UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)"

Transcripción

1 (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores que toma la variable en la segunda ila o columna están los valores correspondientes que toma la variable dependiente Ejemplo: Tabla de valores de la unción que nos da los precios de la taria doméstica de la luz en los años que se indican: Años (variable independiente) Precio luz 8, 07,7 0,4 99,7 96,7 96,7 97, 97, 98, ( /MWH) - Epresión mediante una gráica Las gráicas nos dan una visión cualitativa de las unciones sobre unos ejes coordenados Ejemplo: Función que nos da las entradas de cine por persona compradas a lo largo de un año. - Epresión mediante una órmula matemática o epresión algebraica La epresión algebraica o órmula matemática permite calcular los valores de la variable dependiente para todos los valores que demos a la variable independiente. Se dice que la unción viene dada por un criterio o órmula. Ejemplo: El área de un cuadrado de lado l viene dado por la unción Área( l) l - Epresión mediante la descripción verbal La descripción verbal nos proporciona una visión descriptiva cualitativa de la relación uncional Ejemplo: La unción que liga el precio que hemos de pagar al rutero en unción de la cantidad de manzanas que compremos, sabiendo que el kilogramo cuesta 0,80 Esta unción la podemos ácilmente transormar en una epresión como sigue: ( ) 0,80 donde nº de kilogramos de manzanas

2 . FUNCIONES REALES DE VARIABLE REAL. DOMINIO Y RECORRIDO La relación eistente entre dos magnitudes que pueden epresarse en las ormas vistas en el apartado anterior recibe el nombre de unción. Una unción real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R : D R R Se representa de la siguiente orma: Una tiene una sola imagen, pero una puede D ( ) tener varias que vaan a ella. Al conjunto D se le llama dominio de deinición (o simplemente dominio) de la unción (), suele ser el maor subconjunto de R donde la unción tiene sentido. Se representa por Dom( ) A se le llama variable independiente, representa a los valores a los que se aplica A se le llama variable dependiente, representa a los valores que se obtienen de aplicar Al conjunto de todos los valores que se obtienen aplicando a todos los valores del dominio se le llama conjunto imagen o recorrido. Se representa por Im( ) o por Recorr ( ) Se denomina gráica o grao de una unción () con Dom( ) Ejemplos de unciones: al conjunto de puntos del plano de la orma, ( ) ( ) e ( ) g ( ) ( ) si si Ejemplo : Sea la unción polinómica cuadrática siguiente: De orma reducida nos darán de manera habitual la unción sólo mediante su criterio o órmula. En este caso como: ( ) 4 4 ó 4 4 Todas las unciones polinómicas tiene por dominio todos los nº reales, salvo que eplícitamente nos hagan una restricción, que no es el caso. : D R R D ( ) 4 4 Así, Dom( ) = R El conjunto imagen o recorrido es más diícil de calcular, pues nos hace alta dibujar la unción, obteniendo su gráica, que en este caso es una parábola (a veremos cómo se dibuja su gráica en la unidad siguiente). Os saldrá un dibujo como el de la izquierda. La imagen la miramos en el eje de ordenadas o eje OY (como si comprimiésemos el dibujo de la unción sobre el eje OY) obtenemos: Im( ) = [0, + )

3 Clasiicación de las unciones según su criterio o órmula Funciones Algebraica s Constantes Ej : ( ) 6 Aines lineales Ej : ( ) 4 Polinómica s Cuadráticas Ej : ( ) 5 Racionales Degrado superior a Ej : ( ) Fraccionarias :Su criterio o órmula es una racción con en el denominador Ej : ( ) 5 Irracionales : Son aquellas unciones donde la variable independiente,, aparece dentro de un signo radical Ej : ( ) Trigonométricas : Aparece alguna unción trigonométrica Ej : ( ) sen( ) cos( ) 6 Eponencia les : La variable "" está en el eponente Trascendentes Ej : ( ) 5 Logarítmicas :Aparece la "" como argumento de algún logaritmo Ej : ( ) 4 ln( ) CÁLCULO DE DOMINIOS MEDIANTE LA FÓRMULA O CRITERIO Dependiendo del criterio o órmula de la unción actuaremos de una orma u otra para calcular el dominio, atendiendo a las siguientes instrucciones, basadas en que no se puede dividir por 0, no se pueden obtener raíces de índice par de radicandos negativos, no eisten logaritmos de números negativos: - Funciones polinómicas: Su dominio es todo R, pues al ser el criterio un polinomio nunca habrá problemas. Ejemplos: 4 ( ) Dom( ) = R Dom( ) = R Dom( ) = R P( ) - Funciones raccionarias: Son de la orma donde P () Q() son polinomios. Q( ) Su dominio son todos aquellos nº reales que no anulan el denominador. Matemáticamente lo epresamos de la siguiente manera: Dom ( ) R / Q() 0 (esto se lee así, todos los nº reales tales que el polinomio denominador Q () no vale 0 Ejemplos: a), que es una hipérbola equilátera. Tenemos que Dom( ) = R\{0} 5 b) ( ) Vamos a calcular su dominio, Dom( ) { R \ 0} 0 Vemos dónde se anula el denominador: 0 Por tanto, Dom( ) R\{0, }

4 - Funciones irracionales: Son del tipo ( ) n g( ) Si el índice del radical es impar (n es impar), entonces el dominio de la unción coincide con el dominio de la unción g Si el índice del radical es par (n es par), entonces el dominio será el conjunto de los nº reales tales que g ( ) 0 Ejemplos: a) Calcular el dominio de. Como se trata de una unción irracional de índice impar (), nos ijamos en el radicando, como se trata de una polinómica de primer grado (aín) su dominio será R Dom () = R b) Calcular el dominio de ( ) 5 Por ser de índice impar (5), nos ijamos en el radicando, que 9 es una racción algebraica. Debemos descartar para el dominio los valores que anulan el denominador 9 0 Dom( ) R\{,-} c) Calcular el dominio de ( ) 4 Por ser de índice par, vamos a hacer una tabla de signos para 9 conocer donde el radicando es 0. Veamos primero donde el numerador el denominador del radicando se anulan. 0 Con estos tres valores dividimos la recta real en 4 intervalos abiertos construimos 9 0 la tabla de signos: (, ) (-,) (,) (, ) De donde deducimos que Dom ( ), (, ). Fijaos que el es cerrado pues anula el numerador del radicando tiene sentido (tendriamos una raíz cuarta de 0, que es 0), mientras que van abiertos pues anulan el denominador no tienen sentido (dividiríamos por 0) - Funciones eponenciales: g( ) Las eponenciales ( ) a tienen por dominio el mismo que el de la unción eponente Ejemplos: a) Dom ( ) R { } b) ( ) e + Dom ( ) 0, - Funciones logarítmicas: El dominio de estas unciones, ( ) log a ( g( )) son los nº reales tales que hacen g ( ) 0 Ejemplos: ( ) ln( ) Dom ( ) R 0 Matemáticamente tenemos que calcular Resolvemos 0 ahora hacemos la tabla de signos (, ) (-,) (, ) Por tanto, Dom ( ) (, ). Observad que son abiertos pues ln0 no tiene sentido

5 CÁLCULO DE DOMINIOS MEDIANTE LA GRÁFICA El dominio de la unción viene dado por el conjunto de valores del eje de abscisas o eje OX para los cuales la unción eiste. Veamos unos ejemplos: Ejemplo: Calcular el dominio de las siguientes unciones dadas por sus gráicas: a) El dominio de esta unción es la parte del eje OX que tienen correspondientes valores de la gráica (eiste ()). Por tanto, Dom ( ), b) En este caso tenemos que:, (,6] Dom ( ) c) En este caso tenemos que: Dom( ) IR 5

6 CÁLCULO DE LA IMAGEN O RECORRIDODE UNA FUNCIÓN MEDIANTE LA GRÁFICA Sólo calcularemos imágenes o recorridos de unciones mediante gráicas. El recorrido de una unción viene dado por el conjunto de valores del eje de ordenadas o eje OY que son alcanzados por la unción. Ejemplo: Calcular el recorrido de las siguientes unciones dadas por sus gráicas: a) El recorrido de esta unción es la parte del eje OY que tienen correspondientes valores de la gráica (eiste ()). Por tanto, Recorr ( ) 0, b) En este caso tenemos que: Im( ) (,4] c) En este caso tenemos que: Im( ) [, ) [0,4) 6

7 . MONOTONÍA Deinición: Una unción () a, b si para cualquier par de valores del intervalo,, con, se tiene que ( ) ( ). Matemáticamente lo podemos escribir así: () es estrictamente creciente en un intervalo a, b, a, b tal que ( ) ( ) Gráicamente lo vemos así: es estrictamente creciente en un intervalo Deinición: Una unción () a, b si para cualquier par de valores del intervalo,, con, se tiene que ( ) ( ). Matemáticamente lo podemos escribir así: () es estrictamente creciente en un intervalo a, b, a, b tal que ( ) ( ) Gráicamente lo vemos así: es estrictamente decreciente en un intervalo 7

8 Ejemplo: Tenemos la unción () cuta gráica es la siguiente:,, Observamos que la unción es estrictamente creciente en ) Y que la unción es estrictamente decreciente en, 4. EXTREMOS RELATIVOS Deinición: Una unción () tiene un máimo relativo en un punto de abscisa 0, si ha un intervalo abierto que contiene a 0, donde ( 0 ) es el maor valor que alcanza la unción. Deinición: Una unción () tiene un mínimo relativo en un punto de abscisa 0, si ha un intervalo abierto que contiene a 0, donde ( 0 ) es el menor valor que alcanza la unción. MÁXIMO RELATIVO MÍNIMO RELATIVO 8

9 Ejemplo: Supongamos que tenemos una unción cua gráica es como sigue: Viendo el dibujo podemos decir que: - En,0, la unción es estrictamente decreciente (se puede decir decreciente) - En 0,, la unción es estrictamente creciente(se puede decir creciente) - En 0 0 (ó mejor dicho en el punto (0,)), la unción presenta un mínimo relativo - No tiene máimos relativos - Su dominio es todo IR, - Su imagen es Ejemplo: Lo mismo para es creciente en,, es decreciente en, tiene un má. relativo en 0. También se puede decir que tiene un máimo relativo en (-,) tiene un mín. relativo en 0. También se puede decir que tiene un máimo relativo en (,-) Su dominio es todo IR Su imagen es todo IR 5. FUNCIONES ACOTADAS. EXTREMOS ABSOLUTOS Deinición.- Una unción () está acotada superiormente por un nº real K si todos los valores que toma la unción son menores o iguales que K, es decir, ( ) K Dom( ) (NOTA: = para todo) A K se le llama cota superior. Deinición.- Una unción () está acotada ineriormente por un nº real P si todos los valores que toma la unción son maores o iguales que K, es decir, ( ) P Dom( ) A P se le llama cota inerior Deinición.- Una unción () está acotada si lo está superior e ineriormente, es decir, P ( ) K Dom( ) 9

10 Ejemplo: La unción ineriormente ( ) 4 está acotada superiormente por 4 (ó 5 ó 6 ó...) pero no está acotada Ejemplo: La unción de la gráica está acotada. Por ejemplo, tiene como cota superior (o cualquier otro nº maor que ) como una cota inerior 0 (o cualquier otro nº menor que 0) Deinición.- Se llama etremo superior o supremo a la menor de las cotas superiores de una unción acotada superiormente Deinición.- Se llama máimo absoluto de una unción acotada superiormente al etremo superior o supremo cuando es alcanzado por la unción Deinición.- Se llama etremo inerior o ínimo a la maor de las cotas ineriores de una unción acotada ineriormente Deinición.- Se llama mínimo absoluto de una unción acotada ineriormente al etremo inerior o ínimo cuando es alcanzado por la unción Ejemplo: Dada la siguiente gráica Podemos observar que es una unción acotada. La menor de las cotas superiores es ( es el etremo superior o supremo) pero la unción no lo alcanza, luego no tiene máimo absoluto 0

11 La maor de las cotas ineriores es ( es el etremo inerior o ínimo) además lo alcanza es el mínimo absoluto. Del mínimo absoluto podemos decir que es el punto (0,), que lo alcanza en = 0 o bien que es. Nosotros habitualmente usaremos las dos primeras epresiones. 6. FUNCIONES SIMÉTRICAS Deinición.- Una unción = () se dice simétrica respecto del eje de ordenadas o eje OY o que tiene simetría par si (-) = () para cualquier del Dom() Ejemplo 7:La unción ( ) 4 es par como vemos por su representación gráica. Matemáticamente demostramos que es par haciendo lo siguiente: ( ) ( ) 4 4 ( ) Deinición: Una unción = () es simétrica respecto del origen de coordenadas o que tiene simetría impar si (-) = - () Ejemplo 8.- La unción ( ) es impar como vemos por su representación gráica Matemáticamente demostramos que es impar haciendo lo siguiente: ( ) ( ) ( ) ( ) ( )

12 Ejemplo: La unción ( ) no tiene simetría, no es par ni impar Matemáticamente lo demostramos pues: ( ) ( ) ( ) ( ) ( ) Propiedad: Para que una unción pueda ser simétrica (par o impar) su dominio ha de ser simétrico respecto al origen de coordenadas Ejemplo: La unción dada por la gráica siguiente no es simétrica pues su dominio es Dom ( ),, 7. ASÍNTOTAS. RAMAS INFINITAS TENDENCIA DE UNA FUNCIÓN HACIA UN VALOR CONSTANTE CUANDO TIENDE A Una unción tiende hacia un valor constante k cuando al aumentar o disminuir los valores de la variable independiente, los correspondientes valores de la variable dependiente se van aproimando al valor constante k. Este comportamiento se epresa de las siguientes ormas: - Cuando tiende a más ininito, () tiende a k. Matemáticamente lo epresamos así: ( ) k Gráicamente sería de esta manera:

13 Diremos que la recta k es una asíntota horizontal en de la unción () - Cuando tiende a menos ininito, () tiende a k. Matemáticamente lo epresamos así: ( ) k Gráicamente sería de esta manera: Diremos que la recta k es una asíntota horizontal en de la unción () TENDENCIA DE UNA FUNCIÓN HACIA CUANDO TIENDE A UN VALOR CONSTANTE En la tendencia de una unción a más o menos ininito cuando tiende a un valor constante a pueden darse los siguientes casos: - Si tiende a a por la izquierda entonces () tiende a más ininito. Matemáticamente lo epresamos así: a () Gráicamente sería de esta manera: Diremos que la recta a es una asíntota vertical por la izquierda de la unción () hacia

14 - Si tiende a a por la derecha entonces () tiende a más ininito. Matemáticamente lo epresamos así: a () Gráicamente sería de esta manera: Diremos que la recta a es una asíntota vertical por la derecha de la unción () hacia - Si tiende a a por la izquierda entonces () tiende a menos ininito. Matemáticamente lo epresamos así: a () Gráicamente sería de esta manera: Diremos que la recta a es una asíntota vertical por la izquierda de la unción () hacia 4

15 - Si tiende a a por la derecha entonces () tiende a menos ininito. Matemáticamente lo epresamos así: a () Gráicamente sería de esta manera: Diremos que la recta a es una asíntota vertical por la derecha de la unción () hacia TENDENCIA DE UNA FUNCIÓN HACIA CUANDO TIENDE A Una unción tiende a más o menos ininito cuando tiende a más o menos ininito cuando a al hacerse la variable independiente mu grande, en valor absoluto, también se hace mu grande la variable dependiente, en valor absoluto. En estos casos, se dice que la unción no tiene un comporta miento asintótico. Tenemos cuatro caso que los representamos matemáticamente como sigue: - () - () - () - () Gráicamente sería asi: 5

16 Ejemplo: Determinar el comportamiento tendencial o asintótico de la unción () cua gráica es la dada: Vamos a ir recorriendo la gráica de izquierda ( ) a derecha ( ) - En, la unción se va a, no tiene asíntota, es decir, () - Si ( ), por tanto, la unción tiene una asíntota vertical por la izquierda hacia que es la recta - Si ( ), por tanto, la unción tiene una asíntota vertical por la derecha hacia que es la recta - Si ( ), por tanto, la unción tiene una asíntota vertical por la izquierda hacia que es la recta - Si ( ), por tanto, la unción tiene una asíntota vertical por la derecha hacia que es la recta - En, la unción se aproima a, es decir, ( ). Por tanto, la unción tiene una asíntota horizontal en, que es la recta 8. OPERACIONES CON FUNCIONES. COMPOSICIÓN DE FUNCIONES Operaciones con unciones Análogamente a las operaciones con números reales se pueden deinir la suma, resta, producto cociente de unciones. Consideremos dos unciones () g (), se deinen las siguientes operaciones: - Suma o resta de unciones: ( g)( ) ( ) g( ) - Producto de unciones: ( g)( ) ( ) g( ) - Cociente de unciones: g ( ) ( ) g( ) 6

17 Composición de unciones Deinición: Dadas dos unciones () g (), tales que Im( ) Dom( g), se llama unción compuesta de la unción con g (o compuesta con g) a: g ( ) g ( ) Es decir, aplicamos g al resultado de aplicar a la variable independiente No es conmutativo, es decir, normalmente g g Ejemplo: Sean ( ) g ( ) g ( ) g g ( ), entonces g( ) g( ) Ejemplo: Sean ( ) g ( ), entonces g ( ) g ( ) g( ) g( ) g ( ) 9. FUNCIÓN INVERSA Dada una unción (), la unción inversa de es aquella que devuelve cada valor imagen a su original se nota por ( ) Se tiene que cumplir que ( )( ) ( )( ) Además las gráicas de son simétricas respecto de la bisectriz del primer tercer cuadrante (recuerdo que esta bisectriz tiene por ecuación ) Ejemplo: Las unciones ( ) ln( ) g ( ) e son inversas pues se tiene que ( g)( ) ( )( g( )) ( e ) ln( e ). Las gráicas de estas unciones son las siguientes vemos su simetría: 7

18 8 Ejemplo: Calcular la inversa de la unción 5 ) ( Partimos de 5 permutamos la la, nos queda 5 despejamos Y a tenemos que 5 ) ( Comprobación: Vamos a calcular ) )( ( para ver que nos da la unción identidad ) 5 ( 5 ) ( ) )( ( Lo mismo se puede hacer con Ejemplo: Calcular la inversa de ) ( Partimos de permutamos la la, nos queda despejamos ) ( sacamos actor común ) ( Y a tenemos que ) ( Comprobación: Vamos a calcular ) )( ( para ver que nos da la unción identidad ) ( ) )( ( Lo mismo se puede hacer con

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES 1. EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera

Más detalles

1. FUNCIÓN REAL DE VARIABLE REAL

1. FUNCIÓN REAL DE VARIABLE REAL 1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una

Más detalles

= x De este modo: Esto es un ejemplo de FUNCIÓN.

= x De este modo: Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 6 FUNCIONES REALES. PROPIEDADES GLOBALES.. CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal:

Más detalles

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y . DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable

Más detalles

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS I.E.S. Ramón Giraldo UNIDAD 5: FUNCIONES. CARACTERÍSTICAS. CONCEPTO DE FUNCIÓN Una unción real de variable real es una correspondencia de un conjunto D en el conjunto de los números reales, es decir, una

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

GRÁFICA DE FUNCIONES

GRÁFICA DE FUNCIONES GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.

Más detalles

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN.

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. CONCEPTO DE FUNCIÓN. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal: A cada número se le hace corresponder su doble.

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno.

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno. . CONCEPTO DE FUNCIÓN UNIDAD 6: FUNCIONES Las unciones son las herramientas para la descripción matemática de una situación real. De hecho, todas las órmulas de la Física no son más que unciones, que epresan

Más detalles

Análisis de Funciones Tema 1: Qué empiece la función! Apuntes: Parte 1

Análisis de Funciones Tema 1: Qué empiece la función! Apuntes: Parte 1 Tema : Qué empiece la función! Apuntes: Parte.- Idea de función Se define función real de variable real, a una relación que asocia a un número de un conjunto inicial, otro número de un conjunto final.

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO

1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO 1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO Definición: Una función es una relación entre dos conjuntos X e Y, que asocia a cada elemento x X un único elemento y Y. Diremos que y es la imagen del elemento

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

TEMA 3 FUNCIONES ELEMENTALES.

TEMA 3 FUNCIONES ELEMENTALES. TEMA 3 FUNCIONES ELEMENTALES. 1. Concepto de unción.. Propiedades. 3. Funciones elementales. (Polinómicas, racionales, irracionales, trozos, valor absoluto) 4. Transormaciones elementales. 5. Composición

Más detalles

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES.

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. Concepto de unción.. Monotonía y etremos. Acotación... Monotonía... Etremos relativos y absolutos... Funciones acotadas.. Simetría y periodicidad... Funciones

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

RESUMEN. Trigonométrica (variable como argumento de una razón trigonométrica) Varias fórmulas dependiendo de los valores de la variable.

RESUMEN. Trigonométrica (variable como argumento de una razón trigonométrica) Varias fórmulas dependiendo de los valores de la variable. 9 RESUMEN TIPOS DE FUNCIONES Polinómicas ALGEBRAICAS Racionales Irracionales Eponenciales TRASCENDENTES Logarítmicas Trigonométricas DEFINIDAS A TROZOS FÓRMULA Polinomio Cociente de polinomios Raíz de

Más detalles

TEMA 0 FUNCIONES ***************

TEMA 0 FUNCIONES *************** TEMA 0. Definición y terminología.. Funciones conocidas. 3. Operaciones con funciones. 4. Funciones inversas. FUNCIONES ***************. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable

Más detalles

TEMA 10.- FUNCIONES ELEMENTALES

TEMA 10.- FUNCIONES ELEMENTALES º Bachillerato Matemáticas I Dpto de Matemáticas- I.E.S. Montes Orientales (Iznalloz)-Curso 20/202 TEMA 0.- FUNCIONES ELEMENTALES.- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS (Pág. 28) Deinición de unción. Decimos

Más detalles

UNIDAD 8.- Funciones racionales (tema 8 del libro)

UNIDAD 8.- Funciones racionales (tema 8 del libro) (tema 8 del libro). FUNCIÓNES DE PROPORCIONALIDAD INVERSA k Las funciones de proporcionalidad inversa son funciones cuya epresión es de la forma f ( ) Las gráficas de estas funciones son o se llaman hipérbolas

Más detalles

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4 Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1.- INTRODUCCIÓN Definición: Una función real de variable real es una aplicación entre dos subconjuntos de los números reales, de modo

Más detalles

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

Tema 9 Funciones elementales

Tema 9 Funciones elementales Tema 9 Funciones elementales 9.1Gráfica de una función. Signo simetría. PÁGINA 175 EJERCICIOS 1. Encuentra los puntos de corte con los ejes de las siguientes funciones estudia su signo. 3 c) f 1 c.1) Cortes

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones.

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones. . CONCEPTO DE FUNCIÓN TEMA 7 : Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El espacio que recorre un móvil con movimiento uniforme depende del tiempo invertido.

Más detalles

UNIDAD 3: FUNCIONES -PROPIEDADES GLOBALES -OPERACIONES -FUNCIONES ELEMENTALES -INTERPOLACIÓN

UNIDAD 3: FUNCIONES -PROPIEDADES GLOBALES -OPERACIONES -FUNCIONES ELEMENTALES -INTERPOLACIÓN UNIDAD 3: FUNCIONES -PROPIEDADES GLOBALES -OPERACIONES -FUNCIONES ELEMENTALES -INTERPOLACIÓN 46 OBJETIVOS DIDÁCTICOS En esta unidad aprenderás a:. Analizar si una gráfica es o no función.. Analizar las

Más detalles

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro)

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) 1. FUNCIONES AFINES Y LINEALES Son funciones cuya gráfica es una recta (como ya vimos en geometría). De manera general son de la forma f ( ) = m + n

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar

Más detalles

Soluciones a los ejercicios propuestos Unidad 5. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 5. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I Soluciones a los ejercicios propuestos Unidad. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I CONCEPTO DE FUNCIÓN. EXPRESIÓN ANALÍTICA DE UNA FUNCIÓN. A partir de los

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0)

m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0) 1. FUNCIONES POLINÓMICAS. D(f) = R A. FUNCIONES LINEALES: n = 1 Su gráfica es una recta. D (f) = R. Im (f) = R m = 0 constante m es la pendiente (inclinación) m > 0 creciente y = mx + n m < 0 decreciente

Más detalles

Unidad 7: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno.

Unidad 7: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno. . CONCEPTO DE FUNCIÓN Unidad 7: FUNCIONES Las unciones son las herramientas para la descripción matemática de una situación real. De hecho, todas las órmulas de la Física no son más que unciones, que epresan

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES ELEMENTALES FUNCIONES CUADRÁTICAS. La función f() = La función cuadrática más sencilla es f() = cuya gráfica es: -3 - - -0'5 0 0'5 3 f() = 9 4 0'5 0 0'5 4 9 Características generales Su dominio

Más detalles

x y 2 y D=R-{1} y=log(x+2) D=(-2, ) y x 3

x y 2 y D=R-{1} y=log(x+2) D=(-2, ) y x 3 . Función. Es una correspondencia (relación) entre dos subconjuntos de R de forma que a cada elemento del primer conjunto le corresponde un único elemento del segundo.. Operaciones. La función operación

Más detalles

f : R R y en cuanto a los elementos x f ( x)

f : R R y en cuanto a los elementos x f ( x) CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA CALCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : FUNCIONES REALES. CONCEPTO

Más detalles

El concepto de función viene unido al estudio de los fenómenos sujetos a cambios.

El concepto de función viene unido al estudio de los fenómenos sujetos a cambios. FUNCIONES 1 1 FUNCIÓN: CONCEPTO Y ELEMENTOS BÁSICOS 1.1. Introducción El concepto de función viene unido al estudio de los fenómenos sujetos a cambios. En la Edad Media el estudio de funciones aparece

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. Juan Antonio González Mota Proesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley

Más detalles

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z = Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;

Más detalles

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.

Más detalles

Antonio López García Angeles Juárez Martín Juan Fernández Maese

Antonio López García Angeles Juárez Martín Juan Fernández Maese EJERCICIOS DE ANÁLISIS FUNCIONES, LÍMITES Y CONTINUIDAD MATEMÁTICAS II LOGSE Antonio López García Angeles Juárez Martín Juan Fernández Maese Índice Temático. FUNCIONES REALES DE VARIABLE REAL... 5.. DEFINICIÓN

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + )

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + ) Tema 5: Funciones. Dominio, Límites, Asíntotas y Continuidad de Funciones 5.1 Concepto de Dominio de una función Función: es una regla que asigna a cada número real X un único número real Y. X Dom R Dom

Más detalles

TEMA 3. Funciones. Cálculo diferencial

TEMA 3. Funciones. Cálculo diferencial TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

Unidad 6: Funciones reales de variable real.

Unidad 6: Funciones reales de variable real. Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a

Más detalles

MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS. a, donde δ es la. = x

MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS. a, donde δ es la. = x MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS Se denomina entorno de un punto a en, al intervalo abierto ( δ a δ ) semiamplitud del intervalo. a, donde δ es la El entorno de a, en notación de conjuntos

Más detalles

Problemas de continuidad y límites resueltos

Problemas de continuidad y límites resueltos Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes

Más detalles

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º CONCEPTOS PREVIOS Ejercicio º Valor absoluto a,b, TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º Intervalos: a, b, a, b, a, b Semirrectas:, a, -,a, a,, a, Representa gráficamente las siguientes funciones,

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

Tema 1. Funciones: Límites y Continuidad. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 1

Tema 1. Funciones: Límites y Continuidad. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 1 Tema Funciones: Límites y Continuidad.- Introducción.- Deinición de Función..- Funciones elementales..- Operaciones con unciones...- Composición de unciones...- Función inversa o recíproca.- Transormaciones

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

TEMA FUNCIONES 4º ESO

TEMA FUNCIONES 4º ESO TEMA FUNCIONES 4º ESO 1) Definiciones: Concepto de función. Dominio y recorrido de una función. Función inyectiva. Gráfica de una función. (pág. 158) 2) Cálculo del dominio de una función 3) Cálculo de

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

Universidad de Buenos Aires. Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO

Universidad de Buenos Aires. Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO Se agradece el aporte de los proesores María Inés Sáinz y Daniel Dacunti TRABAJO PRÁCTICO

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

FUNCIONES ELEMENTALES Y PROPIEDADES

FUNCIONES ELEMENTALES Y PROPIEDADES . NOCIONES INTRODUCTORIAS.. Concepto de función. Dominio e Imagen. Una función es una relación entre dos variables, de forma que a cada valor de la variable independiente x, le asocia un único valor de

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f.

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f. TEMA 5: FUNCIONES ELEMENTALES. 5. Función real de variable real. 5. Operaciones con funciones: composición e inversa. 5.3 Construcción de gráficas de funciones elementales y sus transformaciones. 5.4 Interpolación

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

en su construcción sea mínima. Sol: r = 3, h =

en su construcción sea mínima. Sol: r = 3, h = RELACIÓN DE PROBLEMAS ) Encontrar los etremos absolutos de y 6+ definida en [0, ]. Sol. Má en 0 y ; mín -/ en,5. ) Hallar dos números positivos cuya suma sea 0, sabiendo que su producto es máimo. Sol.:

Más detalles

Tema 8: Iniciación al cálculo de derivadas. Aplicaciones

Tema 8: Iniciación al cálculo de derivadas. Aplicaciones Tema 8: Iniciación al cálculo de derivadas. Aplicaciones Ejercicio 1. Hallar el valor de la derivada de la función y 5 en los puntos 1, 0 y. Solución: En 1 : T.V.M. 1,1 h h Por tanto, f (1) lím ( h) h0

Más detalles

Página 127. Página 128

Página 127. Página 128 Soluciones de las actividades Página 15 1. La clasificación de las funciones es: a) Función algebraica racional polinómica de grado. b) Función algebraica racional polinómica de grado. c) Función trascendente.

Más detalles

REPRESENTACIÓN DE CURVAS - CCSS

REPRESENTACIÓN DE CURVAS - CCSS REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

Profesor: Fco. Javier del Rey Pulido

Profesor: Fco. Javier del Rey Pulido FUNCIONES.- DEFINICIÓN DE FUNCIÓN.- Una función es una relación entre dos magnitudes e y (variables), de forma que a cada valor de le corresponde un único valor de y. y Ejemplo: y 5 y 5 4 5. Doy valores

Más detalles

Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A

Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A Tema 8.Estudio Global de unciones. Aplicaciones a la representación graica de unciones 1 Tema 8. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A LA REPRESENTACIÓN GRAFICA DE FUNCIONES 1. Introducción. Deinición

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO

Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto 0,n Ya sabemos

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles