Aplicaciones Lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones Lineales"

Transcripción

1 Aplicaciones Lineales Ximo Beneyto Tema: Pàgina : 49

2 APLICACIONES LINEALES Definición : Sean (E(K), +, A) y (F(K), +, A), Espacios Vectoriales construídos sobre un mismo cuerpo K, una aplicación f:e 6 F, decimos que es una Aplicación Lineal u Homomorfismo entre Espacios Vectoriales si cumple: Aplicación Lineal En la práctica, emplearemos la definición de la derecha, que llamaremos LINEALIDAD de f. Al Espacio Vectorial E, le llamaremos Espacio Inicial de la aplicación y al Espacio F, le llamaremos Espacio Final. Veamos una serie de consecuencias que podemos deducir de esta definición: Tema: Pàgina : 50

3 i). Es decir, la imagen del vector del Espacio E, es el vector del Espacio F. Demostración: Como => Aplicando f = { Como f es lineal } = { Como f es lineal } c.q.d. ii) f (" 1 + " 2 + " p) = " f( 1) + " f( 2 ) +@@@+ " f( p). Es decir, la imagen de una Combinación Lineal de vectores es igual a la Combinación Lineal de las imágenes de estos vectores. La demostración es muy sencilla, basta con extender la definición dada para dos vectores, a los n vectores. Antes de empezar a estudiar las propiedades y elementos de una aplicación lineal, vamos a entretenernos un poco, planteando algunas muy interesantes. Ejemplo. 1 1 E : E 6 E / 1 E ( ) = œ 0 E. Se le llama APLICACION IDENTIDAD, y cada vector de E tiene por imagen el mismo vector. Por ejemplo, tomando E = ú², la aplicación identidad sería: 1 E (x,y) = (x,y) œ (x,y) 0 ú². Ejemplo. 2 0 : E 6 F / 0( ) = œ 0 E. Se le llama APLICACION NULA, y cada vector de E tiene por imagen el vector de F. Por ejemplo, de ú² en ú 3, la aplicación nula sería: 0(x,y) = (0,0,0) œ (x,y) 0 ú². ELEMENTOS DE UNA APLICACION LINEAL Tema: Pàgina : 51

4 < NÚCLEO Dada una Aplicación Lineal entre dos Espacios Vectoriales f: E 6 F, definimos el Núcleo de la misma y notamos Ker(f)* a: Es decir, el núcleo de una aplicación lineal está formado por los vectores del Espacio Inicial cuya imagen es el vector del Espacio final. *La notación Ker(f) procede de la palabra inglesa kernel, que significa núcleo. < Propiedad El núcleo de una Aplicación Lineal tiene estructura de Subespacio Vectorial del Espacio inicial. Demostración: Sea f: E 6 F una Aplicación Lineal y Ker(f) = { 0 E / f( ) = }. Vamos a demostrar su estructura mediante el teorema de caracterización de subespacios. i) Obviamente Ker ( f ) i, puesto que al ser f( ) = Y 0 Ker( f ) ii) Como f( "@ + ß@ ) = {f es lineal} = "@ f( ) + ß@ f( ) = [ Si 0 Ker (f) Y f( ) = ; Si 0 Ker (f) Y f( )= ] = = + = œ ", ß 0 K Y f( "@ + ß@ ) = Y + 0 Ker ( f ). Por tanto, en virtud del Teorema de Caracterización de Subespacios Vectoriales, Ker(f) Tema: Pàgina : 52

5 tiene estructura de Subespacio Vectorial del Espacio E. Como consecuencia de esta propiedad, trataremos al núcleo de una Aplicación Lineal como cualquier Subespacio Vectorial, es decir, tendrá su propia Dimensión, Base y Ecuaciones (si las tiene). También notamos el núcleo de una aplicación lineal f con las notaciones: K(f), Ker(f), N(f), Núc(f). A lo largo de los temas seguiremos con la notación "Ker(f)" para representar el núcleo de la aplicación lineal f, al ser la más utilizada en los libros de álgebra. < IMAGEN o RECORRIDO Dada una Aplicación Lineal f: E 6 F, definimos la Imagen de f; y notamos Im(f) a : El conjunto Imagen de una Aplicación Lineal, está formado por los vectores del Espacio Final que son imagen mediante la aplicación f de algún vector del Espacio inicial. < Propiedad El conjunto Im(f) tiene estructura de Subespacio Vectorial de F. i) En primer lugar Im (f) i, pues al menos 0 Im (f), ya que f( ) =, como hemos demostrado. ii) Sean, 0 Im(f) Tema: Pàgina : 53

6 Y Como + = f ( ) + f( ) = { f es lineal } = f + ) Y "@ + ß@ es la imagen mediante f del vector "@ + ß@ 0 E y por lo tanto pertenece a Im (f),"@ + 0 Im(f) así pues, en virtud del Teorema de Caracterización de Subespacios Vectoriales, Im (f) tiene estructura de Subespacio Vectorial del Espacio F, lo cual nos permitirá determinar la Im(f) mediante su base, sus ecuaciones (si las tiene) y su dimensión. La notación más usual para el subespacio imagen es la de Im(f), aunque también se emplea Rec(f), Img(f). < TEOREMA DE LA DIMENSION Cualquier Aplicación Lineal f: E 6 F, cumple esta importante propiedad dim Ker(f) + dim Im(f) = dim E Permite relacionar ambas dimensiones con la del Espacio inicial, de forma que, conocida una de ellas ( Núcleo o Imagen) podemos obtener la otra. CLASIFICACION DE UNA APLICACION LINEAL Atendiendo a los tipos usuales de clasificación de aplicaciones ordinarias, vamos a indicar el nombre de los diferentes tipos de y su caracterización: f: E 6 F NOMBRE TIPO DEFINICION CARACTERIZACION Homomorfismo Lineal Simplemente Lineal Linealidad solamente Monomorfismo Inyectiva dim Ker(f)=0; Ker (f)={ } Epimorfismo Suprayectiva dim Im(f) = dim F ó Im(f) = F Isomorfismo Biyectiva Inyectiva + Suprayectiva dim Ker(f) = 0 ó Ker (f) = { } dim Im(f) = dim F ó Im(f) = F Tema: Pàgina : 54

7 f: E 6 E [ Ojo! de un Espacio en sí mismo ] NOMBRE TIPO DEFINICION CARACTERIZACION Endomorfismo Lineal Simplemente Lineal f:e 6 E y Linealidad solamente Automorfismo Biyectiva Inyectiva + Suprayectiva dim Ker(f) = 0 ó Ker (f) = { } dim Im(f) = dim E ó Im(f) = E Como se puede observar en el CUADRO anterior, podemos clasificar perfectamente una aplicación lineal a partir de las dimensiones del núcleo y de la imagen. Hay dos conjuntos de aplicaciones muy interesantes, que vamos a mencionar aunque sea de paso: End(E) = { f: E 6 E / f es lineal }, conjunto de los ENDOMORFISMOS sobre un Espacio E. Aut(E) = { f: E 6 E / f es lineal y BIYECTIVA }, conjunto de los AUTOMORFISMOS sobre un Espacio E. Resulta muy interesante demostrar que ambos conjuntos tienen estructura de Espacio Vectorial con las operaciones SUMA DE FUNCIONES y PRODUCTO DE UN ESCALAR POR UNA FUNCION [ (f + g)(v) = f(v) + g(v), y ("@ f)(v) = "@ f(v) ] Imagina para encontrar una Base!. < Propiedad Una Aplicación lineal f: E 6 F queda perfectamente determinada, si conocemos las imágenes de los vectores de una Base del Espacio Inicial. < MATRIZ ASOCIADA [ Supondremos en este apartado, conocimientos elementales de la teoría de matrices ] Que una Aplicación Lineal transforma vectores del Espacio Inicial en vectores del Espacio Final resulta obvio a partir de la definición. Vamos a plantear en este apartado como podemos efectuar esta transformación mediante un simple producto matricial. Sean E, F sendos Espacios Vectoriales construidos sobre un mismo cuerpo K y f : E 6 F una Aplicación Lineal, sean B y B' bases respectivas de los Espacios E y F: Y La matriz asociada a f respecto de las bases B y B' viene dada (por columnas) por las componentes, en base B', de las imágenes mediante f de los vectores de la base B. Es decir, la matriz de la Aplicación Lineal refleja las bases que están " actuando " en ambos espacios. Naturalmente, si las bases de ambos espacios son las bases canónicas, bastará con Tema: Pàgina : 55

8 hallar las imágenes de los vectores de la base canónica del Espacio Inicial, puesto que, automáticamente, su expresión en la base canónica del Espacio Final es la que dan sus componentes Si llamamos M B,B' (f), a la matriz asociada a una Aplicación Lineal,f,respecto de las base B y B', su acción es : Donde M B,B' (f)a v matriz(vector) columna v. representa el producto matricial de la matriz M B,B' (f) por la Ejemplo 1: Sea f : ú 3 6 ú 2 / f(x,y,z) = ( x+y-z, x-y ), hallar su matriz asociada ( Respecto de las bases canónicas de ú 3 y ú 2 ). Ejemplo 2: En el problema anterior, hallar la matriz asociada, cuando se toman las bases B = { (1,1,0), (0,1,1), (1,0,1) } de R 3 y B'= { (1,1), (1,0) } de R 2. Paso a paso: Esta matriz, es la matriz asociada a la aplicación f, cuando tomamos la Base B = { (1,1,0),(0,1,1), (1,0,1) } en el Espacio Inicial ( ú 3 ), y B'= { (1,1), (1,0) } en el Espacio Final (ú 2 ), obtenida según el procedimiento sugerido. Tema: Pàgina : 56

9 < DIAGRAMA. Aunque aún no disponemos de las herramientas que nos facilitan matrices y determinantes, vamos a efectuar este desarrollo suponiendo conocimientos que veremos más adelante. Sea f : E 6 F una Aplicación Lineal. Consideremos los siguientes elementos * B 1 y B 2 Bases del Espacio E. ** P, la matriz de paso de la Base B 1 a la Base B 2 (en E) *** B 1 ' y B 2 ' Bases del Espacio F. **** Q, la matriz de paso de la Base B 1 ' a la Base B 2 ' (en F) ***** A, la matriz asociada a f, cuando tomamos las bases B 1 en E y B 2 ' en F ****** M, la matriz asociada a f, cuando tomamos las bases B 2 en E y B 2 ' en F. La relación matricial entre A y M, es: ))))))))))))))))) M = Q P A = P -1 ))))))))))))))))) En forma de diagrama: En particular, sobre un Endomorfismo ( E = F ), las relaciones anteriores, serían: ))))))))))))))))) Tema: Pàgina : 57

10 M = P P A = P -1 ))))))))))))))))) OPERACIONES CON APLICACIONES LINEALES Vamos a definir algunas de las operaciones básicas en el estudio de las aplicaciones lineales. SUMA DE APLICACIONES LINEALES Sean f, g: E 6 F, dos aplicaciones lineales entre los espacios E y F. Definimos la SUMA de aplicaciones, como una nueva aplicación que llamamos f+g : E 6 F, de manera que: Vamos a demostrar que si f y g son aplicaciones lineales, f + g también lo es. Aplicamos la definición: Por lo tanto, f + g es una aplicación lineal: f + g : E 6 F. Es también interesante comprobar que la matriz asociada a f + g respecto de las mismas bases en E y en F se obtiene mediante la suma de la matriz asociada a f y la matriz asociada a g respecto de dichas bases. Tema: Pàgina : 58

11 PRODUCTO DE UN ESCALAR POR UNA APLICACION Sea f: E 6 F, una aplicación lineal y " 0 K, definimos la aplicación "@f, Se comprueba fácilmente, que la aplicación "@ f : E 6 F, también es una aplicación lineal. (Demostrarlo) Ejemplo : Sean f: ú² 6 ú 3 y g: ú² 6 ú 3, sendas aplicaciones lineales / f(x, y) = ( x+y, x-y, 0 ) y g(a,b) = (2a+b, a+2b,a). Hallar las aplicaciones: i) (f + g) ii) 2@ f iii) 2@ f-g. i) f + g œ (x, y) 0 R² 6 (f + g)(x, y) = f(x, y) + g(x, y) = (x + y, x-y, 0) + (2x + y, x+2y, x) = = (3x + 2y, 2x + y, x) (f + g)(x, y)= (3x + 2y, 2x + y, x) ii) f œ (x, y) 0 R² 6 (2@f)(x, y) = 2@ f(x, y) = 2@(x + y, x-y, 0) = (2x + 2y, 2x-2y, 0) (2@ f)(x, y)= (2x + 2y, 2x-2y, 0) iii) f - g œ (x, y) 0 R² 6 (2@f-g)(x, y) = 2@f(x, y) - g(x, y) = (2x + 2y, 2x-2y, 0) - (2x + y, x + 2y, x) = ( y, x-4y, -x) Aplicaciones (2f-g)(x, y) = ( y, Lineales x-4y, -x) Es sencillo comprobar que, siendo E y F sendos Espacio Vectoriales sobre el mismo cuerpo K, el conjunto de todas las aplicaciones lineales f: E 6 F, con estas dos operaciones ( suma de funciones y producto por un escalar) tiene estructura de Espacio Vectorial sobre K APLICACION INVERSA Sea f : E 6 F una aplicación lineal, si f es una aplicación biyectiva, se define la aplicación inversa de f y notamos f -1 a la única aplicación que cumple : f -1 B f = 1 E ( Identidad sobre E ) y f B f -1 = 1 F ( Identidad sobre F ) Es sencillo demostrar que si M B,B' es la matriz asociada a f en las bases B de E y B' de F Y (M B,B' ) -1 es la matriz asociada a f -1 en las bases B' de F y B de E. Tema: Pàgina : 59

12 f -1 : F 6 E Definimos la antiimagen de un vector con la notación f -1 ( ) de forma que : obviamente, f -1 ( ) puede ser un conjunto vacío o bien, puede tener vectores. Ejemplo : Sea f : ú 3 6 ú 2 / f(x, y, z) = (x+y, y+z). Hallar la antiimagen de (1, 1), f -1 (1, 1). Definamos f -1 (1, 1) = { (x, y, z) 0 ú 3 / f(x, y, z) = (1, 1) } Y f -1 (1, 1) = { (1-y, y, 1-y) / y 0 ú } En este caso, la anti.imagen del vector (1, 1) está formada por infinitos vectores. COMPOSICION DE APLICACIONES Al igual que con aplicaciones ordinarias, vamos a definir la composición de aplicaciones lineales. Sean: (E(K), +, A), ( F(K), +, A), ( G(K), +, A) Espacios Vectoriales, y f: E 6 F y g: F 6 G, aplicaciones lineales, definimos la aplicación gbf : E 6 G, como: La aplicación gbf, se lee " f compuesta con g", y es un ejercicio sencillo demostrar que gbf también es una aplicación lineal. [ Ver la sección de cuestiones ] En particular, si E = F = G y f = g, definimos la aplicación f² : E 6 E / f² ( ) = f(f( )) œ 0 E. Definición que podemos extender a cualquier exponente aplicando las propiedades convenientes de las aplicaciones. Por ejemplo: Sean f: M 3x2 6 ú² / g: ú² 6 ú² / g(a, b) = ( 2a, 3a + b). Hallar gbf y g². Tema: Pàgina : 60

13 = (2x 1 + 2x 2 + 2x 3, 3x 1 + 3x 2 + 3x 3 + x 4 -x 5 ). g²(a, b) = (gbg)(a, b) = g(g(a, b)) = g(2a, 3a + b) = (2@ (2a), 3@ (2a) + (3a + b)) = ( 4a, 9a + b). También citar que si A es la matriz asociada a f (en canónicas) y B es la matriz asociada a g (en canónicas) Y B@ A es la matriz asociada a gbf (en canónicas). [ Una buena discusión sería la repercusión del cambio de base en alguno de los espacios sobre la matriz final ] DESCOMPOSICIÓN CANÓNICA DE UNA APLICACIÓN LINEAL Sea f: E 6 F, una aplicación lineal, sean Ker(f) e Im(f) su núcleo e Imagen respectivamente. E / Ker(f) el Espacio Cociente originado por la relación binaria: R - 0 Ker(f). La aplicación f admite la siguiente descomposición canónica: f = p, siendo : p( ) = [ ] ( EPIMORFISMO ) [v] representa la clase del vector para la relación R. b([ ]) = f( ) ( ISOMORFISMO ) i(f( )) = f( ) ( MONOMORFISMO). Tema: Pàgina : 61

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA.

ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA. ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA. Índice de contenido 1. Espacio vectorial....2 Estructura de espacio vectorial...2 Subespacios

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Transformaciones lineales

Transformaciones lineales Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Transformaciones lineales

Transformaciones lineales Capítulo 3 Transformaciones lineales Las transformaciones lineales son las funciones con las que trabajaremos en Álgebra Lineal. Se trata de funciones entre K-espacios vectoriales que son compatibles con

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

Matrices positivas y aplicaciones. María Isabel García Planas Profesora Titular de Universidad

Matrices positivas y aplicaciones. María Isabel García Planas Profesora Titular de Universidad Matrices positivas y aplicaciones María Isabel García Planas Profesora Titular de Universidad Primera edición: Septiembre 2008 Editora: la autora c M ā Isabel García Planas ISBN: 978-84-612-6101-7 Depósito

Más detalles

A c) Determinantes. Ejercicio 1. Calcula los siguientes determinantes:

A c) Determinantes. Ejercicio 1. Calcula los siguientes determinantes: Determinantes 1. Contenido 1.1 Determinantes de orden 1, 2 y 3. 1.2 Menor complementario. Matriz adjunta. 1.3 Propiedades de los determinantes. 1.4 Determinantes de orden n. 1.5 Cálculo de determinantes

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) =

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) = ESPACIO DUAL 1. Espacio Dual En temas anteriores dados V y V espacios vectoriales sobre k, definíamos en Hom(V, V ) una suma y un producto por elementos de k que convertían este conjunto en un espacio

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

TEMA 3 Elementos de la teoría de los conjuntos. *

TEMA 3 Elementos de la teoría de los conjuntos. * TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

que para cualesquiera e, v E, λ, µ k satisfaga las siguientes propiedades:

que para cualesquiera e, v E, λ, µ k satisfaga las siguientes propiedades: Capítulo I Espacios Vectoriales Este capítulo está dedicado a definir la estructura fundamental del Álgebra Lineal: el espacio vectorial; también definiremos las aplicaciones entre espacios vectoriales

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02 PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez pies3coma14@hotmail.com 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA TEST DE ÁLGEBRA 1.- Sea f:r 4 -----> R 5 una apli. lineal a) Dim ker(f) tiene que ser 3 b) Dim ker(f) será 4 c) Dim ker(f) es 5 2.- El sistema homogéneo 3 x % 8 y % ð z 0 y & z 0 a) tiene soluciones no

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------

Más detalles

i05matrices.nb Matrices

i05matrices.nb Matrices i05matrices.nb 1 0.5 Matrices Lo primero que necesitamos es la forma en que se escriben las matrices en Mathematica. Recordemos que cada fila corresponde a una lista y que los elementos de ésta van entre

Más detalles

Transformaciones lineales y matrices

Transformaciones lineales y matrices CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). a) Demostrad que (1,3,4), (1,1,1) i (0,1,1) son una base de R³. b) Decid

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1. APLICACIONES LINEALES 1. Estudiar si las siguientes aplicaciones son lineales: a) f : R 2 R 3, f(x, y) = (x + y, y, x 2y). Sí es lineal. b) f : R 2 R, f(x, y) = xy. No es lineal. Basta observar que

Más detalles

LA FUNCIÓN INVERSA. Si R es una relación, la relación R definida por la proposiciones. (a, b) R (b, a) R. (a, b) R (c, b) R a = c

LA FUNCIÓN INVERSA. Si R es una relación, la relación R definida por la proposiciones. (a, b) R (b, a) R. (a, b) R (c, b) R a = c LA FUNCIÓN INVERSA Existen diferentes definiciones de función inversa, aunque el concepto matemático es el mismo. Expondremos aquí tres de ellas, para efectos formales, ya que para hallar la inversa de

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

UNIDAD 7: MATRICES Y DETERMINANTES

UNIDAD 7: MATRICES Y DETERMINANTES UNIDAD 7: MATRICES Y DETERMINANTES En la presente unidad estudiaremos un tema muy importante dentro de la carrera de Informática como son las matrices y determinantes, conocimiento que tiene aplicación

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS 1.- DEFINICIÓN DE SISTEMAS DE ECUACIONES LINEALES Definición: se llama sistema de ecuaciones lineales al

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Teoría Tema 9 Ecuaciones del plano

Teoría Tema 9 Ecuaciones del plano página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático.

El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático. TEORIA DE GRUPOS El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático. Propiedades de un grupo Existe un operador identidad (E)

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 6 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles