EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES"

Transcripción

1 EJERCICIOS DE TEMA APLICACIONES LINEALES

2 APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x) = x c) f: x y f(x, y) = d) f: f(x, y) = x y e) f: x cos( ) y sen( ) f(x, y) = x sen( ) y cos( ) x f) f : n n f(x,,x n ) = x n g) f : M nxn () {AM nxn () /A = A t } f(a) = (A + At ) donde 0 h) f : M x () {AM x () /A = A t } f(a) = A.A t i) f : P ()P () f(p(x))=p(x+) j) f : P ()P () f(p(x))=p(x+) - p(x) 0 ) En se consideran S = L, y T = L x a) Expresar y como suma de un vector z xs S y otro f x b) Dada la aplicación f: definida como s xt T. x, demostrar que es lineal. Matriz de una aplicación lineal ) Sea V espacio vectorial de dimensión, B = {e, e } base de V y f y g aplicaciones lineales de V en V definidas por las f (e) e e g(e) e e ecuaciones: f (e ) e e g(e ) e Encontrar las ecuaciones matriciales que definen a las aplicaciones lineales f, g, f g, g f, f g respecto de B. 4) Encontrar la matriz, respecto de las bases usuales en los correspondientes espacios vectoriales, de las siguientes aplicaciones lineales. a) f : M x () M x () tal que f(a) = A - b) g : M x () M x () tal que g(a) = A 0 0 ª c) h: P ()P () tal que h(p(x)) = p(x+) 5) a) Sea f: 4 a a b M x () definida por la expresión f(a, b, c, d) =. Obtener la matriz, respecto de las cd ab bases canónicas (o usuales), de la aplicación lineal f. Obtener los subespacios imagen de f (imf) y núcleo de f (kerf). b) Sea f: P () P () tal que f (p(x)) = p(x+) - p(x). Obtener la matriz, respecto de las bases usuales, de la aplicación lineal f. Obtener ker(f) e im(f). 0 6) Sea f la aplicación lineal f : cuya matriz respecto de la base canónica es:. Encontrar una base y las ecuaciones paramétricas e implícitas de los subespacios imf y kerf.

3 y = x + x 4 y = - x - x - x 7) Sea la aplicación lineal f : de ecuaciones: y = x -x y 4 = x - x a) Hallar las ecuaciones paramétricas e implícitas de kerf e imf. 0 b) Si T = L,, calcular las ecuaciones paramétricas e implícitas de f (T). 0 Monomorfismos, Epimorfismos e Isomorfismos b a 8) Sea f : dada por f(a, b, c) a c (c a) a) Calcular la matriz de la aplicación f con respecto a la base canónica de b) Calcular las ecuaciones implícitas de kerf y las paramétricas de imf, especificando una base de cada subespacio. c) Razonar si f es isomorfismo. d) Calcular 9) Sea f L 4 f : la aplicación lineal definida por la expresión f (a, b, c, d) = a) Calcular la matriz de la aplicación con respecto a las bases canónicas. b) Calcular las ecuaciones implícitas de kerf. Obtener una base de kerf y otra de imf. c) Razonar si es monomorfismo,epimorfismo o isomorfismo. c d b. a b 0 0) Sea fk : la aplicación lineal cuya matriz respecto de la base canónica es 0 k, con k. a) Para qué valores reales de k es f k isomorfismo? b) Hallar f - (S) donde S = L,. Existencia y Unicidad de aplicaciones lineales ) Averiguar si : isomorfismo, en los siguientes casos: a) f(,, 0) = (, ), f(0,, ) = (, ), f(, 0, ) = (0, ) b) f(,, 0) = (, ), f(0,, ) = (, ), f(,, ) = (, 4), f(, 0, ) = (0, ) 0 ) Definir una aplicación lineal f : tal que kerf = L 0, e imf = L 0 Es f única? ) Obtener un homomorfismo 4) Hallar una aplicación lineal f = f. Es f única? f es un homomorfismo y en caso afirmativo, analizar si es monomorfismo, epimorfismo o 4 f : tal que kerf = L f : tal que kerf = { 0 0, e imf = L 0, 0 0 Es f única? x y / x + z = 0}, f(, 0, 0) es proporcional a z 0 0 y f

4 Ejercicios diversos 5) Dadas las aplicaciones lineales f: = M x () y g: M x () 4 definidas por: x y y a a f( x, y, z ) = g ( 0, a, a a, a ) y y z a a a) Hallar las matrices asociadas a f y a g respecto de las bases usuales. b) Hallar los núcleos e imágenes de f y g. c) Hallar la matriz de la composición g f, su núcleo y su imagen. 6) Estudiar si existen homomorfismos tales que: a) f: 4 definida sobre B = { p = (,0,,), p = (,,0,0), p = (,0,0,), p 4 = (0,,0,-) } como f(p ) = (-,,0), f(p ) = (,0,), f(p ) = (0,0,), f(p 4 ) = (,0,0). b) g:v donde V = L{p, p, p }, definida como g(p ) = (-,, 0); g(p ) = (-,0,); g(p ) = (,,0). c) g': 4 tal que g (p i ) = g(p i ), i =,, y kerg' = L{(,,,0)} 7) Sea f : M x ( ) la aplicación lineal definida por f a b a) Matriz de f respecto de las bases usuales en ambos espacios. b) Base de imf y un suplementario de imf en. c d = (0, a+b, a+d). Se pide: c) Base de S = kerf. Hallar un subespacio T suplementario de S en M x ( ). Escribir y otro de T. - d) Comprobar que M = respecto de dicha base. y M = como suma de un vector de S forman una base de S y hallar las coordenadas de la matriz M = e) Ampliar la base {M, M } a una base de M x () de forma que las dos primeras coordenadas de M, M y M en dicha base sean nulas. f) Hallar f - ( L{ (0,,4) } ). Cambio de base 8) Calcular las matrices de cambio de base de B a B para las siguientes bases: a) B e, e, 0 B u, u. 0 b) B = {e = (, 0, 0), e = (0,, 0), e = (0, 0, )}; B = {u = (,, 4), u = (,, 6), u = (,, 5)} c) B = {e = (, ), e = (5, )}; B = {u = (, -), u = (, )} d) B = {e, e, e } y B = {e, e, e } tal que e = e e e e = e e = e + e 9) En, dadas las bases B={(,-,), (0,,-), (0,,-)} y B ={(,-,), (,-,), (,4,7)} calcular las ecuaciones del cambio de base de B a B. Matrices asociadas a una misma aplicación lineal 0) Sea f: la aplicación lineal que cumple: f(,, ) = (,, 0); f(,, ) = (0, 0, ); f(,, ) = (0, 0, 0). a) Obtener la matriz de f respecto de la base canónica. b) Obtener la matriz de f respecto de la base B = {(,, ), (,, ), (,, )} ) Sea f : 4 4 un endomorfismo del que se sabe que f (,, 0, 0 ) = ( 0,, 0, ), f (, 0,, 0 ) = (,,, 0 ), ker f = im f Determinar la matriz asociada a f en la base canónica de 4 ) Sea B = {e, e, e } la base canónica de y f: definida por: f(e ) + f(e ) = ae + (a + )e + e f(e ) + f(e ) = e + ae + e f(e ) = e + e a) Hallar la matriz de f respecto de B y calcular para qué valores reales del parámetro a f es biyectiva.

5 b) Para a = se considera la base B = {u = e e, u = e, u = e + e }. Hallar la matriz de f respecto de B. c) Para a = hallar f - ({(-,-,0)}). Dado el s.v. W = L{(,,0),(,0,)} razonar si W y kerf son suplenetarios y si kerf e imf son suplementarios. ) Sean U = L{(,,, 0), (0,,, ), (, 0, 0, )}, V = L{(0, 0, 0, ), (,,, 0)} y f: U V definida por: f(,,, 0) = (0, 0, 0, ), f(0,,, ) = (,,, ), f(, 0, 0, ) = (0, 0, 0, 0). a) Obtener bases de U y V de forma que al colocar los vectores de dichas bases como filas de una matriz, se obtenga una forma echelon-fila. b) Dar la matriz de f respecto de las bases obtenidas en el apartado a). 4) Sea f: la aplicación lineal que verifica f(0, 0, ) = (, 5, ) y f(s) = s s S = {(x, y, z) canónica de y f (r) siendo r la recta de ecuaciones / x + z = 0}. Hallar la matriz de f respecto de la base x 4y z 0 r x y z 0 5) Sea la aplicación f: 4 definida por la matriz: A = y sean U = L(B = {(,, ), (,, 0)}) subespacio vectorial de y V = L(B = {(, 0, 0, ), (,,, ), (, 0,, )}) subespacio vectorial de 4. Obtener la matriz de la aplicación f: U V respecto de las bases B y B. 6) Sea f: la aplicación lineal que verifica que dim imf = las ecuaciones del kerf respecto de la base B = { u = (, 0, 0), u = (,, 0), u = (,, )} son x y 0 existe un vector no nulo v = (b, 0, 0) verificando que f(v) = f (v) = u + u + u. Hallar las ecuaciones de f respecto de la base canónica. 7) Sean f : una aplicación lineal, B c = {e, e, e } la base canónica de y B = {u, u, u } la base de tal que u = e e ; u = e + e ; u = e + e + e Sabiendo que dim kerf =, e e imf, f = f y que la matriz de f respecto de B c coincide con la matriz de f respecto de B a) Hallar la matriz de f respecto de B c. b) Obtener las ecuaciones implícitas de kerf e imf. 8) Sean A = 0 ; B = 0 0 ; C = 4 ; D = 5 0, S = L{A, B, C} y g:s tal que g(a) = (0,,0), g(b) = (,0,), g(c) = (,,). a) Calcular bases de img y kerg. Calcular las ecuaciones de g respecto de las bases B = {A, B, C} y B c y respecto de las bases B = {A, B, E= 0 - } y B = {(0,,0), (,0,), (,0,0)} b) Estudiar si existe algún homomorfismo f : S tal que f(a) = (0,,0), f(b) = (,0,), f(c) = (,,), f(d) = (0,,).

6 DIAGONALIZACIÓN ) Para los siguientes endomorfismos de, hallar los subespacios propios y estudiar qué representan éstos geométricamente: a) f(x,y) = (x, y) b) g(x,y) = (x + y, 0) 4 c) h(x, y) = (x y, x y) d) A = ) Determinar los autovalores y subespacios propios de los siguientes endomorfismos de : a) f(x, y, z) = (x, z, y) b) f(x, y, z) = (x y + z, y z, z). c) f(x, y, z) = (x y + z, y z, z) d) f(x, y, z) = (x y + z, y z, z). ) Sea f : 4 4 definido por f(a,b,c,d) = (a+b+c+d, b+c+d, c+d, d). Calcular sus autovalores y sus subespacios propios. 4) Estudiar la diagonalización de los endomorfismos: a) f : definido por f(x, y, z) = (x, -z, -y). b) f : M x ( ) M x ( ) definido por f(a) = A t. c) f : definido por f(x, y, z) = (-z, 0, x). 5) Calcular la matriz diagonal D y la matriz P del cambio de base tales que D = P A P, siendo 0 a) A 0 b) A y x x x 6) Sea f el endomorfismo de de ecuaciones: y x x y x x x Averigüar si f es diagonalizable y, en caso afirmativo, obtener su forma diagonal y la matriz de cambio de base. 7) Si B c = {e, e, e } es la base canónica de, estudiar si es diagonalizable el endomorfismo de definido por las ecuaciones f(e e ) = (,, ); f(e + e ) = (,, 0); f(e e ) = (4,, ), 8) Determinar, según los valores del parámetro real a, cuándo los endomorfismos siguientes son diagonalizables y obtener la forma diagonal en los casos que sea posible. a) f(x, y, z) = ( x y ( + a) z, y + az, z ) b) f(x, y, z) = ( x + a (x y + z), (a + ) x ay + (a ) z, x y ) c) f(x, y, z, t) = ( x, x, x, x + ay ) d) f(x, y, z) = ( a x + b y, y, z ) 9) Diagonalizar el endomorfismo definido en 4 como f(a,b,c,d) = (d,c,b,a) 0) Sea f:m x ()M x () la aplicación lineal definida por f(a) = AF FA siendo F = 0. a) Calcular el polinomio característico y el espectro de f. b) La base de autovectores, si existe, respecto de la que la matriz de f es diagonal. ) Sea B c = {e, e, e } la base canónica de y f un endomorfismo de del que se sabe que u = e e es un autovector f(e + e + e ) = e + 6e + e f(e e ) = e + e la suma de los autovalores de f es. a) Calcular las ecuaciones de f respecto de la base B c. b) Hallar una base de, formada por autovectores de f respecto de la que su matriz es diagonal.

7 ) Dada la matriz A = calcular A n, n. ) Sabiendo que el endomorfismo f: es diagonalizable, que los vectores (, ) y (, ) son vectores propios y que f(5, 5) = (, ), hallar los autovalores de f y la matriz de f en la base canónica. 4) Sea f el endomorfismo de con espectro (f) = {,, } y que tiene por vectores propios correspondientes a dichos autovalores: (,, ), (0,, ), (,, ). Obtener la matriz asociada a f respecto de la base canónica de. 5) Sea f el endomorfismo de 4 dado por la matriz: y sea L = L{ (, 0,, ) }. 0 0 a) Comprobar que f( L ) L. b) Calcular L, subespacio de 4, tal que f( L ) L y L L, siendo estricto el contenido.

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2012 2013) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2010 2011) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2008 2009) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Aplicaciones lineales (Curso )

Aplicaciones lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones lineales (Curso 2004 2005) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

HOJA 4: APLICACIONES LINEALES

HOJA 4: APLICACIONES LINEALES HOJA 4: APLICACIONES LINEALES Estudio de la linealidad 1) Estudie la linealidad de las siguientes aplicaciones: a) ff: RR RR 2, ff(xx) = ( 3xx, 2xx) b) ff: RR 2 RR, ff(xx, yy) = xxxx c) ff: RR 2 RR 3,

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

3.8 Ejercicios propuestos

3.8 Ejercicios propuestos 3.8 Ejercicios propuestos Ejercicio 3.7 Consideremos la aplicación lineal f : R 3 R 3 definida por f(x, y, z) =(2x + y, z,0) a) Determinar Ker f y hallar una base de dicho subespacio. b) Hallar el rango

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Soluciones de la hoja de diagonalización MATEMÁTICAS I

Soluciones de la hoja de diagonalización MATEMÁTICAS I Soluciones de la hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y, en caso afirmativo, hallar una matriz A tal que f(x) Ax, así como los subespacios

Más detalles

SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013)

SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013) ÁLGEBRA LINEAL 1S1M-b SOLUCIONES DEL SEGUNDO PARCIAL 17/12/2013 1. Dada una aplicación lineal f : de manera que : Se pide, obtener su matriz con respecto a las bases canónicas. Calculamos =col 2. Calcular

Más detalles

A = En los casos afirmativos, hallar una forma diagonal D y obtener una matriz invertible real P M(3, 3) tal que P 1 AP = D.

A = En los casos afirmativos, hallar una forma diagonal D y obtener una matriz invertible real P M(3, 3) tal que P 1 AP = D. 22 Departamento de Álgebra. Universidad de Sevilla Tema 5. Sección 1. Endomorfismos. Endomorfismos diagonalizables. Ejercicio 5.1 Dadas las matrices complejas: 3 2 0 2 3 0, B = 0 0 5 14 1 12 13 0 12 17

Más detalles

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10 Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o D.C.E. 1 o L.A.D.E. Curso 2008/09 Relación 2. Aplicaciones Lineales. Diagonalización. Formas Cuadráticas 1. Estudia si son lineales las aplicaciones siguientes: a) La aplicación

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales: Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)

Más detalles

Un conjunto E a,b,c, de elementos (llamados vectores) se dice que constituye. (a,b) (a',b') (a a',b b')

Un conjunto E a,b,c, de elementos (llamados vectores) se dice que constituye. (a,b) (a',b') (a a',b b') ESPACIOS VECTORIALES Un conjunto E a,b,c, de elementos (llamados vectores) se dice que constituye un espacio vectorial sobre un cuerpo conmutativo K (que generalmente es el cuerpo de los reales) si se

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2015 2016) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

5. Aplicaciones Lineales

5. Aplicaciones Lineales Contents 5 Aplicaciones Lineales 2 5.1 Aplicaciones lineales. Definición y propiedades........................ 2 5.2 Núcleo e Imagen.................................................... 3 5.3 Descomposición

Más detalles

Tema 3. Aplicaciones lineales Doble Grado en Ingeniería Informática y Matemáticas Curso 2012/13 Profesor: Rafael López Camino

Tema 3. Aplicaciones lineales Doble Grado en Ingeniería Informática y Matemáticas Curso 2012/13 Profesor: Rafael López Camino Tema 3. Aplicaciones lineales Doble Grado en Ingeniería Informática y Matemáticas Curso 212/13 Profesor: Rafael López Camino 1. (a Si f L(V, V, B es base de V y f(b es un conjunto de vectores linealmente

Más detalles

PRIMER CONTROL. 13 de Noviembre de 2012.

PRIMER CONTROL. 13 de Noviembre de 2012. GRAO EN QUÍMICA. MATEMÁTICAS. (Evaluación continua) PRIMER CONTROL. 13 de Noviembre de 2012. 1.- Sea f : R 3 R 3 la aplicación lineal f(x, y, z) = (x + z, 2x + ay az, 4x + z), (a R) a) Matriz de la aplicación

Más detalles

TEMA 5: Aplicaciones Lineales. Diagonalización.

TEMA 5: Aplicaciones Lineales. Diagonalización. TEMA 5: Aplicaciones Lineales. Diagonalización. 1. Aplicaciones Lineales 1.1. Definición, propiedades y ejemplos. Definición 1. Dados dos espacios vectoriales V y V sobre un mismo cuerpo K, una aplicación

Más detalles

A-PDF Page Cut DEMO: Purchase from to remove the watermark. Ejercicios resueltos 125

A-PDF Page Cut DEMO: Purchase from   to remove the watermark. Ejercicios resueltos 125 A-PDF Page Cut DEMO: Purchase from www.a-pdf.com to remove the watermark Ejercicios resueltos 125 Las matrices asociadas a g f y f g son, respectivamente 0 3 8 ) 14 13 g f BA = 3 3 1 f g AB = 16 22 7 2

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2016 2017) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2017 2018) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ximo Beneyto Tema: Pàgina : 49 APLICACIONES LINEALES Definición : Sean (E(K), +, A) y (F(K), +, A), Espacios Vectoriales construídos sobre un mismo cuerpo K, una aplicación f:e 6

Más detalles

5. Aplicaciones lineales

5. Aplicaciones lineales 5. Aplicaciones lineales Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 5 Aplicaciones lineales 7 5.1 Definición y propiedades..............................

Más detalles

ÁLGEBRA LINEAL (SOLUCIONES) Matemáticas e Informática. Tomo A= U y

ÁLGEBRA LINEAL (SOLUCIONES) Matemáticas e Informática. Tomo A= U y Dpto. Matemática Aplicada Facultad de Informática. UPM 9 de Julio de ÁLGEBRA LINEAL (OLUCIONE) Matemáticas e Informática Apellidos Nombre Nº Matrícula Ejercicio : ( ptos) x y z 6 a) Resoler el siguiente

Más detalles

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1. Se considera la matriz: A = ( 2 3 4 13 con coeficientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

1. DIAGONALIZACIÓN DE ENDOMORFISMOS

1. DIAGONALIZACIÓN DE ENDOMORFISMOS . DIAGONALIZACIÓN DE ENDOMORFISMOS. Se considera la matriz: A ( 2 3 4 3 con coecientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de A. Calcular

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía 3ª Prueba de Evaluación Continua 7 05 12 (Grupo C) Espacio vectorial 1. a) Definir vectores linealmente dependientes en un espacio vectorial V. u,u,,u de un espacio vectorial V son b) Demostrar que si

Más detalles

Tema 3: Aplicaciones Lineales

Tema 3: Aplicaciones Lineales Tema 3: Aplicaciones Lineales José M. Salazar Noviembre de 2016 Tema 3: Aplicaciones Lineales Lección 4. Aplicaciones lineales. Índice 1 Aplicaciones lineales: definiciones y resultados principales Primeras

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2009 2010) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x, y) IR 2 x 2 + y 2 = 1}. (b) B = {(x, y) IR 2 x = 3y}.

Más detalles

Aplicaciones lineales.

Aplicaciones lineales. Tema 4 Aplicaciones lineales. Definición 4. Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una aplicación lineal si: a f(u + v = f(u + f(v; u, v V, b f(ku = kf(u;

Más detalles

ALGEBRA LINEAL Práctica 2: Transformaciones lineales

ALGEBRA LINEAL Práctica 2: Transformaciones lineales Segundo cuatrimestre 2003 ALGEBRA LINEAL Práctica 2: Transformaciones lineales 1. Determinar cuáles de las siguientes funciones son transformaciones lineales: (i) f : R 3 R 3, f(x 1, x 2, x 3 ) = (2x 1

Más detalles

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5 1.5.1 Complejos 1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: i 1 ; 2 + i ; 2i 2 i 1 + i +i; 5 (1 i)(2 i)(i 3) ; i344 +( i) 231 ; (1 + i) 5 + 1 (1 i) 5 1 ; 2. Usar,

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Problemas de Aplicaciones Lineales

Problemas de Aplicaciones Lineales Problemas de Aplicaciones Lineales Natalia Boal Francisco José Gaspar María Luisa Sein-Echaluce Universidad de Zaragoza 1. En los siguientes ejercicios determina si la aplicación f : IR 2 IR 2 es lineal:

Más detalles

Práctica 3: Transformaciones lineales. 1. Determinar cuales de las siguientes aplicaciones son transformaciones lineales: a 21 a 22 0 a 11 a 22 a 11

Práctica 3: Transformaciones lineales. 1. Determinar cuales de las siguientes aplicaciones son transformaciones lineales: a 21 a 22 0 a 11 a 22 a 11 ALGEBRA LINEAL Primer Cuatrimestre 2017 Práctica 3: Transformaciones lineales 1. Determinar cuales de las siguientes aplicaciones son transformaciones lineales: a) f : R 2 R 3, f(x 1, x 2 ) = (x 1 x 2,

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Práctica 6: Autovalores y autovectores - Diagonalización

Práctica 6: Autovalores y autovectores - Diagonalización ALGEBRA LINEAL Primer Cuatrimestre 2010 Práctica 6: Autovalores y autovectores - Diagonalización 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}.

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}. Tema 6 Formas canónicas 6.1 Introducción Proposición 6.1.1. Sea V un espacio vectorial sobre K de dimensión n y B una base de V. La aplicación Φ B : End(V ) M(n n, K) definida por Φ B (f) = M B (f), es

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

Núcleo e Imagen de una aplicación lineal.

Núcleo e Imagen de una aplicación lineal. PRÁCTICA Nº 8 Núcleo e Imagen de una aplicación lineal. Con esta práctica se pretende utilizar el cálculo de la expresión matricial de una aplicación lineal respecto de las bases del dominio y codominio

Más detalles

Aplicaciones Lineales. S1

Aplicaciones Lineales. S1 Aplicaciones Lineales. S1 Leandro Marín 6 de Noviembre de 2009 Definición Definición Sea K un cuerpo y sean V y W dos espacios vectoriales sobre K. Una aplicación lineal f : V W es una aplicación entre

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

ÁLGEBRA Algunas Soluciones a la Práctica 6

ÁLGEBRA Algunas Soluciones a la Práctica 6 ÁLGEBRA Algunas Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2006 2007) 3. Dada la matriz A = ( 1 0 ) 2 3 2 1 y las bases B 1 = {(2, 1), (1, 1)} en IR 2 y B 2 = {(0, 1, 1), (1, 1, 1), ( 1, 2,

Más detalles

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1 ETS Arquitectura. UPM Geometría afín y proyectiva. Hoja. Determinar si los siguientes conjuntos son subespacios vectoriales de R 4 A f(x; y; z; t)j 2x + z 0g; B f(x; y; z; t)jx + y 0; z t 0g; C f(x; y;

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA

ÁLGEBRA LINEAL Y GEOMETRÍA ÁLGEBRA LINEAL Y GEOMETRÍA Grupos B y C Curso 2006/07 Ejercicios y Problemas Lista número uno 1 Resolver los siguientes sistemas de ecuaciones lineales: } a), b) 3x 2y = 6 9x + 4y = 108 x + y 2z = 9 2x

Más detalles

INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA

INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA C. Galindo 1. Resolver el siguiente sistema de ecuaciones x 1 + 3x 2 2x 3 + 2x 5 = 0 2x 1 + 6x 2 5x 3 2x 4 + 4x 5 3x 6 = 1 5x 3 + 10x 4 + 15x 6 = 5 2x 1 + 6x

Más detalles

Tema 5 - Aplicaciones lineales y diagonalización de matrices (v1.0) Pág. 1. *** Apuntes realizados por Victor Gayoso Martinez

Tema 5 - Aplicaciones lineales y diagonalización de matrices (v1.0) Pág. 1. *** Apuntes realizados por Victor Gayoso Martinez Tema 5 - Aplicaciones lineales y diagonalización de matrices (v1.0) Pág. 1 *** Apuntes realizados por Victor Gayoso Martinez (vgayoso@gmail.com) *** TEMA 5 APLICACIONES LINEALES Y DIAGONALIZACIÓN DE MATRICES

Más detalles

1. Ejercicios. Algebra Lineal Problemas del tema 4 Endomorfismos Curso Universidad de Oviedo

1. Ejercicios. Algebra Lineal Problemas del tema 4 Endomorfismos Curso Universidad de Oviedo 1. Ejercicios Ejercicio 1 En R 2, referido a la base canónica, se consideran los vectores u 1 = (1, 1) y u 2 = (2,). Un endomorfismo de R 2, T los transforma en los vectores v 1 = ( 2,1) y v 2 = (, 1)

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Grado en Física. Problemas. Temas 1 4

Grado en Física. Problemas. Temas 1 4 Álgebra Lineal y Geometría Grado en Física Problemas. Temas 1 4 Departamento de Álgebra, Universidad de Sevilla 1 El contenido de estas notas ha sido diseñado y redactado por el profesorado de la asignatura

Más detalles

Aplicaciones bilineales y formas cuadráticas (Curso )

Aplicaciones bilineales y formas cuadráticas (Curso ) ÁLGEBRA Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009) 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa

Más detalles

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 07 Espacios vectoriales con producto interno En esta práctica, todos

Más detalles

la matriz de cambio de base de B 1 en B 2. = M 1 B 2,B 1 [1 + x + x 2 ] B1 = M B2.

la matriz de cambio de base de B 1 en B 2. = M 1 B 2,B 1 [1 + x + x 2 ] B1 = M B2. Práctica 2. Álgebra Lineal. Cambio de Base.Transformaciones Lineales. Matrices asociadas a una transformación lineal. 2do año: Lic. en Matemática y Profesorado. 1. (a) Sean B 1 = {(1, 0), (1, 1)} y B 2

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 2007 Práctica 3 - Transformaciones lineales

COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 2007 Práctica 3 - Transformaciones lineales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 COMPLEMENTOS DE MATEMATICA 3 - Segundo cuatrimestre de 27 Práctica 3 - Transformaciones lineales Ejercicio 1. Determinar cuáles

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Aplicaciones lineales.

Aplicaciones lineales. Capítulo 5 Aplicaciones lineales. 5. Definición. Núcleo e imagen. Definición 23.- Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una aplicación lineal si: () f(u

Más detalles

Aplicaciones lineales

Aplicaciones lineales 53 Matemáticas I : Álgebra Lineal Tema 5 Aplicaciones lineales 5. Definición. Núcleo e imagen Definición 26.- Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. Tema 4. ÁLGEBRA APLICACIONES LINEALES. Curso 2017-2018 José Juan Carreño Carreño Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Escuela Técnica Superior de

Más detalles

MATEMÁTICAS II Relación de Ejercicios 1 Espacio Afín.

MATEMÁTICAS II Relación de Ejercicios 1 Espacio Afín. ETS Arquitectura. UPM Curso 009-010. 1 MATEMÁTICAS II Relación de Ejercicios 1 Espacio Afín. 1. En el espacio afín (R 3 ; R 3 ; ) con : R 3 R 3! R 3 de nida por ((x 1 ; x ; x 3 ); (y 1 ; y ; y 3 )) = (y

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es

Más detalles

PRÁCTICO 5. Coordenadas y matriz de cambio de bases

PRÁCTICO 5. Coordenadas y matriz de cambio de bases Algebra y Algebra II Segundo Cuatrimestre 2012 PRÁCTICO 5 Coordenadas y matriz de cambio de bases Ejercicio 1. Probar que los vectores α 1 = (1 0 i) α 2 = (1 + i 1 i 1) α 3 = (i i i) forman una base de

Más detalles

Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion.

Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion. Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion. Ejercicios 1.- Sea f End V. Demostrar que la suma de subespacios f-invariantes es f-invariante. Solución. Sean U, W dos subespacios f-invariantes

Más detalles

1.- Definir: Vectores linealmente dependientes y Sistemas ligados.

1.- Definir: Vectores linealmente dependientes y Sistemas ligados. Prueba de Evaluación Continua Grupo B 23-03-11 1- Definir: Vectores linealmente dependientes Sistemas ligados Demostrar que un conjunto de vectores son linealmente dependientes si sólo si uno de ellos

Más detalles

PRUEBA DE DIAGONALIZACIÓN CURSO Apellidos: Nombre: Grupo: Fecha:

PRUEBA DE DIAGONALIZACIÓN CURSO Apellidos: Nombre: Grupo: Fecha: Tipo 1 Apellidos: Nombre: Grupo: Fecha: 1.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin

Más detalles

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

f(1; 1;1;2); (0;1;3;1)g; f(1;0;4;3); (1;1;0; 1)g:

f(1; 1;1;2); (0;1;3;1)g; f(1;0;4;3); (1;1;0; 1)g: Facultad de Ciencias Químicas Departamento de Matemáticas Álgebra Capítulo Espacios vectoriales.. Determina si cada uno de los siguientes subconjuntos de R 3 es subespacio vectorial (a) S = f(x;y;z) 2

Más detalles