Segundo examen parcial. Soluciones. Ejercicio 1 (1 hora y 40 minutos.) 12 de junio de 2008

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Segundo examen parcial. Soluciones. Ejercicio 1 (1 hora y 40 minutos.) 12 de junio de 2008"

Transcripción

1 ÁLGEBRA Segundo examen parcial Soluciones Ejercicio 1 (1 hora y 40 minutos 1 de junio de En el espacio de matrices M n n (IR consideramos las formas bilineales: f : M n n (IR M n n (IR IR, f(a, B = traza(ab t g : M n n (IR M n n (IR IR, g(a, B = traza(ab (a Estudiar si son simétricas Dadas A, B, M n n veamos la simetría de f: f(a, B = traza(ab t = traza((ab t t = traza(ba t = f(b, A, donde hemos usado que la traza de una matriz coincide con su traspuesta Ahora la simetría de g: g(a, B = traza(ab = traza(ba = g(b, A, donde usamos que la traza de AB es la misma que la traza de BA: traza(ab = traza(ba = (AB ii = i=1 (BA kk = k=1 k=1 i=1 A ik B ki B ki A ik (b Probar que para n, f define un producto escalar, pero g no Qué ocurre para n = 1? Necesitamos ver que f es definida positiva, es decir, que f(a, A > 0 si A Ω Pero: f(a, A = traza(a A t = (AA t ii = i=1 A ik (A t ki = Como la suma es de cuadrados, es mayor que cero si alguno de los coeficientes A ik es no nulo Sin embargo para la aplicación g si tomamos la matriz: se cumple B 0: luego B no es definida positiva B = g(b, B = traza(b = traza(ω = 0 Si n = 1 entonces las aplicaciones f y g son en realidad la misma, porque una matriz de dimensión uno coincide con su traspuesta Por tanto ambas son productos escalares A ik

2 (c Para n = calcular la matriz asociada a g respecto de la base canónica, hallar la signatura y clasificar la forma cuadrática asociada Si llamamos: ( x1 x A = x 3 x 4, B = A = y1 y y 3 y 4 se tiene: x1 y g(a, B = traza(ab = traza 1 + x y 3 x 1 y + x y 4 = x x 3 y 1 + x 4 y 3 x 3 y + x 4 y 1 y 1 + x y 3 + x 3 y + x 4 y 4 4 de donde la matriz asociada respecto de la base canónica es: 0 0 G = Para hallar la signatura la diagonalizamos por congruencia: G 0 0 1/ Por tanto la signatura es (3, 1 y la forma cuadrática asociada a g es no degenerada e indefinida (d Para n = y con el producto escalar definido por f, calcular la matriz asociada respecto de la base canónica de la aplicación proyección ortogonal sobre el subespacio de matrices simétricas Consideramoas la base del subespacio de matrices simétrias: { S 1 = 1 0, S 0 0 =, S = } 0 0 x1 x Lo completamos hasta una base ortogonal de la misma Buscamos matrices X = tales que: x 3 x 4 f(x, S 1 = f(x, S = f(x, S 3 = 0 Operando: Por tanto podemos tomar: f(x, S 1 = 0 x 1 = 0 f(x, S = 0 x + x 3 = 0 f(x, S 3 = 0 x 4 = 0 S 4 = 1 0 En la base B = {S 1, S, S 3, S 4 } la matriz de la proyección ortogonal es: La cambiamos a la base canónica: 0 0 P BB = P CC = M CB P BB M BC = M 1 BC P BBM BC

3 donde Operando queda: 1 0 M BC = / 1/ 0 P CC = / 1/ (e Para n = y con el producto escalar definido por f, hallar una base ortonormal del subespacio generado por las matrices: { } 1 0,, Comprobamos si los tres vectores son independientes Para ello analizamos el rango de la matriz de sus coordenadas respecto de la base canónica: Ttiene rango Por tanto una base de ese subespacio está formada por dos vectores Ahora aplicamos GramSchmidt a los vectores: ( 1 0 U 1 = 0 Tomamos: con Por tanto:, U = V 1 = U 1, V = λv 1 + U, f(v 1, V = 0 λ = f(u, U 1 f(u 1, U 1 = traza(u U t 1 traza(u 1 U t 1 = 5 = 5 V = 5 U 1 + U = / /5 Finalmente normalizamos los vectores dividiéndolos por su norma: V 1 = f(v 1, V 1 = traza(v 1 V t 1 = 5, V = f(v, V = traza(v V t = 1 5 La base pedida es: W 1 = 1 5 V 1 = ( 1/ /, W 5 = 1 ( 5/5 0 1/ 5 V = 5 5/5 (f Para cualquier n >, hallar la signatura y clasificar la forma cuadrática asociada a g ( puntos Observamos que sobre las matrices simétricas f y g actúan igual ya que si B es simétrica traza(ab = traza(ab t Por tanto, la restricción de g al subespcio de matrices simétricas es definida positiva, porque coincide con f Así el número de signos positivos de la signatra es mayor o igual que la dimensión p del espacio de matrices simétricas, donde: p = n(n + 1

4 Además sabemos que matrices simétricas y hemisimétricas son espacios suplementarios restringimos a las matrices hemisimétricas, se cumple que dada A hemisimétrica no nula: Si nos g(a, A = traza(a A = traza( A A t = f(a, A < 0, luego esa restricción es definida negativa Por tanto el número de signos negativos de la signatura es mayor o igual que la dimensión q el espacio de matrices hemisimétricas, donde: q = n p = n(n 1 Deducimos que la signatura es (p, q con p p y q q pero como: en realidad son igualdades y la signatura es: n p + q p + q n ( n(n + 1 (p, q = (p, q =, n(n 1 (05 puntos extra En R 3 con respecto al producto escalar usual y considerando como orientación positiva la dada por la base canónica escoger un semieje de giro y un ángulo de giro que lleve los semiejes positivos OX, OY, OZ en, respectivamente, los semiejes positivos OY, OZ, OX Los semiejes positivos OX, OY, OZ están generados respectivamente por los vectores de la base canónica e 1 = (1, 0, 0, e = (0, 1, 0, e 3 = (0, 0, 1 La transformación ortogonal t que nos piden cumple: t(e 1 = e, t(e = e 3, t(e 3 = e 1 Por tanto su matriz asociada respecto de la base cańonica es: T = Verifica que det(t = 1 y traza(t = 0 Se trata por tanto de un giro de ángulo α dado por: cos(α + 1 = 0 cos(α = 1 α = ±π 3 El semieje de giro viene dado por un autovector asociado al 1: (x, y, z(t Id = (0, 0, 0 x + z = 0, x y = 0 (x, y, z L{(1, 1, 1} Finalmente decidimos el signo del ángulo de giro Nos fijamos en la orientación de {(1, 1, 1, (1, 0, 0, t(1, 0, 0 = (0, 1, 0}: det = 1 > 0 0 Se trata de un giro de ángulo π 3 y semieje generador por (1, 1, 1 (09 puntos

5 3 En el plano afín E calcular la matriz asociada respecto de la base canónica de un producto escalar para que el cuadrilátero determinado por las rectas x = 0, x =, x + y = 1, x + y = 3 sea un cuadrado Es única la solución? Intersecamos los pares de rectas paralelas entre si, es decir, las rectas x = 0 y x = con las rectas x + y = 1 e x + y = 3, para obtener los cuatro vértices del paralelogramo dado Nos quedan: A = (0, 1, B = (0, 3, C = (, 1, D = (, 1 Para que el cuadrilátro sea un cuadrados los vectores AB y AD han de ser de igual módulo y perpendiculares: AB = (0, 3 (0, 1 = (0,, AD = (, a b Si denotamos por G = a la matriz del producto escalar pedida, ha de cumplirse: b c De donde: (0, G(0, t = (, G(, t 4c = 4a 8b + 4c (0, G(, t = 0 b c = 0 a = b, b = c Por tanto como matriz de Gram podemos tomar cualquiera de la forma: c c G = c c con c > 0 (la solución no es única (09 puntos 4 En el plano afín E y con respecto al producto escalar usual encontrar la ecuación de todas las rectas que distan 1 unidad del origen de coordenadas y unidades del punto (4, 0 Consideramos la ecuación de una recta r genérica: ax + by + c = 0 Supondremos por comodidad que a + b = 1 y b 0 (siempre podemos hacer esto teniendo en cuenta que ecuaciones proporcionales definen la misma recta Imponemos las condiciones del enunciado: Obtenemos: d(r, (0, 0 = 1 c 4a + c = 1, d(r, (4, 0 = 1 a + b a + b = c = 1 c = 1 ó c = 1 - Si c = 1 la segunda ecuación queda: 4a + 1 = 4a + 1 = ó 4a + 1 = de donde a = 1/4 y b = 1 a = 15/4 ó a = 3/4 y b = 1 a = 7/4 - Si c = 1 la segunda ecuación queda: 4a 1 = 4a 1 = ó 4a 1 = de donde a = 1/4 y b = 1 a = 15/4 ó a = 3/4 y b = 1 a = 7/4 Por tanto las cuatro rectas solución son: x + 15y + 4 = 0, x + 15y 4 = 0, 3x + 7y + 4 = 0, 3x + 7y 4 = 0 (1 puntos

Examen Final Ejercicio 2 (1 hora y 30 min.) 27 de mayo de 2011

Examen Final Ejercicio 2 (1 hora y 30 min.) 27 de mayo de 2011 Álgebra Lineal II Eamen Final Ejercicio 2 ( hora 30 min 27 de mao de 20 En el espacio afín euclideo usual consideramos una pirámide triangular ABCD de la cual sabemos: - A (0, 0, 0, B (, 0, 0, C (0,, -

Más detalles

3. Transformaciones ortogonales. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

3. Transformaciones ortogonales. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 3 Transformaciones ortogonales En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Definición Definición 11 Una transformación ortogonal f de un espacio eculídeo U es un endomorfismo

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Examen Final Ejercicio único (3 horas) 20 de enero de n(n 1) 2. C n,3 = n(n 3) n =

Examen Final Ejercicio único (3 horas) 20 de enero de n(n 1) 2. C n,3 = n(n 3) n = Álgebra Lineal I Examen Final Ejercicio único (3 horas) 0 de enero de 014 1. Sea P un polígono regular de n lados. (i) Cuántas diagonales tiene el polígono?. Las diagonales son segmentos que unen pares

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009 6. Sean a y b dos números reales. En el espacio P 1 de los polinomios de grado menor o igual que

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2015 2016) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

Tema 11: Problemas Métricos

Tema 11: Problemas Métricos ..- Distancia entre dos puntos : Tema : Problemas Métricos B AB A d( A, B) AB La distancia entre dos puntos Aa (, a, a) Bbb (,, b ) es el módulo del vector que une dichos puntos: d( A, B) AB b a b a b

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2016 2017) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = {(1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 24 25 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R.

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R. ÁLGEBRA Práctica 13 Espacios afines E 2 y E 3 (Curso 2004 2005) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = {O, ē 1, ē 2, ē 3 } y R = {P, ū 1, ū 2, ū 3 }, donde

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2004 Sea f : R R la función definida por f(x) = 2 x. x. (a) [0 75 puntos] Esboza la gráfica de f. (b) [1 punto] Estudia la derivabilidad de f en x = 0. (c) [0

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 2006

Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 2006 ÁLGEBRA Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 006 1. Calcular la ecuación de una hipérbola que tiene por asíntota a la recta x = y, por eje la recta x+y = 1 y que pasa por el

Más detalles

Unidad 6 Geometría euclídea. Producto escalar

Unidad 6 Geometría euclídea. Producto escalar Unidad 6 Geometría euclídea Producto escalar PÁGINA 131 SOLUCIONES 1 La recta 4 x 3y + 6 = 0 tiene de pendiente 4 m = 3 4 Paralela: y 1 = ( x ) 4x 3y 5 = 0 3 4 Perpendicular: y 1 = ( x ) 3x + 4y 10 = 0

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Solución de problemas I 1

Solución de problemas I 1 Universidad Autónoma de Madrid Álgebra II. Físicas. Curso 5 6 Solución de problemas I Álgebra II Curso 5-6. Proyecciones en el producto escalar estándar Ejercicio 7.7. (a) Dada la ecuación x + y z, dar

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Solución a los problemas adicionales Espacios afines E 2 y E 3 (Curso )

Solución a los problemas adicionales Espacios afines E 2 y E 3 (Curso ) ÁLGEBRA Solución a los problemas adicionales Espacios afines E 2 y E (Curso 2009 200) I. En el plano afín E 2 y con respecto a una referencia rectangular se tiene el triángulo ABC de vértices A (0, 0),

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final 7 de junio de 4 APELLIDOS, NOMBRE: DNI: irma Primer parcial Ejercicio Consideremos matrices A m m, B, C n n, Pruebe que bajo la hipótesis de que las inversas

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 202 203) 6 Sea X una matriz cuadrada de tamaño n n y elementos reales Sea k un número par Probar que si X k = Id, entonces

Más detalles

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso ÁLGEBRA LINEAL Y GEOMETRÍA Eamen Ordinario : 6--7 Grado en Matemáticas Curso 6-7 SOLUCIONES Dados tres puntos distintos alineados A, A, A A R, al número real r tal que A A = r A A lo llamaremos raón simple

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Examen Final Soluciones (3 horas) 8 de julio de 2015

Examen Final Soluciones (3 horas) 8 de julio de 2015 Álgebra Lineal I Examen Final Soluciones (3 horas) 8 de julio de 2015 1. Siete personas suben en un ascensor en la planta baja de un edificio de cinco pisos. Cada una de ellas se apea en alguna de las

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos

Más detalles

Aplicaciones bilineales y formas cuadráticas (Curso )

Aplicaciones bilineales y formas cuadráticas (Curso ) ÁLGEBRA Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009) 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Dada la recta del plano de ecuación x 6y + = 0, escríbela en forma continua, paramétrica, vectorial y explícita. La recta x 6y + = 0 pasa por el punto (0,

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 14

ÁLGEBRA Algunas soluciones a la Práctica 14 ÁLGEBRA Algunas soluciones a la Práctica 4 Espacios afines E y E (Curso 008 009) 9. En el espacio E dotado de un sistema de referencia rectangular, determinar la ecuación de todos los planos que contienen

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

Unidad 7 Producto vectorial y mixto. Aplicaciones.

Unidad 7 Producto vectorial y mixto. Aplicaciones. Unidad 7 Producto vectorial y mixto. Aplicaciones. 5 SOLUCIONES 1. Al ser u v =(,5,11), se tiene que ( u v) w = ( 17,13, 9 ). Como v w =( 3,, 7), por tanto u ( v w) = ( 19,11, 5).. Se tiene que: 3. Queda:

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

= 1 3 = 0,612 unidades cuadradas.

= 1 3 = 0,612 unidades cuadradas. RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Determina las ecuaciones de las rectas del plano perpendicular y paralela a la recta de ecuación 4 y + 6 0 y que pasan por el punto (, ). La recta 4 y +

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Curso 03-04

TRANSFORMACIONES GEOMÉTRICAS Curso 03-04 .-En el plano vectorial V, con la base ortonormal { i,j } vectores u (, ) y v (, ) éstos determinan. Hallar en la base { i,j } transformaciones ortogonales tales que f( D ) se consideran los y las semirrectas

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO . PRODUCTO ESCALAR. ESPACIO EUCLÍDEO. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t) R 4 : x y =, z + t = } Hallar: W = L{(,,, ), (,,, )} a) Las ecuaciones

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

1.5.3 Sistemas, Matrices y Determinantes

1.5.3 Sistemas, Matrices y Determinantes 1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.!

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.! VECTORES Vectores libres del plano Definiciones Sean A y B dos puntos del plano de la geometría elemental. Se llama vector AB al par ordenado A, B. El punto A se denomina origen y al punto B extremo. (

Más detalles

Relación de ejercicios del tema 2 Formas bilineales y formas cuadráticas

Relación de ejercicios del tema 2 Formas bilineales y formas cuadráticas Relación de ejercicios del tema 2 Formas bilineales y formas cuadráticas Asignatura: Geometría II Doble grado en ingeniería informática y matemáticas Profesor: Rafael López Camino 1. Dadas α, β V, se define

Más detalles

E E V (P, Q) v = P Q AA + AB = AB AA = 0.

E E V (P, Q) v = P Q AA + AB = AB AA = 0. Espacios afines. 1 Definición y propiedades. Definición 1.1 Sea E un conjunto no vacío. Se dice que E está dotado de estructura de espacio afín asociado a un espacio vectorial V, si existe una aplicación:

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

Tema 6: Espacios euclídeos

Tema 6: Espacios euclídeos Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 6: Espacios euclídeos Ejercicios 1 Demuestra que la aplicación < A, B >= traza(ab t ), A, B M m n (R), es un producto escalar sobre

Más detalles

ÁLGEBRA LINEAL II Soluciones a la Práctica 4.1

ÁLGEBRA LINEAL II Soluciones a la Práctica 4.1 ÁLGEBRA LINEAL II Soluciones a la Práctica 4.1 Cónicas (Curso 014 015) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. En el plano

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos.

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. 3.1 DISTANCIAS EN EL ESPACIO 3.1.1 Distancia entre dos puntos Dados los puntos A(x 0, y 0, z

Más detalles

Ejercicios Resueltos Tema 5

Ejercicios Resueltos Tema 5 Ejercicios Resueltos Tema 5 Ejercicio 1 Estudiar si la forma bilineal f : R n R n R definida por k f ((x 1,..., x n ), (y 1,..., y n )) = x i y i, siendo 1 k < n, es un producto escalar de R n i=1 Solución.

Más detalles

GEOMETRÍA VECTORES. Sean: u = (1,0, 1); v = (2, 3,0); w = ( 1,2,2) Producto escalar u v. u v = (1,0, 1) (2, 3,0) = ( 3) 1 0 = 2

GEOMETRÍA VECTORES. Sean: u = (1,0, 1); v = (2, 3,0); w = ( 1,2,2) Producto escalar u v. u v = (1,0, 1) (2, 3,0) = ( 3) 1 0 = 2 º bachillerato MATEMÁTICAS II Sean: u = (1,0, 1); v = (, 3,0); w = ( 1,,) Producto escalar u v Aplicaciones: - Cálculo de ángulos. cos(u, v ) = VECTORES u v = (1,0, 1) (, 3,0) = 1 + 0 ( 3) 1 0 = u v u

Más detalles

x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8

x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8 Paralelismo y perpendicularidad MATEMÁTICAS II 1 1 Una recta es paralela a dos planos secantes, a quién es también paralela? Una recta paralela a dos planos secantes también es paralela a la arista que

Más detalles

MATEMÁTICAS II. Apuntes

MATEMÁTICAS II. Apuntes MATEMÁTICAS II. Apuntes Curso preparatorio para el acceso a la universidad para mayores de 25 años Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UCM http://ocw.ucm.es/matematicas 4 GEOMETRÍA Este

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 5

ÁLGEBRA Ejercicios no resueltos de la Práctica 5 ÁLGEBRA Ejercicios no resueltos de la Práctica 5 Espacios vectoriales (Curso 2007 2008) 5. En el espacio vectorial real IR 3 consideramos las siguientes bases: - la base canónica C = {ē 1, ē 2, ē 3 } =

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d).

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 1 18 de enero de 1 (5 p. 1 Para cada α R se considera el siguiente subespacio de R 4 : U α =

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2010 2011) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

G E O M E T R Í A M É T R I C A P L A N A

G E O M E T R Í A M É T R I C A P L A N A G E O M E T R Í A M É T R I C A P L A N A. PUNTO MEDIO D E UN SEGME NTO. S IMÉTRICO DE U N PUNTO Sean A y a,a b B,b las coordenadas de dos puntos del plano que determinan el segmento AB. Las coordenadas

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2012 2013) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

Tema 9: Vectores en el Espacio

Tema 9: Vectores en el Espacio 9..- Vectores Fijos: Un vector fijo del plano y su extremo en el punto B. Tema 9: Vectores en el Espacio AB es un segmento orientado que tiene su origen en punto A Un vector viene caracterizado por su

Más detalles

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Espacios Euclídeos Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita. 1 Producto escalar Definición.

Más detalles

Opción de examen n o 1

Opción de examen n o 1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B = S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

4º ESO opción B Ejercicios Geometría Analítica

4º ESO opción B Ejercicios Geometría Analítica Geometría Analítica 1) Las coordenadas de un punto A son (3,1) y las del vector AB son (3,4). Cuáles son las coordenadas de punto B? Determina otro punto C de modo que el vector AC tenga el mismo módulo

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores v y u es un número real, que se obtiene multiplicando los módulos

Más detalles

Perpendiculares, mediatrices, simetrías y proyecciones

Perpendiculares, mediatrices, simetrías y proyecciones Perpendiculares, mediatrices, simetrías y proyecciones 1. Calcular en cada caso la ecuación de la recta perpendicular a la dada, y que pasa por el punto P que se indica: a) 5x 2y 3 0 P( 1, 3) b) x 4 y

Más detalles

Tema 6: Ángulos y distancias en el espacio

Tema 6: Ángulos y distancias en el espacio Tema 6: Ángulos y distancias en el espacio February, 017 1 Ángulos entre elementos del espacio Los ángulos entre elementos del espacio, es una aplicación sencilla del producto escalar. Recuerdo las condiciones

Más detalles

R E S O L U C I Ó N. sabemos un punto A (1, 2, 0) y su vector director u (3,0,1). x 1 3 0

R E S O L U C I Ó N. sabemos un punto A (1, 2, 0) y su vector director u (3,0,1). x 1 3 0 x 13t Considera el punto P(1, 1,0) y la recta r dada por y 2. z t a) Determina la ecuación del plano que pasa por P y contiene a r. b) Halla las coordenadas del punto simétrico de P respecto de r. MATEMÁTICAS

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto

Más detalles

Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula:

Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula: Autoevaluación Página Dados los vectores u c, m y v (0, ), calcula: a) u b) u+ v c) u : ( v) u c, m v (0, ) a) u c m + ( ) b) u+ v c, m + (0, ) (, ) + (0, 6) (, ) c) u :( v) () (u v ) c 0 + ( ) ( ) m 8

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final de junio de APELLIDOS, NOMBRE: DNI: Firma Primer parcial Ejercicio ( Sea A una matriz simétrica definida positiva de orden n y v R n Pruebe que la matriz

Más detalles

a + ar + + ar n 1 = a(rn 1) r 1 = a(rn 1) + ar n+1 ar n

a + ar + + ar n 1 = a(rn 1) r 1 = a(rn 1) + ar n+1 ar n 1 Matemáticas I 8 Febrero 07 1. Demuestra, por inducción, que si r 1 a + ar + + ar n 1 = arn 1 2 puntos Si n = 1, ambos miembros dan a. Supongamos cierta la igualdad para n 1 y probémosla para n + 1: a

Más detalles

es perpendicular al vector b ( 3, 2) módulo de a es 2 13, halla los valores de x y de y.

es perpendicular al vector b ( 3, 2) módulo de a es 2 13, halla los valores de x y de y. Nombre: Curso: 1º Bachillerato B Eamen II Fecha: 6 de febrero de 018 Segunda Evaluación Atención: La no eplicación clara y concisa de cada ejercicio implica una penalización del 5% de la nota 1.- ( puntos)

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2009 2010) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x, y) IR 2 x 2 + y 2 = 1}. (b) B = {(x, y) IR 2 x = 3y}.

Más detalles