Preliminar 1. Deriva las expresiones de las funciones de densidad (o masa

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

Principios de reducción de la data

Principios de reducción de la data Capítulo 6 Principios de reducción de la data 6.1. Introducción Un experimentador usa la información en una muestra X 1,, X n para realizar el proceso de inferencia sobre algun parámetro desconocido θ.

Más detalles

Estimación por intervalo del parámetro de la distribución de Poisson con una sola observación

Estimación por intervalo del parámetro de la distribución de Poisson con una sola observación Revista Colombiana de Estadística Volumen 30 No. 1. pp. 69 a 75. Junio 2007 Estimación por intervalo del parámetro de la distribución de Poisson con una sola observación Interval Estimation for the Poisson

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Cuál es el campo de estudio de la prueba de hipótesis?

Cuál es el campo de estudio de la prueba de hipótesis? ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

MLG Ana M. Bianco FCEyN

MLG Ana M. Bianco FCEyN MLG Ana M. Bianco FCEyN 2008 44 Propiedades de los Estimadores de Máxima Verosimilitud Recordemos que si la variable aleatoria Y tiene función de densidad (f.d.)o probabilidad puntual (f.p.p.)f(y, θ),

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

Tema 7: Introducción a la Teoría sobre Estimación

Tema 7: Introducción a la Teoría sobre Estimación Tema 7: Introducción a la Teoría sobre Estimación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Introducción a la Teoría sobre Estimación

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM Inferencia Mauricio Olivares ITAM 19 de junio de 2015 Recuerda de nuestra clase anterior que m(x) = α + βx. Recuerda de nuestra clase anterior que m(x) = α + βx. Esta es una relación poblacional, no hay

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

4.1. Definición de variable aleatoria. Clasificación.

4.1. Definición de variable aleatoria. Clasificación. Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces

Más detalles

Definición Una hipótesis es una afirmación acerca de un parámetro.

Definición Una hipótesis es una afirmación acerca de un parámetro. Capítulo 8 Prueba de hipótesis Existen dos áreas de interés en el proceso de inferencia estadística: la estimación puntual y las pruebas de hipótesis. En este capítulo se presentan algunos métodos para

Más detalles

El Movimiento Browniano en la modelización del par EUR/USD

El Movimiento Browniano en la modelización del par EUR/USD MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma er. imposio Metodología eis igma Resumen Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Ejemplos de situaciones normales Ejemplos de situaciones no normales Resumen Implicaciones

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Estadísticas y distribuciones de muestreo

Estadísticas y distribuciones de muestreo Estadísticas y distribuciones de muestreo D I A N A D E L P I L A R C O B O S D E L A N G E L 7/11/011 Estadísticas Una estadística es cualquier función de las observaciones en una muestra aleatoria que

Más detalles

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,... Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Variables Dependientes Limitadas

Variables Dependientes Limitadas Variables Dependientes Limitadas Muestras Truncadas y Censuradas: revisión En algunos casos las variables dependientes pueden estar limitadas en su rango. Ejemplos típicos son las limitaciones por la forma

Más detalles

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 014-015 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Primavera 15 FECHA: de Junio de 15 Fecha publicación notas: 11 de Junio de 15 Fecha revisión

Más detalles

Cota Inferior de Cramer Rao

Cota Inferior de Cramer Rao Cota Inferior de Cramer Rao Tratamiento Estadístico de Señales Pablo Musé, Ernesto López & Luís Di Martino {pmuse,elopez}@fing.edu.uy Departamento de Procesamiento de Señales Instituto de Ingeniería Eléctrica

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

Muestreo probabilístico. Estimadores

Muestreo probabilístico. Estimadores Capítulo 1 Muestreo probabilístico. Estimadores Como hemos definido anteriormente, el muestreo es el proceso que nos permite la extracción de una muestra a partir de una población. Dentro de este muestreo

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Tema 7 Intervalos de confianza Hugo S. Salinas

Tema 7 Intervalos de confianza Hugo S. Salinas Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Familias de distribuciones

Familias de distribuciones Capítulo 2 Familias de distribuciones 2.1. Introducción Las distribuciones estadísticas son usadas para modelar poblaciones a través de un miembro de una familia de distribuciones. Cada familia se encuentra

Más detalles

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Teoría

Más detalles

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

Funciones de Variables Aleatorias. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Funciones de Variables Aleatorias. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Funciones de Variables Aleatorias UCR ECCI CI-135 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción En los métodos estadísticos estándar, el resultado de la prueba

Más detalles

Introducción al Tema 6. Tema 5. Intervalos de confianza Definición. Ejemplos de intervalos de confianza. Determinación del tamaño muestral.

Introducción al Tema 6. Tema 5. Intervalos de confianza Definición. Ejemplos de intervalos de confianza. Determinación del tamaño muestral. Introducción al Tema 6 1 Tema 5. Intervalos de confianza Definición. Ejemplos de intervalos de confianza. Determinación del tamaño muestral. Esta θ en el intervalo de confianza? Tema 6. Contraste de hipótesis

Más detalles

Preparación de los datos de entrada

Preparación de los datos de entrada Preparación de los datos de entrada Clase nro. 6 CURSO 2010 Objetivo Modelado de las características estocásticas de los sistemas. Variables aleatorias con su distribución de probabilidad. Por ejemplo:

Más detalles

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) = SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/2009 1. X = 132, 25 Mediana: M e = 134 + 135 2 = 134, 5 Tercer cuartil: Q 3 = 140 + 141 2 = 140, 5 11 288 12 11267 13 04566 14 0127 15 12 Pueden

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBADE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso - (JUNIO) MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2012) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Un pintor dispone de dos tipos de pintura para realizar su trabajo.

Más detalles