Espacios vectoriales (Curso )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Espacios vectoriales (Curso )"

Transcripción

1 ÁLGEBRA Práctica 5 Espacios vectoriales (Curso ) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x, y) IR 2 x 2 + y 2 = 1}. (b) B = {(x, y) IR 2 x = 3y}. (c) C = {(x, y) IR 2 x + y = 1} (d) D = {(x, y) IR 2 x = y; e y 0}. (e) E = {(x, y) IR 2 x 2 + y 2 0}. - Representarlos gráficamente. - Basándose en su representación gráfica deducir cuales son subespacios vectoriales y cuáles no. - Probarlo. 2. Comprobar que el conjunto V de las funciones f : IR IR, con las operaciones habituales de suma de funciones y producto de un número real por una función, tiene estructura de espacio vectorial sobre el cuerpo IR. Decidir cuáles de los siguientes conjuntos son subespacios vectoriales de V : (a) Funciones f tales que f(1) = f(0) + 1. (b) Funciones f tales que f(x) = f( x) x IR. 3. En IR 4, se consideran los sistemas S = { x 1, x 2, x 3, x 4 } y T = {ȳ 1, ȳ 2, ȳ 3, ȳ 4, ȳ 5 }, donde: x 1 = (1, 2, 1, 1), x 2 = (1, 1, 2, 1), x 3 = (2, 5, 1, 3), x 4 = (0, 1, 3, 2), ȳ 1 = ( 2, 1, 3, 2), ȳ 2 = (1, 0, 1, 1), ȳ 3 = (3, 2, 1, 0), ȳ 4 = (0, 4, 2, 1), ȳ 5 = (1, 0, 1, 0). Comprobar si S y T son sistemas equivalentes. Hallar bases de L(S) y de L(T ). 4. Llamamos P n (x), al conjunto de los polinomios en x de coeficientes reales y de grado menor o igual que n. (a) Demostrar que P n (x) tiene estructura de espacio vectorial sobre IR. (b) Demostrar que el sistema formado por un polinomio y sus derivadas no nulas es libre. (c) Para qué polinomios p(x) P n (x) el sistema es una base de P n (x)? B = {p(x), p (x), p (x),..., p (n) (x)} (d) Siendo n = 3 y p(x) = x 3 x, dar las fórmulas que transforman las coordenadas contravariantes de un polinomio con respecto a la base canónica en las coordenadas contravariantes con respecto a la base {p(x), p (x), p (x), p (x)}, y viceversa.

2 5. En el espacio vectorial real IR 3 consideramos las siguientes bases: - la base canónica C = {ē 1, ē 2, ē 3 } = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. - la base B = {ū 1, ū 2, ū 3 } = {(0, 1, 1), (2, 0, 0), (1, 0, 1)}. - la base B = { v 1, v 2, v 3 } = {(1, 1, 0), (0, 0, 1), (1, 1, 1)}. (a) Si (1, 3, 2) es un vector de IR 3 calcular sus coordenadas en cada una de las bases anteriores. (b) Denotamos por (y 1, y 2, y 3 ) las coordenadas de un vector en la base B. Consideramos el subespacio vectorial dado por la ecuacón: y 1 + y 2 + y 3 = 0 Calcular las ecuaciones paramétricas y cartesianas de este subespacio con respecto a cada una de las bases dadas. 6. Sea P 3 (IR) el espacio vectorial de polinomios de grado menor o igual que 3 con coeficientes reales. a) Estudiar cuales de los siguientes subconjuntos son subespacios vectoriales: i) U 1 = {p(x) P 3 (IR) p(0) = 0, p (1) = 0}. ii) U 2 = {p(x) P 3 (IR) p(1) 0}. iii) U 3 = {p(x) P 3 (IR) 1 0 p(t)dt = 0}. b) En los casos en que si sean subespacios escribir sus ecuaciones paramétricas e implícitas respecto de la base canónica. c) Sea q(x) = x 3 x. Probar que los polinomios B = {q(x), q (x), q (x), q (x)} son una base de P 3 (IR). d) Calcular las ecuaciones implícitas de U 1 U 3 respecto de la base B. (Primer parcial, enero 2009) 7. En el espacio vectorial real V de las funciones continuas de [0, 1] en IR, se consideran los dos conjuntos siguientes: U 1 = { f V : 1 0 } f(x) dx = 0 U 2 = {f V : f es constante} (a) Comprobar que U 1 y U 2 son subespacios vectoriales de V. (b) Analizar si U 1 y U 2 son subespacios suplementarios de V. (c) Hallar, si existe, la proyección de h(x) = 1 + 2x sobre U 1 paralelamente a U 2. (Examen final, setiembre 2002)

