f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y)."

Transcripción

1 TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones: Suma, producto, división y composición. Inversa de una función respecto de la composición. 8.5 Transformaciones de una función. 8. FUNCIÓN REAL DE VARIABLE REAL. DOMINIO. Se define función real de variable real a una aplicación que a cada elemento del subconjunto D de IR (, variable independiente) le hace corresponder un único número real llamado imagen (y, variable dependiente). f: D IR IR f() v. indep. v. dependiente, imagen de mediante f, y = f(). A se le llama antiimagen de y por f, y se denota por = f - (y). Al conjunto de todos los números reales que tienen imagen por f se le llama dominio de f y se denota por Domf. Domf = { IR / y = f() IR }. Al conjunto de números reales que son imagen mediante f se le llama imagen de f o recorrido y se denota por Rec f. Rec f = {f() con Domf} = {y IR / Domf con y= f()}. Dos funciones f y g son iguales si tienen el mismo dominio y las imágenes para el mismo valor de coinciden, es decir, Domf=Domg y f() = g() Domf. La gráfica de una función f está formada por los pares de puntos (,f()) con Domf. Ejercicio : Epresa mediante una función: a) El precio de una cierta cantidad de café que vale el kilo. b) El coste de una llamada telefónica, si el establecimiento de llamada es de 0 y la tarifa por un minuto es de 0. c) La relación entre la altura y la base de un triángulo cualquiera de 6 cm de área, si la base es la variable dependiente. d) El área de un cuadrado en función de su diagonal. Ejercicio : Representa las siguientes funciones elementales a) f() = 3 b) f() = c) f() = d) f() = e) f() = f) f() = ½ g) f() = e h)f()= Ln i) f() = log j) f() = log / k) f() = sen l)f()= cos Ejercicio 3: Página 90, ejercicio 4. Voluntario.

2 Para ellos: página 95, estudio del recorrido, ya resuelto. Para clase: Página, ejercicios: 4 (dominio y recorrido), 7, 8, 9, 5, 6 y. 8. DOMINIO DE UNA FUNCIÓN. Para poder representar una función no es suficiente una tabla de valores. Para representarla necesitamos saber sus características: dominio, recorrido, puntos de corte, signo, continuidad, crecimiento y decrecimiento, máimos y mínimos, etc. La primera que vamos a aprender son los dominios. Para calcular el dominio de una función debemos tener en cuenta que los únicos problemas que tenemos al calcular una imagen son dividir por cero, raíz de índice par de un número negativo y logaritmo de cero o de un número negativo, y por supuesto las restricciones que nos dé un problema o la persona que nos plantea la función. Para calcular el dominio de una función necesitamos atender al tipo de función (polinómica, racional, eponencial, etc) que depende de la forma de su fórmula: Ejercicio 4: Calcula el dominio de las siguientes funciones: a) f() = - + b) f() = 3 + Conclusiones: Las funciones polinómicas son aquellas cuya epresión viene dada por un polinomio. Su dominio es todo IR, ya que no hay ningún problema para hacer una potencia n-sima, ni para sumar o multiplicar por un número. c) f() e) f() d) f() f) f() Conclusiones: Las funciones racionales son de la forma P() El dominio de una función Q() racional es el conjunto de todos los números reales salvo aquellos que anulan el denominador (Q() 0). g) f() i) f() h) f() j) f() Conclusiones: Las funciones irracionales son de la forma f() = n g (), su dominio coincide con el dominio de g() si n es impar y si n es par para calcular su dominio tendremos que tener en cuenta el dominio de g y que el radicando sea positivo o nulo. k) f() l) f() sen m) f() sen( ) 3 n) f() tg sen ñ) f() cos o) f() sen

3 Conclusiones: En aquellas funciones en cuya epresión interviene las razones trigonométricas, debemos tener en cuenta que el seno y coseno de un ángulo no presentaba ningún problema mientras que la tangente, cotangente, secante y cosecante dan problemas cuando el denominador se anula. p) f() s) f() e sen q) f() e t) f() e r) f() e u) h() e Conclusiones: Si una función es composición de una eponencial y otra función, para calcular su dominio tan solo tendremos que tener cuidado con la función que está en el eponente. v) f() log3 ( ) w) f() Ln( 6) ) f() Ln Conclusiones: Si una función es de la forma f()=log a (g()) a>o, calcularemos su dominio teniendo en cuenta el dominio de g y que la función g() sea positiva (no nula). En los siguientes apartados estudiaremos el dominio de funciones a trozos, si estudias la inercia de un objeto en el agua veréis que no sigue la misma fórmula en el líquido, en el hielo que en el vapor. Por ello en determinadas circunstancias debemos definir un fenómeno a través de varias fórmulas, dando lugar a las funciones definidas a trozos. Para estudiar su dominio debemos estudiar el dominio de cada función en el intervalo correspondiente y prestando especial atención a los intervalos de definición. y ) f() /3 5 si 6 3 si si z) Ln g() 5 si si aa) h() 3 ** Trabajo de dominios. si si si 6 bb) i() si 3 si 8.3 CARÁCTERÍSTICAS DE UNA FUNCIÓN: SIGNO, MONOTONÍA, ACOTACIÓN, SIMETRÍA Y PERIODICIDAD. Determinar el signo de una función es hallar para qué valores de su dominio la imagen f() es positiva y para cuáles es negativa. Se dice que una función f es estrictamente creciente en el intervalo (a,b) si para cualesquier par de valores e y de dicho intervalo con < y entonces f() < f(y). 3

4 Se dice que una función f es creciente en el intervalo (a,b) si para cualesquier par de valores e y de dicho intervalo con < y entonces f() f(y). Se dice que una función f es estrictamente decreciente en el intervalo (a,b) si para cualesquier par de valores e y de dicho intervalo con < y entonces f() > f(y). Se dice que una función f es decreciente en el intervalo (a,b) si para cualesquier par de valores e y de dicho intervalo con < y entonces f() f(y). Una función f es constante en un intervalo (a, b) si para cualesquier par de valores e y de dicho intervalo se verifica que f() = f(y). Al estudio del crecimiento y decrecimiento de una función se le llama monotonía. El crecimiento y decrecimiento de una función da lugar a definir unos puntos muy especiales llamados etremos relativos. Una función f tiene un máimo relativo en = a, si eiste un entorno de a en el cual se verifica que para todo perteneciente a dicho entorno reducido se tiene que f() < f(a). Una función f tiene un mínimo relativo en un = a, si eiste un entorno de a en el cual se verifica que para todo perteneciente a dicho entorno reducido se tiene que f() > f(a). Una función f es simétrica respecto del eje de ordenadas si para todo perteneciente a su dominio se verifica que f() = f(-). También se llama simetría par. Una función f es simétrica respecto del origen de coordenadas si para todo perteneciente a su dominio se verifica que f(-) = - f(). También se llama simetría impar. Esta característica nos ayuda a su representación gráfica. Una función f está acotada superiormente si eiste un número real k tal que todos los valores que toma la función son menores o iguales que k, es decir, Domf se tiene que f() k. Y a k le llamaremos cota superior. Una función f está acotada inferiormente por un número real k si todos los valores que toma la función son mayores o iguales que k, es decir, si Domf se tiene que f() k. Y a k le llamaremos cota inferior. Una función f está acotada se está acotada superior e inferiormente. Una función f es periódica, de período T (T es un número real positivo) si verifica que f ( + kt) = f() para todo perteneciente a su dominio y para todo entero k. A T le llamamos período de la función f. Ejercicio 5: Indica las características de las siguientes funciones (no olvidar dominio y recorrido): a) f() = b) f() = + c) f() = 4 d) f() = Ln e) f() = e f) f() = sen g) f() = 3 h) f() = i) f() = j) f() si si si Ejercicio (Trabajo para los alumnos): Indica las características de las siguientes funciones: 4

5 a) f() = b) f() = - c) f() = cos d) f() = tag e) f() = log f) f() = log / g) f() = 3 h) f() = Voluntarios: página, ejercicios: OPERACIONES CON FUNCIONES. Ejercicio 6: Dadas las funciones f() = + 3 y g() =. Calcular: a) f() + g() = (f+g) () b) f() g() = (f g) () c) f() : g() = (f:g) () Para clase: página, ejercicios: 34, 35, 37, 38. Son las operaciones que conocemos con los polinomios, con los números, Con las funciones podemos definir otro tipo de operaciones, qué ocurre si queremos que actúe una función y después otra?, hay una función sea capaz de hacer en un solo paso la aplicación de las dos funciones? Dadas dos funciones f y g definimos la función f compuesta con g como la función que asigna a cada del dominio de f el número g[f()]. Dicha función se denota por gof. f: D IR IR g: D IR IR f() g() gof : D IR IR gof() = g[f(). Ejemplo: Dadas la funciones f() = + 3 y g() = /. a) Calcula f(), g(7) b) Calcula (gof) () c) Calcula (gof) (), qué observas? d) Calcula (fog) (), qué observas? Propiedades de la composición de funciones: a) Propiedad asociativa: h o (g o f) = (h o g) o f b) No tiene la propiedad conmutativa: g o f f o g Ejercicio 7: Dadas las funciones f() =, interesa poner =, g() =, 4 h() =, i() = 4 y j() = -. Calcula f + g, g. h, g : i, f o i, i o f, f o g, i o j y j o i. 5

6 Ejercicio 8: Dadas las funciones f() = y g() =. Calcula f o g y g o f. Para clase: Pág., ejercicios: 40 (añado los apartados d, e, f que están debajo), 4, 4 d) f() = cos y g() = e) f() = y g() = e f) f() = Ln y g() = e De la definición de composición de funciones podemos obtener la definición de función inversa respecto de la composición, la inversa de f es otra función f - que verifica que f o f - () = f - o f() =. A la función f() = se llama función identidad. No debemos confundir con la inversa respecto de la división. Para calcular la función inversa debemos seguir los siguientes pasos: ) cambiar f() por y ) cambiar por y 3) despejar y, la función obtenida será la inversa. Ejercicio 9: Calcula la función inversa de las siguientes funciones: a) f() b) g() c) h() = 3 d) i() = e) j() 4 f) k() = g) l() = h) m() = e i) n() = Ln Si quieres comprobar si has hecho bien los cálculos pueden hacer la composición de la función y su inversa. Página, ejercicios: 44, TRANSFORMACIONES DE FUNCIONES. A partir de una función conocida (elemental) podemos dibujar gráficas de funciones no tan conocidas, por ejemplo sabemos dibujar f() =, sabrías representar g() = 4? Vamos a ver, de forma intuitiva, las transformaciones de funciones que pueden estar desplazadas, dilatadas, contraídas o invertidas. Debemos tener en cuenta: a) Para representar g() = f() + a realizamos un desplazamiento vertical hacia arriba de a unidades. Ejemplo. b) Para representar g() = f() - a realizamos un desplazamiento vertical hacia abajo de a unidades. Ejemplo. c) Para representar g() = f( + a) realizamos un desplazamiento horizontal hacia la izquierda de a unidades. Ejemplo. d) Para representar g() = f( - a) realizamos un desplazamiento horizontal hacia la derecha de a unidades. Ejemplo. e) Para representar g() = - f() realizamos una inversión de la gráfica. Ejemplo. f) Para representar g() = a. f() realizamos una dilatación o contracción de la gráfica. Ejemplos. Página, ejercicios: 46 a, b, 47 Voluntarios, ejercicios:,, 7, 8, 9 6

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones.

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones. . CONCEPTO DE FUNCIÓN TEMA 7 : Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El espacio que recorre un móvil con movimiento uniforme depende del tiempo invertido.

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f.

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f. TEMA 5: FUNCIONES ELEMENTALES. 5. Función real de variable real. 5. Operaciones con funciones: composición e inversa. 5.3 Construcción de gráficas de funciones elementales y sus transformaciones. 5.4 Interpolación

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

UNIDAD 3: FUNCIONES -PROPIEDADES GLOBALES -OPERACIONES -FUNCIONES ELEMENTALES -INTERPOLACIÓN

UNIDAD 3: FUNCIONES -PROPIEDADES GLOBALES -OPERACIONES -FUNCIONES ELEMENTALES -INTERPOLACIÓN UNIDAD 3: FUNCIONES -PROPIEDADES GLOBALES -OPERACIONES -FUNCIONES ELEMENTALES -INTERPOLACIÓN 46 OBJETIVOS DIDÁCTICOS En esta unidad aprenderás a:. Analizar si una gráfica es o no función.. Analizar las

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

1. FUNCIÓN REAL DE VARIABLE REAL

1. FUNCIÓN REAL DE VARIABLE REAL 1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

TEMA 0 FUNCIONES ***************

TEMA 0 FUNCIONES *************** TEMA 0. Definición y terminología.. Funciones conocidas. 3. Operaciones con funciones. 4. Funciones inversas. FUNCIONES ***************. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) :

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) : Resumen Tema 2: Funciones Concepto de función. Gráficas Definición. Se llama función (real de variable real) a toda aplicación f : R R que a cada número le hace corresponder otro valor f(). f() Definición

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. 2º Bachillerato de Humanidades. Concepto de función

Colegio Portocarrero. Curso Departamento de matemáticas. 2º Bachillerato de Humanidades. Concepto de función 2º Bachillerato de Humanidades. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO

1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO 1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO Definición: Una función es una relación entre dos conjuntos X e Y, que asocia a cada elemento x X un único elemento y Y. Diremos que y es la imagen del elemento

Más detalles

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4 Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

x y 2 y D=R-{1} y=log(x+2) D=(-2, ) y x 3

x y 2 y D=R-{1} y=log(x+2) D=(-2, ) y x 3 . Función. Es una correspondencia (relación) entre dos subconjuntos de R de forma que a cada elemento del primer conjunto le corresponde un único elemento del segundo.. Operaciones. La función operación

Más detalles

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

TEMA 3. Funciones. Cálculo diferencial

TEMA 3. Funciones. Cálculo diferencial TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones

Más detalles

GRÁFICA DE FUNCIONES

GRÁFICA DE FUNCIONES GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES ELEMENTALES FUNCIONES CUADRÁTICAS. La función f() = La función cuadrática más sencilla es f() = cuya gráfica es: -3 - - -0'5 0 0'5 3 f() = 9 4 0'5 0 0'5 4 9 Características generales Su dominio

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Santiago Cobreros Rico Estudiaremos someramente, aunque paso a paso las propiedades de los distintos tipos de funciones encaminadas a la obtención de la representación gráfica

Más detalles

FUNCIONES ELEMENTALES Y PROPIEDADES

FUNCIONES ELEMENTALES Y PROPIEDADES . NOCIONES INTRODUCTORIAS.. Concepto de función. Dominio e Imagen. Una función es una relación entre dos variables, de forma que a cada valor de la variable independiente x, le asocia un único valor de

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Funciones Trigonométricas Directas.

Funciones Trigonométricas Directas. 2.2. Funciones Trascendentes. 2.2.1. Funciones trascendentes: funciones trigonométricas y funciones eponenciales. Funciones Trascendentes No siempre se puede modelar con funciones del tipo algebraico;

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS I.E.S. Ramón Giraldo UNIDAD 5: FUNCIONES. CARACTERÍSTICAS. CONCEPTO DE FUNCIÓN Una unción real de variable real es una correspondencia de un conjunto D en el conjunto de los números reales, es decir, una

Más detalles

Fundamentos matemáticos. Tema 4 Funciones de una y varias variables

Fundamentos matemáticos. Tema 4 Funciones de una y varias variables Grado en Ingeniería agrícola y del medio rural Tema 4 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. -CONTENIDOS: FUNCIONES REALES DE VARIABLE REAL. 1.1 Definición y terminología. 1. Funciones conocidas. 1. Operaciones con funciones. 1.4 Funciones recíprocas. 1.5 Funciones monótonas y funciones acotadas.

Más detalles

FUNCIONES ( ) Racionales: ( ) Irracionales: ( ) Logarítmicas: ( )

FUNCIONES ( ) Racionales: ( ) Irracionales: ( ) Logarítmicas: ( ) FUNCIONES Definición. Función real de variable real es una aplicación del conjunto de los números reales en sí mismo, de tal forma que a cada número real le hace corresponder otro número real. CORRESPONDENCIA

Más detalles

Tema 9 Funciones elementales

Tema 9 Funciones elementales Tema 9 Funciones elementales 9.1Gráfica de una función. Signo simetría. PÁGINA 175 EJERCICIOS 1. Encuentra los puntos de corte con los ejes de las siguientes funciones estudia su signo. 3 c) f 1 c.1) Cortes

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES 1.- FUNCIONES POLINÓMICAS. Las más importantes son las de grado 0, 1 y 2, también llamadas funciones constantes, afines y cuadráticas. Funciones constantes. Evidentemente, las funciones

Más detalles

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1.- INTRODUCCIÓN Definición: Una función real de variable real es una aplicación entre dos subconjuntos de los números reales, de modo

Más detalles

Funciones, Límites y Continuidad

Funciones, Límites y Continuidad Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas

Más detalles

Unidad 6: Funciones reales de variable real.

Unidad 6: Funciones reales de variable real. Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación

Más detalles

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES 1. EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera

Más detalles

TEMA 7. FUNCIONES. a) Mediante una grafica. Es la forma en la que mejor se puede apreciar el comportamiento global de una función.

TEMA 7. FUNCIONES. a) Mediante una grafica. Es la forma en la que mejor se puede apreciar el comportamiento global de una función. . INTRODUCCIÓN. TEMA 7. FUNCIONES Las funciones estudian la relación existente entre dos variables. Para expresar esta relación, las funciones se pueden presentar de diferentes formas: a) Mediante una

Más detalles

= x De este modo: Esto es un ejemplo de FUNCIÓN.

= x De este modo: Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 6 FUNCIONES REALES. PROPIEDADES GLOBALES.. CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal:

Más detalles

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + )

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + ) Tema 5: Funciones. Dominio, Límites, Asíntotas y Continuidad de Funciones 5.1 Concepto de Dominio de una función Función: es una regla que asigna a cada número real X un único número real Y. X Dom R Dom

Más detalles

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN.

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. CONCEPTO DE FUNCIÓN. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal: A cada número se le hace corresponder su doble.

Más detalles

UNIDAD 8.- Funciones racionales (tema 8 del libro)

UNIDAD 8.- Funciones racionales (tema 8 del libro) (tema 8 del libro). FUNCIÓNES DE PROPORCIONALIDAD INVERSA k Las funciones de proporcionalidad inversa son funciones cuya epresión es de la forma f ( ) Las gráficas de estas funciones son o se llaman hipérbolas

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

Tema 2. FUNCIONES REALES DE VARIABLE REAL

Tema 2. FUNCIONES REALES DE VARIABLE REAL UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento

Más detalles

FUNCIONES. gx ()= Im(g)=R Dom(g)=R-{-2,2}

FUNCIONES. gx ()= Im(g)=R Dom(g)=R-{-2,2} FUNCIONES Definición: Sea D un subconjunto no vacío de R, es decir D R. Se llama función real de variable real a toda aplicación f de D en R, y se degna por fd : R a f() Intuitivamente, una función real

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

2. Funciones reales de una variable real Funciones elementales PROPIEDADES

2. Funciones reales de una variable real Funciones elementales PROPIEDADES . Funciones reales de una variable real.1. Funciones elementales.1.1. POPIEDADES Definiciones Se llama función real de una variable real a cualquier aplicación f : D, D, que hace corresponder a cada D

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Problemas de Matemáticas 4 o de ESO Funciones. 1 Funciones. 1.1 Concepto de función. 1. Halla el dominio y el recorrido de las siguientes funciones

Problemas de Matemáticas 4 o de ESO Funciones. 1 Funciones. 1.1 Concepto de función. 1. Halla el dominio y el recorrido de las siguientes funciones Problemas de Matemáticas 4 o de ESO Funciones 1 Funciones 1.1 Concepto de función 1. Halla el dominio y el recorrido de las siguientes funciones (a) f() = 3 + 1 dominio todo R recorrido todo R (b) f()

Más detalles

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.

Más detalles

El concepto de función viene unido al estudio de los fenómenos sujetos a cambios.

El concepto de función viene unido al estudio de los fenómenos sujetos a cambios. FUNCIONES 1 1 FUNCIÓN: CONCEPTO Y ELEMENTOS BÁSICOS 1.1. Introducción El concepto de función viene unido al estudio de los fenómenos sujetos a cambios. En la Edad Media el estudio de funciones aparece

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro)

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) 1. FUNCIONES AFINES Y LINEALES Son funciones cuya gráfica es una recta (como ya vimos en geometría). De manera general son de la forma f ( ) = m + n

Más detalles

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Contenidos Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Máximo, mínimo Función par o impar Función periódica Función Potencial

Más detalles

Tema 5: Funciones, límites y Continuidad

Tema 5: Funciones, límites y Continuidad Tema 5: Funciones, límites y Continuidad 0.- Introducción.- Definición de Función..- Funciones elementales..- Operaciones con funciones...- Composición de funciones...- Función inversa o recíproca 3.-

Más detalles

Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO.

Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO. R = { (, y) A B / + y > } Si lr y > - lr, y lr Dom( R) = lr, Ran( R) = lr Funciones en una variable Real Para aproimar el gráfico realizamos una tabulación: X y : y > -. y y : y > 0. y : y > -.. RELACIONES.

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

1. Definición y formas de de definir una función

1. Definición y formas de de definir una función Tema 7. Funciones 1. Definición y formas de definir una función 1.1. Definición de una función 1.. Formas de definir una función 1..1. A Partir de gráfica 1... Epresión algebraica 1..3. Tabla. Dominio

Más detalles

Antonio López García Angeles Juárez Martín Juan Fernández Maese

Antonio López García Angeles Juárez Martín Juan Fernández Maese EJERCICIOS DE ANÁLISIS FUNCIONES, LÍMITES Y CONTINUIDAD MATEMÁTICAS II LOGSE Antonio López García Angeles Juárez Martín Juan Fernández Maese Índice Temático. FUNCIONES REALES DE VARIABLE REAL... 5.. DEFINICIÓN

Más detalles

3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES

3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable independiente, ) le corresponde un valor o

Más detalles

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.1. FUNCIONES ELEMENTALES

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.1. FUNCIONES ELEMENTALES Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM.... Definición. FUNCINES REALES DE UNA VARIABLE REAL.. FUNCINES ELEMENTALES Se llama función real de una variable real a cualquier aplicación

Más detalles

Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. La función es continua en { 3} La función es continua en (, 1) ( 1, )

Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. La función es continua en { 3} La función es continua en (, 1) ( 1, ) Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. 1.-Estudiar la continuidad de las siguientes funciones: + f( ) = f( ) = f( ) = 1 + + 1 1 + 1 f( ) = log 1 f( ) = + 1 f ( ) 6 La

Más detalles

Parte II. DERIVADAS. APLICACIONES.

Parte II. DERIVADAS. APLICACIONES. Parte II. DERIVADAS. APLICACIONES. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. f ( a + h ) f ( a ) Se dice que f es derivable en = a si eiste el límite lim. Este número se denomina derivada

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y . DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable

Más detalles

Tema 5 Funciones(V). Representación de Funciones

Tema 5 Funciones(V). Representación de Funciones Tema 5 Funciones(V). Representación de Funciones 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con eje OX 1... Con eje OY 1.. Signo de la función 1.4. Simetría y periodicidad

Más detalles

Función real de variable real, hallar g f y

Función real de variable real, hallar g f y 1.- Si 3 f() e y g() cos( ) Función real de variable real, hallar g f y f g..- Hallar el dominio de las siguientes funciones: 1 a) f() ln(sen) b) f() 1 c) f() 1 1 3.- Hallar la inversa de las siguientes

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S

L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S 1. T A S A D E V A R I A C I Ó N M E D I A Definimos la variación media de una función f en un intervalo [, + ], y la designamos por t m o TVM[,

Más detalles

Bloque 3. Análisis. 2. Tipos de funciones

Bloque 3. Análisis. 2. Tipos de funciones Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.

Más detalles

4º ESO APLICADAS FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES

4º ESO APLICADAS FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable independiente, ) le corresponde un valor o

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Calcula la pendiente de la recta que pasa por los puntos A(, ) y B(, ). m = 00 Dibuja sobre unos ejes de coordenadas algunas parábolas que tengan como vértice el punto (0,

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar

Más detalles

Problemas de continuidad y límites resueltos

Problemas de continuidad y límites resueltos Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes

Más detalles

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

Función Real de variable Real. Definiciones

Función Real de variable Real. Definiciones Función Real de variable Real Definiciones Función Sean A y B dos conjuntos cualesquiera. Una aplicación de A en B es una relación que asocia a cada elemento (x=variable independiente) de A un único valor

Más detalles

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno.

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno. . CONCEPTO DE FUNCIÓN UNIDAD 6: FUNCIONES Las unciones son las herramientas para la descripción matemática de una situación real. De hecho, todas las órmulas de la Física no son más que unciones, que epresan

Más detalles

ANÁLISIS MATEMÁTICO I (2013)

ANÁLISIS MATEMÁTICO I (2013) ANÁLISIS MATEMÁTICO I (203) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta.. El teorema del

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES.

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. Concepto de unción.. Monotonía y etremos. Acotación... Monotonía... Etremos relativos y absolutos... Funciones acotadas.. Simetría y periodicidad... Funciones

Más detalles