Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.
|
|
- Pilar Blázquez Soto
- hace 2 años
- Vistas:
Transcripción
1 Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio) y otro conjunto de elementos Y (llamado codominio) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del codominio (los que forman el recorrido, también llamado rango o ámbito). En lenguaje cotidiano o más simple, diremos que las funciones matemáticas equivalen al proceso lógico común que se expresa como depende de. Las funciones matemáticas pueden referirse a situaciones cotidianas, tales como: el costo de una llamada telefónica que depende de su duración, o el costo de enviar una encomienda que depende de su peso. Dominio Se llama dominio de definición de una función f, y se designa por Dom f, al conjunto de valores de x para los cuales existe la función, es decir, para los cuales podemos calcular y = f(x). Se dice que el dominio de una función son todos los valores que puede tomar el conjunto del dominio y que encuentra correspondencia en el conjunto llamado codominio. El dominio es el intervalo de valores que están sobre el eje de las X y que nos generan una asociación en el eje de las Y. El otro conjunto que interviene en la definición es el conjunto llamado codominio o rango de la función, tambien llamado imagen o recorrido, este conjunto son los valores que puede tomar la función; son todos los valores de las Y. Una función consiste, entonces, en dos conjuntos, dominio y rango, y una regla que asigna a cada miembro del dominio exactamente un miembro del rango. A cada miembro del rango debe serle asignado por lo menos un miembro del dominio. Si la relación entre dos variables x y y es una en la que para cada valor de y hay exactamente un valor de x, se dice que y es una función de x.
2 Rango Se denomina rango o recorrido de una función al conjunto de los valores reales que toma la variable y o f(x). Conjunto inicial Conjunto final Dominio Rango o recorrido o conjunto imagen Cálculo del rango o recorrido Para calcular el rango de una función tenemos que hallar el dominio de su función inversa.
3 R = {2} 2.2 Función inyectiva, suprayectiva y biyectiva "Inyectivo, sobreyectivo y biyectivo" te dan información sobre el comportamiento de una función. Puedes entender una función como una manera de conectar elementos de un conjunto "A" a los de otro conjunto "B": "Injectivo" significa que cada elemento de "B" tiene como mucho uno de "A" al que corresponde (pero esto no nos dice que todos los elementos de "B" tengan alguno en "A"). "Sobreyectivo" significa que cada elemento de "B" tiene por lo menos uno de "A" (a lo mejor más de uno). "Biyectivo" significa inyectivo y sobreyectivo a la vez. Así que hay una correspondencia perfecta "uno a uno" entre los elementos de los dos conjuntos. Definiciones formales Inyectivo Una función f es inyectiva si, cuando f(x) = f(y), x = y.
4 Ejemplo: f(x) = x2 del conjunto de los números naturales a es una función inyectiva. (Pero f(x) = x2 no es inyectiva cuando es desde el conjunto de enteros (esto incluye números negativos) porque tienes por ejemplo f(2) = 4 y f(-2) = 4) Sobreyectivo (o también "epiyectivo") Una función f (de un conjunto A a otro B) es sobreyectiva si para cada y en B, existe por lo menos un x en A que cumple f(x) = y, en otras palabras f es sobreyectiva si y sólo si f(a) = B. Así que cada elemento de la imagen corresponde con un elemento del dominio por lo menos. Ejemplo: la función f(x) = 2x del conjunto de los números naturales al de los números pares no negativos es sobreyectiva. Sin embargo, f(x) = 2x del conjunto de los números naturales a no es sobreyectiva, porque, por ejemplo, ningún elemento de N va al 3 por esta función. Biyectiva Una función f (del conjunto A al B) es biyectiva si, para cada y en B, hay exactamente un x en A que cumple que f(x) = y Alternativamente, f es biyectiva si es a la vez inyectiva y sobreyectiva. Ejemplo: La función f(x) = x2 del conjunto de números reales positivos al mismo conjunto es inyectiva y sobreyectiva. Por lo tanto es biyectiva. (Pero no desde el conjunto de todos los números reales porque podrías tener por ejemplo f(2)=4 y f(-2)=4) 2.3 Función real de variable real y su representación gráfica. Completa la tabla de las siguientes funciones y grafica en el plano cartesiano D(-, ) R(-, ) x
5 y (0)-2 = 0-2 =-2 4(1)-2 = 4-2 = 2 4(2)-2 = 8-2 = 6 4(3)-2 = 12-2 = 10 4(4)-2 = 16-2 = 14 4(5)-2 = 20-2 = 18 D(-, ) R(-, ) x y (0) = 2-0 =2 2-5(1) = 2-5 = (2) = 2-10 = (3) = 2-15 = (4) = 2-20 = (5) = 2-25 = -23 D(-, )
6 R(-, ) x y (0) 3-2(0)+1 = =1 (1) 3-2(1)+1 = =2 (2) 3-2(2)+1 = =5 (3) 3-2(3)+1 = =22 (4) 3-2(4)+1 = =57 (5) 3-2(5)+1 = =116 D=R-{5} x y 0 2/5 2/10 2/15 2/20 2/25 2/5(0)-2 = 2/0 2/5(1)-2 = 2/5 2/5(2)-2 = 2/10 2/5(3)-2 = 2/15 2/5(4)-2 = 2/20 2/5(5)-2 = 2/25
7 D(-1/2, ) R(0, ) x y 1i Funciones algebraicas: función polinomial, racional e irracional.
8 2.5 Funciones trascendentes: funciones trigonométricas y funciones exponenciales. En las funciones trascendentes la variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría. Función exponencial Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia a x se llama función exponencial de base a y exponente x. Funciones logarítmicas La función logarítmica en base a es la función inversa de la exponencial en base a.
9 Funciones trigonométricas La funciones trigonométricas asocian a cada número real, x, el valor de la razón trigonométrica del ángulo cuya medida en radianes es x. Función seno f(x) = sen x
10 Función coseno f(x) = cosen x Función tangente f(x) = tg x Función cosecante
11 f(x) = cosec x Función secante f(x) = sec x
12 Función cotangente f(x) = cotg x 2.6 Función definida por más de una regla de correspondencia. función valor absoluto. La función de valor absoluto tiene por ecuación f(x) = x, y siempre representa distancias; por lo tanto, siempre será positiva o nula. En esta condición, de ser siempre positiva o nula, su gráfica no se encontrará jamás debajo del eje x. Su gráfica va a estar siempre por encima de dicho eje o, a lo sumo, tocándolo. Las funciones en valor absoluto siempre representan una distancia o intervalos (tramos o trozos) y se pueden resolver o calcular siguiendo los siguientes pasos: 1. Se iguala a cero la función, sin el valor absoluto, y se calculan sus raíces (los valores de x). 2. Se forman intervalos con las raíces (los valores de x) y se evalúa el signo de cada intervalo. 3. Definimos la función a intervalos, teniendo en cuenta que en los intervalos donde la x es negativa se cambia el signo de la función. 4. Representamos la función resultante.
13 2.7 Operaciones con funciones: adición, multiplicación, composición. Las funciones se pueden utilizar de la misma manera que los números: sumar, restar, multiplicar, dividir, elevar a una potencia, sacar raíz o se puede hacer combinaciones. Composicion De Funciones Dos funciones se combinan para producir un resultado. Por ejemplo: f actua sobre x para producir f(x) y luego g actua sobre f(x) o tambien llamada funcion composicion que se representa g(f(x)) Definición. Sean f, g dos funciones reales de variable real. Entonces se pueden definir las siguientes operaciones: i. SUMA: ii. DIFERENCIA: iii. PRODUCTO: iv. COCIENTE COMPOSICIÓN DE FUNCIONES:
14 Bajo ciertas condiciones es posible definir a partir de dos funciones f y g, una nueva función llamada la compuesta de f y g. Sean y dos funciones donde coincide el dominio de la segunda con el codominio de la primera 2.8 Función inversa. Función logarítmica. Funciones trigonométricas inversas. Funciones Inversas, Funciones Logarítmicas, Funciones Trigonométricas Inversas Cualquier función que deshaga una función es llamada función inversa en matemáticas. A la luz de la declaración anterior se puede concluir que para la función f: X Y si utilizamos una entrada x para producir y como salida. La función inversa g: Y X produciría a x como salida mientras que y sería la cantidad de entrada. Una función invertible es aquella que tiene una función inversa propia. El inverso de tal función f es denotado por f 1 y es determinado de forma única. Para una función dada f: X Y, su inverso se representa como, Aquí se puede decir que tanto f(x) como f 1 (x) son reflejos una de la otra sobre la recta x=y. Cada función que posee una inversa debe satisfacer la condición que establece que para cada elemento en el dominio de la función existe un único elemento para el cual ningún otro elemento en el dominio de la función puede corresponder. Por tanto es posible decir que cada elemento en el rango y en el dominio de la función está apareado en una asociación única. Cada elemento del rango de la función está asociado con un único elemento del dominio de la función y cada elemento del dominio de la función está asociado con un único elemento del rango de la función. Encontrar la inversa de una función es muy sencillo. Tomemos como ejemplo,
15 f(x) = 2x + 3 Convierta la ecuación anterior a la forma de variable de x e y. y = 2x + 3 y 3 = 2x y 3/ 2 = x Para encontrar el inverso de la ecuación anterior, simplemente intercambie las variables x e y en sus respectivos lugares, x 3/ 2 = y sería la inversa de la función de entrada. Una función logarítmica f: X y es una función de la forma, Aquí b es usualmente un número real mayor que uno. Sin embargo solo necesita ser mayor de cero, y nunca debe ser igual a uno. Tal función es definida para todos los valores de x mayores que cero. Las funciones logarítmicas se abrevian como funciones log y estas funciones son las funciones inversas de las funciones exponenciales. Tales funciones generalmente poseen una asíntota vertical en vez de una horizontal por el motivo de ser las inversas de la función exponencial. También siendo las funciones inversas de las funciones exponenciales, su dominio es limitado. Las funciones logarítmicas fueron introducidas más tarde debido a que se enfrentaron a problemas para encontrar las funciones inversas de las funciones exponenciales. Observe el ejemplo siguiente, x = 10 y, para encontrar la inversa reemplace x e y para obtener, y = 10 x Como podemos observar no es posible resolver la ecuación anterior, entonces es ahí donde entra el uso de las funciones logarítmicas.
16 Por tanto la ecuación se convertirá en, La cual puede ser resuelta utilizando la tabla log. Las funciones inversas de las funciones trigonométricas se llaman funciones trigonométricas inversas o funciones ciclométricas. Estas son el general funciones con múltiples valores. La afirmación anterior puede entenderse mejor con la ayuda de un ejemplo. Supongamos que z tiene muchos valores. Ahora la ecuación, Z=sen W Por lo que no puede existir un valor único de la inversa de esta ecuación hasta que tengamos un valor principal definido para w. Estas funciones no satisfacen la definición de función inversa, ya que su rango es subconjunto del dominio de las funciones trigonométricas. Las funciones trigonométricas inversas se enumeran a continuación junto con sus notaciones alternativas. 1. sin 1 z arcsin z 2. cos 1 z arcos z 3. tan 1 z acrtan z 4. sec 1 z arcsec z 5. cosec 1 z acrcosec z 6. cot 1 z arccot z
17 2.9 Funciones con dominio en los números naturales y recorrido en los números reales: las sucesiones infinitas. Una sucesión numérica es una función cuyo dominio es el conjunto de los números naturales y cuyo recorrido está incluido en el conjunto de los números reales. En símbolos: s: ln lr / " n Î ln: s(n) = a n Es decir que: - a 1 es la imagen del número natural 1 por medio de la sucesión 1 s(1) = a 1 - a 2 es la imagen del número natural 2 por medio de la sucesión 2 s(2) = a 2 3 s(3) = a 3 De acuerdo con esta definición, cada elemento de una sucesión puede representarse como un par ordenado (n, s(n)) o bien (n, a n ). Por consiguiente, toda sucesión puede representarse gráficamente mediante un diagrama cartesiano Función implícita. Una función y (x) se llama implícita cuando está definida de la forma F (x, y) = 0 en lugar de la habitual. Por ejemplo, puede probarse que la siguiente ecuación define una función implícita en cierta región de entre las variables x e y: Diferenciación Para poder derivar una función implícita se usa la Regla de la cadena, en el caso de la variable independiente no hay problema ya que se deriva directamente, para la variable dependiente se considera como una función que a su vez esta en función de la variable independiente: Dada una función F(X,Y), implícita, si queremos calcular la derivada de y respecto de x:.
18 dy/dx=f (X) Si consideramos Y = F(x) es una función en términos de la variable independiente x y G(y) es una función en términos de la variable dependiente y, dado que Y= f(x), entonces para obtener la derivada:
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
FUNCIONES REALES 1º DE BACHILLERATO CURSO
FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Mapa Curricular: Funciones y Modelos
A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,
Preparación para cálculo
Preparación para cálculo Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (406 temas)
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).
Tipos de funciones. Clasificación de funciones. Funciones algebraicas
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES
Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,
Funciones reales de variable real
Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.
Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad
CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,
RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan
TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA
Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA *TEMARIO*
Fecha: 29/10/2013 MATEMÁTICAS
Página: 1/5 MATEMÁTICAS Álgebra 1.- Conceptos y operaciones algebraicas fundamentales Terminología Operaciones fundamentales con monomios y polinomios o Reducción de términos semejantes o Suma, resta o
PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial
Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL Guía para el II parcial Sábado 25 de junio, 8:00 a.m. 2016 II PARCIAL ÁLGEBRA
MATEMÁTICA DE CUARTO 207
CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
PLAN DE ESTUDIOS DE MS
PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los
TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama
CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA
CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA CÁLCULO DIFERENCIAL AÑO 2016 I. FUNDAMENTACIÓN El curso de Cálculo Diferencial proporciona las herramientas fundamentales para entender la
Preparación matemática para la física universitaria
Preparación matemática para la física universitaria Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
Módulo 3: Gráfica de las Funciones Trigonométricas
x Módulo : Gráfica de las Funciones Trigonométricas Una función es una relación entre los valores x de un conjunto (dominio) los elementos de un conjunto (llamado codominio o rango), en la cual a cada
FUNCIONES REALES DE VARIABLE REAL.
FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
FUNCIONES POLINÓMICAS
PRÁCTICAS CON DERIVE 28 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA CUATRO. FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS Dado un entero n 0, la función f(x) =a 0 x n + a 1 x n 1 + a 2 x n
FUNCIONES y = f(x) ESO3
Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.
DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:
DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que
FUNCIONES EXPONENCIAL Y LOGARÍTMICA
FUNCIONES EXPONENCIAL Y LOGARÍTMICA 1. Crecimiento exponencial. La función exponencial. 1.1 La Función Exponencial. Una función exponencial es una expresión de la forma siguiente:,,. Donde es una constante
PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL
Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL 2016 I PARCIAL ÁLGEBRA Y GEOMETRÍA ANALÍTICA
Mapa Curricular: Funciones y Modelos
A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,
Curso de Inducción de Matemáticas
Curso de Inducción de Matemáticas CAPÍTULO 1 Funciones y sus gráficas M.I. ISIDRO I. LÁZARO CASTILLO Programa del Curso 1. Funciones y sus gráficas. 2. Límites. 3. Cálculo Analítico de Límites. 4. Derivación.
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
Matemáticas TRABAJO. Funciones Trigonométricas
Matemáticas TRABAJO Funciones Trigonométricas 2 En este trabajo trataremos de mostrar de una forma práctica las funciones trigonométricas, con sus formas de presentación, origen y manejos. También se incluirán
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo
página 1/9 Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo Índice de contenido Dominio de una función...2 Rango o recorrido de una función...3 Simetría...4 Periodicidad...5
Semana03[1/17] Funciones. 16 de marzo de Funciones
Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes
DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple
DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL
TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.
TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
Tema 2. FUNCIONES REALES DE VARIABLE REAL
UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento
PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001
INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
Gráficas de funciones
Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
Contenidos mínimos Criterios de evaluación Ejemplos de preguntas
Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales
INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación
INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO
INSTITUTO TECNOLOGICO DE LAS AMERICAS CARRERA DE TECNOLOGO EN DESARROLLO DE SOFTWARE PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Prerrequisitos: Nomenclatura del prerrequisito Número de
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la
MATEMÁTICAS. PRIMERO DE E.S.O.
MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.
GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS
GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos
Funciones Guía Teórico y práctico.
Carrera: Profesorado en Física. Materia: MATEMÁTICA Titular: Dra. Godoy, Antonia E. Adscripta: Lubaczewski, Itatí Funciones Guía Teórico y práctico. Dados dos conjuntos no vacíos A y B y una relación que
Funciones reales de variable real
Tema Funciones reales de variable real Introducción En este primer tema del Bloque de Cálculo tendremos como objetivo fundamental el recordar conceptos ya conocidos acerca de las funciones reales de variable
ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.
SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f
CONTENIDO PRÓLOGO LAS FUNCIONES... 5
CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes
DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.
DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto
Teoría Tema 2 Concepto de función
página 1/7 Teoría Tema Concepto de función Índice de contenido Función, dominio e imagen... Función inyectiva...4 Función sobreyectiva...6 Función biyectiva...7 página /7 Función, dominio e imagen Una
Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.
Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
Sobre funciones reales de variable real. Composición de funciones. Función inversa
Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real
Guía de Ejercicios: Funciones
Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función
Matemáticas para estudiantes de Química
Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes
Trigonometría. 1. Ángulos:
Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:
Álgebra y Trigonometría Clase 4 Inversas, exponenciales y logarítmicas
Álgebra y Trigonometría Clase 4 Inversas, exponenciales y logarítmicas CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
PRECALCULO. Nomenclatura del Curso : MAT-001. Nombre del Curso : Precalculo. Prerrequisitos : Ninguno. Número de Créditos : 5. Horas Teóricas : 45
Nomenclatura del Curso : MAT-001 Nombre del Curso : Precalculo Prerrequisitos : Ninguno Número de Créditos : 5 Horas Teóricas : 45 Horas prácticas : 30 Horas Investigación : 45 Docente : INTRODUCCION PRECALCULO
PROGRAMA INSTRUCCIONAL MATEMÁTICA I
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE CIENCIAS ECONOMICAS YSOCIALES ESCUELA DE ADMINISTRACIÓN PROGRAMA INSTRUCCIONAL MATEMÁTICA I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T
La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente.
Solución. En el primer cuadrante: En el segundo cuadrante: En el tercer cuadrante: En el cuarto cuadrante: cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan
MATEMATICAS GRADO DECIMO
MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 4 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en:
Función logarítmica Función logarítmica y su representación Si a > 0 y a 0, la función exponencial f x = a x bien se incrementa o disminuye y por eso mediante la prueba de la línea horizontal es uno a
PROPIEDADES FUNCIONES PRINCIPALES
PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x
Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales
5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer
Seno (matemáticas) Coseno Tangente
Seno (matemáticas), una de las proporciones fundamentales de la trigonometría. En un triángulo rectángulo, el valor del seno (que suele abreviarse sen) de un ángulo agudo es igual a la longitud del cateto
Cálculo de Derivadas
Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
Interpretación de la infor- en los avances científicos y tecnológicos. acerca de la utilización de. la trigonometría en el desa-
1 FUNCIONES TRIGONOMÉTRICAS 1) Analizar la Aportes de la trigonometría en el desarrollo mación detectada en diver- Interpretación de la infor- aplicación de la trigonometría, científico y tecnológico.
CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.
CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función
MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77
MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.
CÁLCULO DIFERENCIAL TEMARIO
CÁLCULO DIFERENCIAL TEMARIO 1. FUNCIONES 1.1 Función real de variable real Función. Variable independiente y variable dependiente. Dominio, recorrido y codominio. Imagen y preimagen. Existencia y unicidad.
Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014
IES SAN BENITO Departamento de Matemáticas 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 PRUEBA EXTAORDINAORIA: La Prueba de septiembre será únicamente de contenidos
TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos
TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360
Definición de Funciones MATE 3171
Definición de Funciones MATE 3171 Función Una función, f, es una regla de correspondencia entre dos conjuntos, que asigna a cada elemento x de D exactamente un elemento de E : x 1 x 2 x 3 y 2 y 1 Terminología
DERIVACIÓN DE LAS FUNCIONES ELEMENTALES
DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,
El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.
EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,
Colegio Universitario Boston
Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,
TRIGONOMETRÍA ANALÍTICA
TRIGONOMETRÍA ANALÍTICA....4 Los alumnos comenzaron a estudiar funciones trigonométricas en el Capítulo 7, cuando aprendieron sobre radianes la transformación de funciones trigonométricas. Aquí aprenderán
Límite de una función
Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden
Derivadas Matemáticas Aplicadas a las Ciencias Sociales II 1 DERIVADAS.
Derivadas Matemáticas Aplicadas a las Ciencias Sociales II 1 DERIVADAS. Derivadas Matemáticas Aplicadas a las Ciencias Sociales II Índice 1. Tasa de variación media...3. Interpretación geométrica...3 3.
SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA.
DP. - AS - 9 Matemáticas ISSN: 988-79X SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA. PROPIEDADES INMEDIATAS 00 log a a 00 log a 00 log a a 00 a a log Calcula algebraicamente el valor de las epresiones o el