3 8. En IR 3 y para cada a IR, consideramos los subespacios vectoriales: U = L{(a, 1, 0), (0, a, 1), (1, 0, 1)}, V = L{(a, 0, 1), (a 1, 0, 2a)}. (a) Hallar la dimensión de U, V, U + V y U V en función de los valores de a. (b) Para qué valores de a los subespacios U y V son suplementarios?. (c) Para los valores de a para los cuales sea posible, calcular la matriz asociada respecto de la base canónica de la aplicación proyección sobre U paralelamente a V. (d) Para a = 0, es posible descomponer el vector (1, 1, 1) como suma de un vector de U y otro de V?. Si existe, es única esta descomposición?. (Primer parcial, enero 2009) 9. En el espacio vectorial real de las matrices 2 2 con elementos reales, M 2 2 (IR), se consideran los subconjuntos U = {A M 2 2 (IR) traza(a) = 0} V = L{Id} (a) Probar que U es un subespacio vectorial de M 2 2 (IR). (b) Probar que U y V son subespacios suplementarios. (e) Sea H M 2 2 (IR) el subespacio vectorial de matrices antisimétricas. Calcular las ecuaciones paramétricas e implícitas de H + V y (H + V ) U. (Primer parcial, enero 2008) 10. En IR 4 consideramos los subespacios vectoriales: U = L{(b, b, 1, 1), (1, 0, 1, 1), (1, 1, 1, 1)} V = L{(0, 0, 1, 1), (0, a, 1, 1), (0, 0, 0, 1)} (a) Calcular la dimensión de U V en función de a y b. (c) Para a = 1 y b = 0 escribir las ecuaciones implícitas de U V respecto de la base canónica. (Examen final, junio 2008) 11. En el espacio vectorial real de las matrices 2 2 con elementos reales, M 2 2 (IR), se consideran los subespacios { } x y U =, x + y 2z = t z t { } 3a + b b V =, a, b IR a a + b {} W = L 0 1 (a) Hallar la dimensión y una base de U, V y W. (b) Hallar, en la base canónica, ecuaciones paramétricas y cartesianas de U V

4 (c) Hallar, en la base B = { 1 0, 0 0, 0 0, 0 1 }, las ecuaciones paramétricas y cartesianas de V + W (Primer parcial, enero 2007) 12. Sea V un espacio vectorial real y U 1, U 2, U 3 subespacios vectoriales. Razonar la falsedad o veracidad de las siguientes afirmaciones probando aquellas que sean ciertas y descartando con un contraejemplo las falsas. (a) (U 1 + U 2 ) (U 1 + U 3 ) U 1 + (U 2 U 3 ). (b) U 1 + (U 2 U 3 ) (U 1 + U 2 ) (U 1 + U 3 ). (Primer parcial, enero 2009) 13. Sea P 2 (IR) el espacio vectorial de polinomios de grado menor o igual que 2 con coeficientes reales. Consideramos los subconjuntos: U = {p(x) P 2 (IR) 1 es raíz de p(x)}. W = {p(x) P 2 (IR) grado p(x) 1}. V = {p(x) P 2 (IR) 0 y 1 son raíces de p(x)}. (a) Probar que U, V y W son subespacios vectoriales de P 2 (IR). (b) Estudiar si tiene sentido plantear las siguientes proyecciones: - La proyección del polinomio x 2 + x + 1 sobre U paralelamente a V. - La proyección del polinomio x 2 + x + 1 sobre U paralelamente a W. En caso afirmativo, calcular dicha proyección. (Primer parcial, enero 2007) 14. Encontrar la (única) respuesta correcta, de entre las indicadas, a las siguientes cuestiones: (a) Sean U y V subespacios vectoriales de un espacio vectorial E de dimensión finita. Si dim(u) + dim(v ) = dim(u + V ), entonces U y V son suplementarios. Si dim(u) = dim(v ) = dim(u V ), entonces U = V. Si dim(u + V ) = dim(e), entonces U y V son suplementarios. Ninguna de las anteriores respuestas es correcta. (Primer parcial, enero 2008) (b) Sean F y G dos subespacios vectoriales de IR 100 de dimensiones 80 y 50, respectivamente. dim (F G) 30. F + G = IR 100. F G = G

5 dim (F G) 30. (Primer parcial, febrero 2001) (c) Sea U un espacio vectorial real y {ū 1, ū 2, ū 3 } un conjunto de vectores linealmente independientes de U. dim(u) = 3. dim(u) > 3. {ū 1, ū 1 + ū 2, ū 1 + ū 2 + ū 3 } pueden ser linealmente dependientes. Ninguna de las respuestas anteriores es correcta. (Primer parcial, enero 2008) (d) Sea V un espacio vectorial cualquiera. Dados tres subespacios vectoriales A, B, C siempre se cumple: (A + B) C (A C) + (B C). (A + B) C (A C) + (B C). (A + B) C (A C) + (B C). (A + B) C = (A C) + (B C). (Primer parcial, enero 2007) (e) Sean U y W subespacios distintos de { 0} de un espacio vectorial real V. Entonces Siempre podemos plantear la proyección p sobre U paralelamente a W. De ser posible plantear la proyección p sobre U paralelamente a W, Im(p) + W = V. De ser posible plantear la proyección p sobre U paralelamente a W, es un monomorfismo. Ninguna de las anteriores afirmaciones es correcta. (Primer parcial, enero 2007) (f) Sea V un espacio vectorial. Consideramos las bases B 1 = {ū 1, ū 2,..., ū n } y B 2 = {ū n, ū n 1,..., ū 1 }. Sea M B1 B 2 la matriz de cambio de base de una a otra. det(m B1 B 2 ) = 1. det(m B1 B 2 ) = 1. det(m B1 B 2 ) = ( 1) n+1. Ninguna de las anteriores respuestas es correcta. (Primer parcial, enero 2008)

6 ÁLGEBRA Problemas adicionales Espacios vectoriales (Curso ) I. Decidir cuáles de los siguientes conjuntos son subespacios vectoriales del espacio vectorial V de las funciones f : IR IR: (a) Funciones f tales que 2f(0) = f(1). (b) Funciones que toman valores distintos de 0 en todo punto. (c) Funciones f tales que f(0) es un número racional. II. En el espacio vectorial real de las matrices 2 2 con elementos reales, M 2 2 (IR), se consideran los subespacios { } U = L,, { } a + b a b V =, a, b IR a 2a + b (a) Determinar α y β para que pertenezca a U la matriz α 1. β 0 (b) Determinar α y β para que pertenezca a V la matriz 1 0. α β (c) Hallar la dimensión y una base de U. (d) Hallar la dimensión y una base de V. (e) Hallar, en la base canónica, ecuaciones paramétricas y cartesianas de U V (f) Hallar, en la base canónica, ecuaciones paramétricas y cartesianas de U + V III. Sea M n n (IR) el espacio vectorial de las matrices cuadradas de elementos reales y dimensión n. (a) Demostrar que si A M n n (IR) es una matriz fija, el conjunto es un subespacio vectorial de M n n (IR). S = {B M n n (IR) : AB = Ω} (b) Si n = 2 y A es de la forma α 1 β 1 donde α, β son números reales, calcular en función de α, β la dimensión y una base de S y las ecuaciones implícitas de un subespacio suplementario de S.

7 IV. En el espacio vectorial real de las matrices simétricas 3 3 con elementos reales, S 3, decidir cuáles de los siguientes subconjuntos son subespacios vectoriales, y para los que lo sean hallar una base, así como unas ecuaciones (paramétricas e implícitas) en la base canónica y en la base B = 0 0 0, 1 0 0, 1 0 0, 0 1 0, 0, (a) Matrices regulares. (b) Matrices con traza nula. (c) Matrices cuyas dos primeras filas son iguales. V. Si W 1, W 2 y W 3 son subespacios vectoriales de un espacio vectorial V, estudiar si son ciertas las fórmulas: (a) (W 1 + W 2 ) W 3 (W 1 W 3 ) + (W 2 W 3 ). (b) (W 1 W 3 ) + (W 2 W 3 ) (W 1 + W 2 ) W 3. (Examen final, junio 2005) VI. Sea U el subespacio de IR 3 dado por las ecuaciones cartesianas: { x + y + z = 0 U z = 0 Es posible determinar un subespacio V de IR 3 de forma que U V = { 0} y U +V x+y+z = 0?. Justifica tu respuesta. (Examen final, junio 2006) VII. En un espacio vectorial real E de dimensión 4 se consideran dos subespacios vectoriales V y W que con respecto a determinada base de E vienen descritos por las ecuaciones V : { x ay + z + bt = 0 y t = 0 W : { ax y bz + t = 0 x + z = 0 donde a, b son dos números reales arbitrarios. En función de a y b, calcular las dimensiones de los subespacios V, W, V W y V + W. (Examen final, julio 2002) VIII. Sea M 2 2 (IR) el espacio vectorial de matrices reales de dimensión 2 2. Consideramos el conjunto de matrices: { } B =,,, (a) Probar que las matrices de B forman una base de M 2 2 (IR). (b) Sea S 2 M 2 2 (IR) el subespacio vectorial de matrices simétricas reales de dimensión 2 2. Escribir las ecuaciones cartesianas de S 2 en la base canónica y en la base B.

8 (c) Definimos el conjunto: Probar que es un subespacio vectorial. W = {A M 2 2 (IR) ()A = (0 0)}. (d) Calcular las ecuaciones paramétricas y cartesianas de W y W S 2 en la base canónica y en la base B. (Primer parcial, enero 2005) IX. En IR 4 se define el subespacio F engendrado por los vectores: u 1 = (1, 0, 1, 3), u 2 = (2, 1, 0, 7), u 3 = (3, 1, 5, 0). Además, se define la relación: Es R una relación de equivalencia? cociente. u, v IR 4, urv v u F. (Examen extraordinario, diciembre 2005) Si lo es, hallar las clases de equivalencia del espacio X. Consideremos los subespacios U y W de IR 3 tales que U está generado por los vectores (1, 0, 1), (0, 1, 1), (1, 1, 2) y la ecuación implícita de W es x y + 2z = 0. Se pide: (a) Bases de U, W, U + W y U W. (b) Ecuaciones implícitas de U W. (c) Base de un subespacio H suplementario de U W. (d) Proyección del vector (2, 3, 5) sobre el subespacio U W paralelamente a H. (Examen final, junio 2006) XI. En el espacio vectorial IR 3, dados dos valores reales a, b R se definen los subespacios: U = L{(1, a, 1), (b, 1, a)}, V = L{(0, 1, 1), (a 1, 1, b)}. (a) Calcular en función de a y b la dimensión de U V. (b) Calcular los valores de a y b para los cuales los subespacios son suplementarios. (d) Para a = b = 0 calcular las ecuaciones cartesianas y paramétricas de U V. (Examen final, septiembre 2008) XII. Encontrar la (única) respuesta correcta, de entre las indicadas, a las siguientes cuestiones: (a) Sea S = { x 1,..., x p } sistema ligado de vectores de un espacio vectorial V. Cualquier vector de S se puede poner como combinación lineal de los restantes. S contiene alguna base de V. dim L(S) < p S se puede completar a una base de V. (b) Si L 1 y L 2 son dos subespacios de un espacio vectorial V, se tiene

9 si diml 1 +diml 2 > dimv, entonces L 1 L 2 { 0}. si dim(l 1 + L 2 ) =dimv, entonces L 1 L 2 = { 0}. si L 1 L 2 { 0}, entonces diml 1 +diml 2 > dimv. si L 1 L 2 = { 0}, entonces dim(l 1 + L 2 ) =dimv. (Examen final, junio 2000) (c) Sea V un espacio vectorial sobre IC y { a, b, c} una base suya V no es un espacio vectorial sobre IR. La dimensión del espacio vectorial V sobre IR es seis. { a, b, c} es una base del espacio vectorial V sobre IR. { a, b, c, a b + ci} es un sistema ligado del espacio vectorial V sobre IR. (Primer parcial, enero 2004) (d) En el espacio vectorial V de las matrices cuadradas reales n n. Llamamos S al subconjunto formado por todas las matrices ortogonales. S es un subespacio vectorial de V de dimensión n (n+1) 2. S es un subespacio vectorial de V de dimensión n (n 1) 2. S no es un subespacio vectorial de V. Ninguna de las anteriores es correcta. (Primer parcial, enero 2005) (e) Sea V un espacio vectorial real de dimensión 127. Puedo escoger 128 vectores de V que sean linealmente independientes. En un conjunto de 200 vectores de V siempre puedo seleccionar 127 que sean linealmente independientes. Toda aplicación lineal entre V y IR 127 es un isomorfismo. Ninguna de las anteriores afirmaciones es correcta. (Primer parcial, enero 2006) (f) En IR 2 consideramos las bases C = {(1, 0), (0, 1)}, B 1 = {(1, 2), (3, 5)} y B 2 = {(3, 1), (2, 1)}. Sean las matrices: A 1 = ; A = ; 2 1 Entonces si (x, y) son las coordenadas de un vector en la base B 1, las coordenadas de dicho vector en la base B 2 se obtienen mediante el producto: ( x y ) A 1 A 2. ( x ( x ( x y ) A 1 1 A 2. y ) A 1 A 1 2. y ) A 1 1 A 1 2. (Primer parcial, enero 2004)

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2008 2009) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2010 2011) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2012 2013) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 5

ÁLGEBRA Ejercicios no resueltos de la Práctica 5 ÁLGEBRA Ejercicios no resueltos de la Práctica 5 Espacios vectoriales (Curso 2007 2008) 5. En el espacio vectorial real IR 3 consideramos las siguientes bases: - la base canónica C = {ē 1, ē 2, ē 3 } =

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados:

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados: 10 Departamento de Álgebra. Universidad de Sevilla Tema 3. Sección 1. Variedades lineales. Definición. Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios

Más detalles

Aplicaciones lineales (Curso )

Aplicaciones lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones lineales (Curso 2004 2005) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

ÁLGEBRA Soluciones a la Práctica 5

ÁLGEBRA Soluciones a la Práctica 5 ÁLGEBRA Soluciones a la Práctica 5 Espacios vectoriales: Capítulos 1 y 2 (Curso 211 212) 3. En IR 4, se consideran los sistemas S = { x 1, x 2, x 3, x 4 } y T = {ȳ 1, ȳ 2, ȳ 3, ȳ 4, ȳ 5 }, donde: x 1 =

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2015 2016) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

1.5.3 Sistemas, Matrices y Determinantes

1.5.3 Sistemas, Matrices y Determinantes 1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2017 2018) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2016 2017) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

CAPÍTULO 4 ESPACIOS VECTORIALES

CAPÍTULO 4 ESPACIOS VECTORIALES CAPÍTULO 4 ESPACIOS VECTORIALES 4.1.- Concepto y definición de espacio vectorial. 4.2.- Propiedades de los espacios vectoriales. 4.3.- Subespacios vectoriales. 4.4.- Combinación lineal de vectores. 4.5.-

Más detalles

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales: Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 5

ÁLGEBRA Algunas soluciones a la Práctica 5 ÁLGEBRA Algunas soluciones a la Práctica 5 Espacios vectoriales: Capítulos 1 y 2 (Curso 2004 2005) 2. Comprobar que el conjunto V de las funciones f : IR IR, con las operaciones habituales de suma de funciones

Más detalles

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 1. En R 2 se define la suma: (a 1, b 1 ) + (a 2, b 2 ) = (a 1 + a 2, b 1 + b 2 ) y el producto por un escalar: λ(a, b) = (0,

Más detalles

4. Espacios vectoriales

4. Espacios vectoriales Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................

Más detalles

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1 ETS Arquitectura. UPM Geometría afín y proyectiva. Hoja. Determinar si los siguientes conjuntos son subespacios vectoriales de R 4 A f(x; y; z; t)j 2x + z 0g; B f(x; y; z; t)jx + y 0; z t 0g; C f(x; y;

Más detalles

Aplicaciones bilineales y formas cuadráticas (Curso )

Aplicaciones bilineales y formas cuadráticas (Curso ) ÁLGEBRA Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009) 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

Álgebra Lineal y Geometría I. 1 o Matemáticas

Álgebra Lineal y Geometría I. 1 o Matemáticas Álgebra Lineal y Geometría I. o Matemáticas Grupo - ( de diciembre de 27) APELLIDOS NOMBRE Instrucciones. Durante la realización del examen se podrá utilizar exclusivamente material de escritura. Ningún

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =

Más detalles

2.10 Ejercicios propuestos

2.10 Ejercicios propuestos Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 2

Geometría afín y proyectiva, 2016 SEMANA 2 Geometría afín y proyectiva, 2016 SEMANA 2 Sonia L. Rueda ETS Arquitectura. UPM September 20, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT022) Guía de ejercicios N 6 parte Complementos Espacios Vectoriales En los ejercicios que siguen utilizamos la siguientes notaciones: R n [x es el espacio vectorial sobre

Más detalles

Espacios vectoriales.

Espacios vectoriales. Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales Natalia Boal Francisco José Gaspar María Luisa Sein-Echaluce Universidad de Zaragoza 1 En IR 2 se definen las siguientes operaciones + : x, y + x, y = x + x, y + y, IR

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10 Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1

Más detalles

PRÁCTICO 5. Coordenadas y matriz de cambio de bases

PRÁCTICO 5. Coordenadas y matriz de cambio de bases Algebra y Algebra II Segundo Cuatrimestre 2012 PRÁCTICO 5 Coordenadas y matriz de cambio de bases Ejercicio 1. Probar que los vectores α 1 = (1 0 i) α 2 = (1 + i 1 i 1) α 3 = (i i i) forman una base de

Más detalles

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales.

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. Sonia L. Rueda ETS Arquitectura. UPM Año 2016-2017. 1 GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. 1. Determinar si los siguientes conjuntos de vectores son subespacios vectoriales de R 4. A = {(x,

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

1.- Definir: Vectores linealmente dependientes y Sistemas ligados.

1.- Definir: Vectores linealmente dependientes y Sistemas ligados. Prueba de Evaluación Continua Grupo B 23-03-11 1- Definir: Vectores linealmente dependientes Sistemas ligados Demostrar que un conjunto de vectores son linealmente dependientes si sólo si uno de ellos

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA

ÁLGEBRA LINEAL Y GEOMETRÍA ÁLGEBRA LINEAL Y GEOMETRÍA Laureano González Vega y Cecilia Valero Revenga Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria Curso 2017 2018 Índice I Lecciones 1 1 Espacios

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Equivalencia de matrices. Sistemas de ecuaciones (Curso ) 1. Hallar la forma reducida equivalente por filas de la matriz:

Equivalencia de matrices. Sistemas de ecuaciones (Curso ) 1. Hallar la forma reducida equivalente por filas de la matriz: ÁLGEBRA Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones Curso 2008 2009 1. Hallar la forma reducida equivalente por filas de la matriz: 1 0 3 2 2 5 5 6 3 2 1 3 1 3 2. Obtener mediante transformaciones

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Espacios Vectoriales 1. Sea V un espacio vectorial sobre K k K

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5 1.5.1 Complejos 1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: i 1 ; 2 + i ; 2i 2 i 1 + i +i; 5 (1 i)(2 i)(i 3) ; i344 +( i) 231 ; (1 + i) 5 + 1 (1 i) 5 1 ; 2. Usar,

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Tema 3. Aplicaciones lineales Doble Grado en Ingeniería Informática y Matemáticas Curso 2012/13 Profesor: Rafael López Camino

Tema 3. Aplicaciones lineales Doble Grado en Ingeniería Informática y Matemáticas Curso 2012/13 Profesor: Rafael López Camino Tema 3. Aplicaciones lineales Doble Grado en Ingeniería Informática y Matemáticas Curso 212/13 Profesor: Rafael López Camino 1. (a Si f L(V, V, B es base de V y f(b es un conjunto de vectores linealmente

Más detalles

ÁLGEBRA LINEAL I Práctica 4

ÁLGEBRA LINEAL I Práctica 4 ÁLGEBRA LINEAL I Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones (Curso 2016 2017) 1. Hallar la forma reducida equivalente por filas de la matriz: 1 2 1 0 3 2 1 2 2 1 2 5 5 6 3 2 1 3 1 3 2.

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Tema 7. El espacio vectorial R n Conceptos generales

Tema 7. El espacio vectorial R n Conceptos generales Tema 7 El espacio vectorial R n. 7.1. Conceptos generales Un vector es un segmento orientado que queda determinado por su longitud, dirección y sentido. Sin embargo, desde el punto de vista del Álgebra,

Más detalles

Examen Final Ejercicio único (3 horas) 20 de enero de n(n 1) 2. C n,3 = n(n 3) n =

Examen Final Ejercicio único (3 horas) 20 de enero de n(n 1) 2. C n,3 = n(n 3) n = Álgebra Lineal I Examen Final Ejercicio único (3 horas) 0 de enero de 014 1. Sea P un polígono regular de n lados. (i) Cuántas diagonales tiene el polígono?. Las diagonales son segmentos que unen pares

Más detalles

1. Teoría de Conjuntos y Funciones

1. Teoría de Conjuntos y Funciones Universidad Central de Venezuela Facultad de Ciencias Escuela de Matemática Álgebra I 1. Teoría de Conjuntos y Funciones 1.1. Teoría de Conjuntos 1. Dados los conjuntos A, B y C, demuestre que: a) (A B)

Más detalles

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Ejercicio 1. Resolver los siguientes sistemas

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Soluciones Hoja Problemas Espacio Vectorial 05-06

Soluciones Hoja Problemas Espacio Vectorial 05-06 Soluciones Hoja Problemas Espacio Vectorial -6.- Se considera R con la suma habitual y con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,, ) es espacio

Más detalles

ÁLGEBRA Algunas Soluciones a la Práctica 6

ÁLGEBRA Algunas Soluciones a la Práctica 6 ÁLGEBRA Algunas Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2006 2007) 3. Dada la matriz A = ( 1 0 ) 2 3 2 1 y las bases B 1 = {(2, 1), (1, 1)} en IR 2 y B 2 = {(0, 1, 1), (1, 1, 1), ( 1, 2,

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2011 2012) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES EJERCICIOS DE TEMA APLICACIONES LINEALES APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x)

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009 6. Sean a y b dos números reales. En el espacio P 1 de los polinomios de grado menor o igual que

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

Soluciones a los ejercicios del examen final C =. 1 0

Soluciones a los ejercicios del examen final C =. 1 0 Universidade de Vigo Departamento de Matemática Aplicada II E T S E de Minas Álgebra Lineal Curso 205/6 de enero de 206 Soluciones a los ejercicios del examen final Se considera el subespacio U {X M 2

Más detalles

Espacios vectoriales

Espacios vectoriales CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

Tema 1: ESPACIOS VECTORIALES

Tema 1: ESPACIOS VECTORIALES Tema 1: ESPACIOS VECTORIALES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 1998/99 Licenciatura:

Más detalles

COMPLEMENTOS FISICA. Práctica 2. Espacios Vectoriales

COMPLEMENTOS FISICA. Práctica 2. Espacios Vectoriales MATEMATICA 3 Primer Cuatrimestre de 2002 COMPLEMENTOS FISICA Práctica 2 Espacios Vectoriales A lo largo de esta práctica K simbolizará el conjunto de los números reales o el conjunto de los números complejos

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2016 2017) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = {(1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

3.8 Ejercicios propuestos

3.8 Ejercicios propuestos 3.8 Ejercicios propuestos Ejercicio 3.7 Consideremos la aplicación lineal f : R 3 R 3 definida por f(x, y, z) =(2x + y, z,0) a) Determinar Ker f y hallar una base de dicho subespacio. b) Hallar el rango

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles