FÍSICA CICLO 5 CAPACITACIÓN Es la parte de la mecánica que estudia el movimiento de los cuerpos teniendo en cuenta la causa que lo produce.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FÍSICA CICLO 5 CAPACITACIÓN Es la parte de la mecánica que estudia el movimiento de los cuerpos teniendo en cuenta la causa que lo produce."

Transcripción

1

2 UNIDAD 3 LEYES DE LA DINÁMICA - EQUILIBRIO Es la parte de la mecánica que estudia el movimiento de los cuerpos teniendo en cuenta la causa que lo produce. Leonardo Da Vinci, Galileo Galilei y Newton fueron los primeros en interesarse en el movimiento de los cuerpos y la existencia de una fuerza que lo producía. Newton como discípulo de Galileo fue el primero en enunciar lo que hoy se denominan leyes de Newton. LEYES DE NEWTON 1. Primera ley o Ley de la Inercia: Todo cuerpo tiende a permanecer en estado de reposo o movimiento rectilíneo uniforme si ninguna fuerza externa cambia su estado. Ejemplo explicativo: Cuando una persona va en un vehículo y éste frena repentinamente, la persona tiende a irse hacia adelante. 2. Segunda ley o Ley del Movimiento: Relaciona fuerza, masa y aceleración. La fuerza es directamente proporcional al producto de la masa por la aceleración. Fuerza = F masa = m aceleración = a F = m a m = a F a = m F 1

3 Unidades de fuerza: Cuando la masa se da en kg y la aceleración en m/s² la fuerza (En el sistema M.K.S.) se da en una unidad llamada Newton (N). 1 N = 1 kg. 1m/s² - Cuando la masa se da en gramos (gr) y la aceleración en cm/s², la fuerza (En el sistema C.G.S.) se da en Dinas. 1 Dina = 1 gr.1cm/s² 1 N = Dinas - En el sistema Inglés se utiliza el Poundal = Libra x pie/s². Ejemplos: 1) Qué fuerza hay que aplicarle a una masa de 7 kg para imprimirle una aceleración de 9m/s², sin tener en cuenta la fuerza de fricción o rozamiento de la superficie? Gráfica m F Planteamiento: 2

4 m = 7 kg a = 9m/s² F =? Solución: Empleamos la fórmula: F = m a F = 7 kg 9m/s² Hallamos el producto F = 63 N 2) Cuál es la masa de un cuerpo al que se le imprime una aceleración de 5m/s² con una fuerza de 60 N?. Planteamiento: Solución: F = 60 N m = a F a = 5m/s² m = m =? 60N 5m / s² m = 12 kg 3

5 3) Qué aceleración se le imprime a un cuerpo con una fuerza de 18 N si su masa es de 6 kg?. Planteamiento: F = 18N Solución: a = m F m = 6 kg a = 18N 6kg a =? a = 3m/s² 3. Tercera ley o Ley de Acción y Reacción: A toda fuerza llamada acción se le opone una fuerza contraria de igual magnitud llamada reacción. Ejemplos explicativos: - La rueda de un vehículo hace fuerza en el pavimento hacia atrás para que el vehículo avance hacia adelante. - Si se infla un globo y se suelta dejando escapar el aire contenido, se observa que el aire contenido sale a propulsión ejerciendo una fuerza en dirección contraria a la trayectoria del globo. 4

6 PESO Y MASA El peso depende de la fuerza gravitacional de un planeta debido a la aceleración gravitacional. Se puede medir con un peso de resorte o dinamómetro. El peso está dado por la fórmula: Peso = masa por aceleración gravitacional P = m g Ejemplo: Hallar el peso de un objeto cuya masa es de 20 kg en la tierra y en la luna sabiendo que la aceleración gravitacional en la luna es la sexta parte la de la tierra. Planteamiento: m = 20kg g en la tierra = 9,8m/s² 9,8m/s² g L en la luna = = 1,63 m/s² ; se divide entre (6) por ser la sexta 6 parte de la constante gravitacional de la tierra. 5

7 Solución: P = m g En la tierra P = 20kg 9.8m/S² P = 196 N En la luna P = 20kg 1.63m/s² Observe que el peso en la tierra es mayor por tener mayor aceleración gravitacional. P = 32,6 N La masa de un cuerpo es igual en todos los planetas. Se puede probar ya que la masa se puede medir con una balanza. 6

8 FUERZA DE ROZAMIENTO: Oposición que ofrece una superficie cuando un bloque o masa se desplaza sobre ésta. Fuerza de rozamiento Fuerza aplicada Superficie Cuando deslizamos una caja sobre una superficie lisa hay menos oposición que cuando deslizamos la misma caja sobre una superficie áspera, depende obviamente también de la superficie de la caja. Cada superficie tiene un coeficiente de rozamiento diferente, ya que unas superficies son más ásperas o más lisas que otras. Su valor no varía cuando el cuerpo se encuentra a velocidades inferiores de 20m/s. Su fórmula se designa como: Fuerza de rozamiento = Fr = μ N Coeficiente de rozamiento = μ Puede ser cinética μ c cuando el cuerpo está en movimiento. O estática μ e cuando el cuerpo está en reposo. Normal = N Fuerza perpendicular, que ejerce la superficie de deslizamiento sobre la cual está la masa. N Fr F Fr = μ c N Fr = μ e N 7

9 Ejemplo: Cuál es la fuerza de rozamiento de una superficie con coeficiente de rozamiento cinético de 0,25 si N = 16 Newton de un cuerpo. Solución: Fr = μ N Fr = (0,25) (16N) Fr = 4 N FUERZA DE TENSIÓN: Es la fuerza hecha por una cuerda la cual se considera de masa despreciable. 8

10 PLANO INCLINADO Es una superficie inclinada sobre la cual se pueden deslizar bloques o cuerpos. Fr, N, (mg Sen θ) y (mg Cos θ) son las fuerzas que actúan. De estos conceptos y elaborando la sumatoria de fuerzas en y y en x se obtienen las siguientes fórmulas: μ c = Coeficiente de rozamiento cinético a = aceleración m = masa del bloque g = 9,8m/s² (aceleración gravitacional) θ = ángulo de inclinación El coeficiente de rozamiento es la tangente del ángulo con el cual el objeto empieza a deslizarse (θ c ). μ c = Tan θ c Fórmula para hallar la aceleración con que se desliza un bloque por un plano inclinado con rozamiento. μ a = c mg cos θ - mg sen θ m 9

11 Ejemplos: 1) Cuál es el coeficiente de rozamiento cinético de un bloque que comienza a deslizarse al estar con un ángulo de 25º. Solución: Basta hallar la tangente del ángulo μ c = Tan 25º = 0,466 {Recuerde en la calculadora se oprime TAN 25 EXE = 0,466} 2) Un bloque de 20 kg se desliza por un plano inclinado que forma un ángulo de 60º con la horizontal. Calcular la aceleración del bloque si tiene μ c = 0,25. Planteamiento: m = 20kg θ = 60º μ c = 0.25 g = 9,8m/s² Solución: Aplicamos la fórmula: μ c mg cos θ - mg sen θ a = Reemplazando tenemos: m (0,25)(20kg)(9,8m/s²)(0,5) (20kg)(9,8m/s²)(0,866) a = 20kg 10

12 24,5m/s² 169,736 a = ,27m/s² a = 20 a = 7,26m/s² LEYES DE KEPLER JOHANNES KEPLER a los 19 años fue asistente del astrónomo Ticho Brae, constructor de gigantescos instrumentos astronómicos como el astrolabio y quien estaba convencido de que la tierra era el centro del universo, Kepler lo contradijo afirmando que el sistema era centrado en Sol y que la matemática y la geometría explicaban la cantidad, la distancia y el movimiento de los planetas. Del anális cuidadoso de los datos de Brae descubrió las leyes que describen el comportamiento de los cuerpos celestes. 1ª LEY DE KEPLER: Las trayectorias de los planetas son elipses con el centro del Sol en uno de sus focos. ORBITA ELÍPTICA (TRAYECTORIA) PLANETA SOL 11

13 2ª LEY DE KEPLER: El radio vector que une el planeta y el Sol barre áreas iguales en tiempos iguales. t t Los planetas se mueven más rápidamente cuando están mas cerca del sol y son más lentos cuando están mas lejos. 3ª LEY DE KEPLER: Para cualquier planeta, el cuadrado de su período orbital (tiempo que tarda en dar una vuelta alrededor del Sol) es directamente proporcional al cubo de la distancia media con el Sol. Esta ley se emplea para comparar distancias y períodos de los planetas alrededor del sol, así como también de la luna y otros satélites alrededor de sus planetas. La razón de los cuadrados de los períodos de dos planetas que giran alrededor del sol es igual a la razón de los cubos de sus distancias medias al sol Así si: T x y T y son los períodos de dos planetas y D x y D y son las distancias medias al sol; aplicando la tercera ley de Kepler se obtiene la siguiente proporción 2 2 Tx Dx = Ty Dy 12

14 Ejemplo: Io es el nombre de una de las luna de Júpiter, su periodo es de 1,8 dias y su radio orbital es de 4,2 unidades, Ganímedes es otra luna de Jupiter y su radio orbital es decir su distancia media al planeta es de 10,7 unidades. Calcular el período de la luna Ganímedes. Planteamiento: T x = Período de Ganímedes T y = 1,8 dias (Período de la luna Io) D x = 10,7 Unidades (Distancia media de Ganímedes a Júpiter) D y = 4,2 Unidades (Distancia media de Io a Júpiter) Solución: (T x )² = (T y )² x (D x )³ (D y )³ (10,7)³ 1225,04 (Tx)² = (1,8)² x = 3,24 x = 3,24 x 16,54 = 52,8dias² (4,2)³ 74,088 Tx = 52,8dias² T x = 7,16 dias ( Es el período orbital de Ganimedes) RADIOS ORBITALES DE LOS PLANETAS NOMBRE DEL PLANETA DISTANCIA MEDIA AL SOL (m) Sol Mercurio 5,8 x Venus 1,081 x Tierra 1,4957 x Marte 2,278 x Júpiter 7,781 x Saturno 1,427 x Urano 2,870 x Neptuno 4,500 x Plutón 5,9 x

15 Ejercicios 1. El período orbital en años terrestres de Júpiter que esta a una distancia del sol de 7,8 x 10 8 km., es a. 7 años terrestres b. 10,2 años terrestres c. 60,2 años terrestres d. 11,8 años terrestres 2. El período orbital en años terrestres de un cuerpo celeste que gira alrededor del sol con un radio orbital de dos veces mayor que el de la tierra es: a. 3 años b. 4 años c. 2,8 años d. 1,8 años 14

16 LEY DE GRAVITACIÓN UNIVERSAL Isaac Newton retomó los trabajos de Kepler y argumentó matemáticamente que si la trayectoria de un planeta era una elipse, la fuerza neta F sobre el planeta debía variar inversamente con el cuadrado de la distancia entre el planeta y el sol. Formuló la siguiente ecuación: 1 F α d² Fuerza de gravedad: Es la fuerza con la que se atraen los planetas y sus satélites o los planetas y el Sol, como si los unos y los otros se estrellaran entre sí, está dirigida en línea recta hacia los centros y depende de las masas de los cuerpos. m1m F = G 2 d 2 G: constante gravitacional universal 2 Nm 6,67x Kg m 1 y m 2 : masas de los cuerpos d: distancia de separación de las masas F: fuerza de atracción Al aplicar con cuerpos que caen sobre el planeta tierra, la formula se transforma así: F = G MT. m 2 r Como F= peso = m. g entonces M t g = G 2 r Y la masa de la tierra MT es r = radio medio de la tierra gr 2 M T = G 15

17 v 2 Como aceleración centrípeta es: a c = r y F = m a entonces la fuerza gravitacional entre la tierra y un objeto es su campo gravitacional GM T m 2 r v = m 2 r Para la velocidad queda V = GM T r Y el periodo T del objeto es: T = 2 π r 3 GM T 16

18 Realiza el siguiente Taller EJERCICIOS DE GRAVITACIÓN UNIVERSAL 1. Para que un satélite artificial describa una orbita alrededor del planeta tierra a una altura de 120 Km., debe ser lanzada con una velocidad de a. 0,78 x 10 3 m/s b. 78 x 10 3 m/s c. 7,8 x 10 3 m/s d. 780 x 10 3 m/s 2. El tiempo en que un satélite artificial describiría una órbita alrededor del planeta a una altura de 120 Km., hasta regresar al punto de lanzamiento es (expresar en segundos y minutos) a. 5,23 x 10 3 seg., y 87,3 mín. b. 7,83 x 10 3 seg., y 5,23 mín. c. 6,23 x 10 4 seg., y 7,45 mín. d. 5,3 x 10 4 seg., y 87,3 mín. 17

19 ESTÁTICA Estudia las condiciones necesarias para que un cuerpo se encuentre en equilibrio, es decir que no presente variación del movimiento. La sumatoria de fuerzas que actúan en un cuerpo deben ser igual a cero. F x = 0 F y = 0 Es importante anotar que en un objeto en reposo o en movimiento rectilíneo uniforme la sumatoria de las fuerzas que actúan sobre él es 0. Ejemplo: Cuál debe ser la tensión de la cuerda y la fuerza ejercida por el plano sobre el bloque para que esté en equilibrio. m = 30kg θ = 60º En este caso utilizamos la fórmula: T = mg sen θ Reemplazando tenemos: T = (30kg) (9.8m/s²) (0.866) T = N La fuerza que ejerce el plano es llamada normal (N) y se halla con la fórmula: N = mg cos θ N = (30kg) (9.8m/s²) (0.5) N = 147 N 18

20 Realiza el siguiente Taller TALLER 3 1) Qué fuerza es necesaria para imprimirle a una masa de 20kg una aceleración de 7m/s². 2) Elaborar el ejercicio anterior teniendo en cuenta que la masa y la aceleración son respectivamente: a) 15kg ; 2m/s² b) 32kg ; 6m/s² c) 27kg ; 3m/s² 3) Cuál es la aceleración de un cuerpo de masa 45kg si se le imprime una fuerza de 215N. 4) Elaborar el ejercicio anterior teniendo en cuenta que la masa y la fuerza son respectivamente: a) 15kg ; 50N b) 18kg ; 13N c) 39kg ; 144N 5) Cuál es la fuerza de fricción o rozamiento de un cuerpo con una superficie si la normal N = 27N y el coeficiente de rozamiento es μ = ) En un plano inclinado se coloca una masa de 45kg. Si el ángulo es de 37º y μ c = 0.27 hallar la aceleración con la cual el cuerpo de desliza. 7) Cuál es la tensión de una cuerda y la fuerza ejercida por el plano (N) para que el bloque de la siguiente figura se encuentra en equilibrio. 8) Cuál es la potencia de una máquina que realiza un trabajo de Julius en 1.5 minutos. 19

21 9) Cuál es el trabajo realizado por una fuerza de 180N sobre un bloque con un ángulo de aplicación de 43º si se desplazada 12m. 10) Cuál es la energía cinética de un cuerpo de masa m = 60kg si se desplaza con una velocidad de 32m/s. 11) Un cuerpo se encuentra a una altura de 24m, si posee una masa de gr. Cuál es su energía potencial? 12) El periodo en días de un satélite artificial que es situado a 5,9 x 10 4 km. Del centro de la tierra, si la luna que esta a 3,89 x 10 5 km., tiene un periodo de 27,28 días, es: b. 50,95 días c. 10,8 días d. 40,92 días e. 30,82 días 13) La distancia de Neptuno al sol con respecto a la tierra, si su periodo es 165 años y la distancia media al sol de la tierra es 1,5 x 10 8 km a. 5,41 x 10 8 km. b. 4,51 x 10 9 km. c. 1,45 x 10 9 km. d. 4,1 x 10 8 km. 14) Si la masa de la luna es de 7,43 x kg., y se encuentra a una distancia de 3,8 x 10 8 m de la tierra, la cual tiene una masa de 5,98 x kg., la fuerza gravitacional entre ambas es: 12) 5,9 x Newton 13) 3,01 x Newton 14) 4,21 x Newton 15) 2,03 x Newton 15) Si la masa de Marte es 6,42 x kg., y su radio medio es de 3,38 x 10 6 m, entonces su gravedad es: m 16) 6,72 2 s m 17) 3,75 2 s 20

22 m 18) 10,0 2 s m 19) 8,9 2 s 20) Complete: a) La fuerza ejercida por una cuerda se denomina mv² b) mgh y son respectivamente y 2 c) Las leyes de Newton son, y d) Un niño se desliza por un rodadero y se detiene en la mitad del rodadero, esto debido a la fuerza de e) Una lámpara suspendida es un ejemplo de f) μ es g) Vatio es una unidad de h) Una persona se encuentra cargando un bulto de cemento de 500N, en el hombro y se desplaza una distancia de 10m. La fuerza se aplica en forma vertical hacia arriba y el desplazamiento forma con la fuerza aplicada un ángulo de 90º. En este caso no hay trabajo porque al reemplazar los datos se obtiene: F = i) En una cámara de vacío (no hay aire) una pluma y una esfera de acero caen al mismo tiempo, esto se debe a que ambos cuerpos son afectados por la misma j) La energía mecánica total es igual a más 21

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm.

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. 2.- Una fuerza actúa sobre un cuerpo que tiene una masa de 5 Kg, la velocidad

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

UNIDAD: GRAVITACIÓN LEYES DE KEPLER (1609) LEY DE GRAVITACION DE NEWTON (1687) CAMPO GRAVITACIONAL APLICACIONES

UNIDAD: GRAVITACIÓN LEYES DE KEPLER (1609) LEY DE GRAVITACION DE NEWTON (1687) CAMPO GRAVITACIONAL APLICACIONES UNIDAD: GRAVITACIÓN LEYES DE KEPLER (1609) LEY DE GRAVITACION DE NEWTON (1687) CAMPO GRAVITACIONAL APLICACIONES LEYES DE KEPLER (Johannes Kepler 1571-1630) Matemático y astrónomo alemán Fue colaborador

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

COMPILACION CONTENIDOS SOBRE LEYES DE NEWTON

COMPILACION CONTENIDOS SOBRE LEYES DE NEWTON COMPILACION CONTENIDOS SOBRE LEYES DE NEWTON Isaac Newton, científico inglés, fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras GUIA DE APRENDIZAJE LEYES DE KEPLER Antes de iniciar el estudio

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras GUIA DE APRENDIZAJE LEYES DE KEPLER Antes de iniciar el estudio

Más detalles

Entregar al Coordinador el día del examen a las 12:00 del día en la Recepción de Subdirección Académica

Entregar al Coordinador el día del examen a las 12:00 del día en la Recepción de Subdirección Académica Universidad Autónoma de Nuevo León Preparatoria 8 Requisitos para presentar en 4ª, 5ª y/o 6ª Oportunidad Semestre: Agosto - Diciembre 2016 Materia: Coordinador: Física II M.A. Martín Ramírez Martínez Entregar

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite

Más detalles

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1 Examen 1 1. La ley de la gravitación universal de Newton. 2. Dibuja la órbita de un planeta alrededor del Sol y las fuerzas que intervienen en el movimiento de aquél, así como la velocidad del planeta

Más detalles

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS?

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS? EQUIVALENCIAS 1 kgf = 9.8 N 1 kp = 1 kgf 1 kp = 9.8 N 1 dina = 1x10-5 N 1 lbf = 4.44 N 1 pdl = 0.1382 N Kgf = kilogramos fuerza kp = kilopondio N = Newton dina = dina lbf = libra fuerza pdl = poundal CONVERSIONES:

Más detalles

ACTIVIDADES DEL CURSO DE FÍSICA I

ACTIVIDADES DEL CURSO DE FÍSICA I SESIÓN 16 13 SEPTIEMBRE 1. Primer Examen 2. Investigación 6. Tema: Leyes de Newton. Contenido: Biografía de Isaac Newton Primera Ley de Newton Segunda Ley de Newton Tercera Ley de Newton Entrega: Sesión

Más detalles

Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco.

Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco. Antecedentes Dinámica Los griegos hicieron modelos del sistema solar. Aristarco Tolomeo Antecedentes La Europa medieval hizo sus contribuciones. Copérnico Primera Ley de Kepler Los planetas se mueven en

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23 PORTAFOLIO DE EVIDENCIAS PARA EXAMEN EXTRAORDINARIO DE FÍSICA II Nombre del Alumno: Grupo INSTRUCCIONES: El siguiente portafolio deberá de entregarse antes de recibir el examen extraordinario y cumplir

Más detalles

3ª, 4ª, 5ª y 6ª Oportunidad

3ª, 4ª, 5ª y 6ª Oportunidad Universidad Autónoma de Nuevo León Preparatoria 23 Unidad de aprendizaje: FÍSICA 2 Portafolio de Física 2 Valor del Portafolio: 40 puntos 3ª, 4ª, 5ª y 6ª Oportunidad Período: Agosto Diciembre 2016 Coordinador:

Más detalles

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME:

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: 1.-Un carro de juguete que se mueve con rapidez constante completa una vuelta alrededor de una pista circular (una distancia de 200 metros) en 25 seg. a) Cual

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

B. REPASO DE MECÁNICA ÍNDICE

B. REPASO DE MECÁNICA ÍNDICE BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

Colegio Antonino TALLER PRUEBAS ORO NUMERO DOS. Tercer Periodo Académico 2018 Profesor: Alberto Antonio Quintero Castaño. Área: Física. Grado: Décimo.

Colegio Antonino TALLER PRUEBAS ORO NUMERO DOS. Tercer Periodo Académico 2018 Profesor: Alberto Antonio Quintero Castaño. Área: Física. Grado: Décimo. Colegio Antonino TALLER PRUEBAS ORO NUMERO DOS Tercer Periodo Académico 2018 Profesor: Alberto Antonio Quintero Castaño. Área: Física. Grado: Décimo. 1. Realiza la prueba de oro número 1. 2. Un avión vuela

Más detalles

DINÁMICA. Es la rama de la mecánica que estudia el movimiento de los cuerpos analizando la causa que lo produce.

DINÁMICA. Es la rama de la mecánica que estudia el movimiento de los cuerpos analizando la causa que lo produce. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES ASIGNATURA: FISICA. NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION. PERIODO GRADO N FECHA DURACION

Más detalles

Universidad Florencio del Castillo. Física I. Las Leyes de Newton. Dinámica. Por: Ing. Fernando Álvarez Molina

Universidad Florencio del Castillo. Física I. Las Leyes de Newton. Dinámica. Por: Ing. Fernando Álvarez Molina Universidad Florencio del Castillo Física I Las Leyes de Newton Dinámica Por: Ing. Fernando Álvarez Molina Nociones de Movimiento. Aristóteles (siglo IV a.c) 1. El estado natural de los cuerpos es en reposo.

Más detalles

FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1

FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1 FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1 1. Describe el modelo planetario de Ptolomeo. a) Ptolomeo utiliza epiciclos y deferentes. Qué son? Por qué hace uso de este artificio? b) El modelo

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10 11 m. Si Júpiter tiene un período de aproximadamente

Más detalles

Antecedentes históricos

Antecedentes históricos Dinámica Antecedentes históricos Aristóteles (384-322 AC) formuló una teoría del movimiento de los cuerpos que fue adoptada durante 2 000 años. Explicaba que había dos clases de movimiento: Movimiento

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23 FÍSICA 2 Portafolio de Física 2 Valor del Portafolio: 40 puntos SEGUNDA OPORTUNIDAD Período: Agosto Diciembre 2017 Coordinador: ING. JESUS DANIEL GARCIA GARCIA Alumno: Matrícula: Santa Catarina, Nuevo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

Física 2º Bachillerato Curso

Física 2º Bachillerato Curso 1 Cuestión (2 puntos) Madrid Junio 1996 Cuando una partícula se mueve en un campo de fuerzas conservativo sometida a la acción de la fuerza del campo, existe una relación entre las energías potencial y

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Modelo 2014. Pregunta 1B.- Los satélites Meteosat son satélites geoestacionarios, situados sobre el ecuador terrestre y con un periodo orbital de 1 día. a) Suponiendo que la órbita que describen es circular

Más detalles

M. I. Yahvé Abdul Ledezma Rubio

M. I. Yahvé Abdul Ledezma Rubio M. I. Yahvé Abdul Ledezma Rubio Contenido 1. Leyes de movimiento de Kepler 2. Leyes de Newton, ley de la gravitación universal 3. Cantidad de movimiento lineal, cantidad de movimiento angular 4. Conservación

Más detalles

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Serway, física, volumen 1, tercera edición. Un niño se desliza desdeel reposo, por una resbaladilla

Más detalles

La fuerza es una cantidad vectorial y por esta razón tiene magnitud dirección y sentido. DINÁMICA LEYES DEL MOVIMIENTO

La fuerza es una cantidad vectorial y por esta razón tiene magnitud dirección y sentido. DINÁMICA LEYES DEL MOVIMIENTO DINÁMICA LEYES DEL MOVIMIENTO La Dinámica clásica estudia todas las relaciones que existen entre los cuerpos en movimiento y las posibles causas que lo producen, o dicho de otra manera estudia las fuerzas

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEYES DE KEPLER 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10¹¹ m. Si Júpiter tiene un período de

Más detalles

DOBLE CURSADO GUIA DE PROBLEMAS N 2

DOBLE CURSADO GUIA DE PROBLEMAS N 2 SIGNTUR: DOLE URSDO GUI DE PROLEMS N 2 2018 GUI DE PROLEMS N 2 PROLEM N 1 Tres fuerzas dadas por F 1 = ( 2i + 2j)N, F 2 = (5i 3j)N y F 3 = ( 4,5j)N, actúan sobre un objeto para producir una aceleración

Más detalles

a) 12 J b) 300 J c) 3000 J d) 6000 J e) n.d.a.

a) 12 J b) 300 J c) 3000 J d) 6000 J e) n.d.a. COLEGIO DE LA ASUNCION AREA CIENCIAS ISI Prueba simulada de Dinámica - 4 1) Una atleta de 60 kg, en el salto con vara, consigue llegar a una altura de 5 m. Se puede decir que el adquiere una energía potencial

Más detalles

Ley de Gravitación Universal

Ley de Gravitación Universal Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Momento de una fuerza, Leyes de Kepler,Ley de Gravitación Rev 01 Universal, Movimiento de satélites. Ley de Gravitación Universal

Más detalles

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:

Más detalles

Física e Química 1º Bach.

Física e Química 1º Bach. Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por

Más detalles

E J E R C I C I O S D E LAS L E Y E S D E N E W T O N

E J E R C I C I O S D E LAS L E Y E S D E N E W T O N E J E R C I C I O S D E LAS L E Y E S D E N E W T O N A.- Instrucciones.- En el paréntesis a la izquierda de cada aseveración escriba la letra que corresponda a la respuesta correcta. 01.-( ) A la parte

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

CAMPO GRAVITATORIO SELECTIVIDAD

CAMPO GRAVITATORIO SELECTIVIDAD CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el

Más detalles

FICHA 5_1. LEYES DE NEWTON.

FICHA 5_1. LEYES DE NEWTON. 1. Si un cuerpo observamos que se mueve con velocidad constante, podemos asegurar que sobre él no actúan fuerzas? Explicación. No. Si un cuerpo se mueve con velocidad constante, lo que sabemos es que su

Más detalles

c) No se caen porque la velocidad que llevan hace que traten de seguir rectos, al estar dentro de la vagoneta, se aprietan contra ella.

c) No se caen porque la velocidad que llevan hace que traten de seguir rectos, al estar dentro de la vagoneta, se aprietan contra ella. Unidad 2. FUERZAS Y PRINCIPIOS DE LA DINÁMICA 4º F/Q Ejercicio 36: a) Debido a la velocidad de la vagoneta. b) Sobre el pasajero de 60 kg actúan dos fuerzas, la de su peso-hacia abajo-, y la de la reacción

Más detalles

Tema 7. Fuerzas gravitatorias y elásticas

Tema 7. Fuerzas gravitatorias y elásticas 1 Tema 7 Fuerzas gravitatorias y elásticas Una fuerza una magnitud vectorial (módulo, dirección y sentido) capaz de modificar el estado de reposo o movimiento de un cuerpo o de producir deformaciones.

Más detalles

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva. Tipler Mosca.

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva. Tipler Mosca. Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Tipler Mosca. Quinta edición Un objeto se somete a una única fuerza Fx que varía con la posición

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

2) Explique qué es una fuerza conservativa y dé por lo menos dos ejemplos.

2) Explique qué es una fuerza conservativa y dé por lo menos dos ejemplos. Problemas de repaso 1) Imagine que usted está sosteniendo sobre la palma de su mano un libro que pesa 4 N, de manera que el libro está en reposo. nalice las diferentes situaciones planteadas y complete

Más detalles

1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular.

1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. 1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. Res. a) Consultad libro y apuntes. b) En el movimiento circular

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG-UCLM)

Ejercicios de Interacción Gravitatoria (PAEG-UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms -2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER 8 03 FUERZAS CENRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER j Actividades. La masa m de la figura siguiente describe una trayectoria circular situada en un plano horizontal. Cuántas fuerzas actúan

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

Ejercicios Dinámica. R. Tovar.

Ejercicios Dinámica. R. Tovar. Ejercicios Dinámica. R. Tovar. 1.- La figura muestra a un hombre que tira de una cuerda y arrastra un bloque m 1 = 5 [kg] con una aceleración de 2 [m/s 2 ]. Sobre m 1 yace otro bloque más pequeño m 2 =

Más detalles

MAGNITUDES FÍSICA. Todo aquello que se pueda medir, es decir, cuantificar. MAGNITUD FÍSICA. Longitud Masa Volumen Temperatura.

MAGNITUDES FÍSICA. Todo aquello que se pueda medir, es decir, cuantificar. MAGNITUD FÍSICA. Longitud Masa Volumen Temperatura. MAGNITUDES FÍSICA MAGNITUD FÍSICA Todo aquello que se pueda medir, es decir, cuantificar. Longitud Masa Volumen Temperatura Velocidad Fuerza SON MAGNITUDES FÍSICAS? Alegría Miedo Enfado MAGNITUDES FÍSICAS

Más detalles

PORTAFOLIO DE SEGUNDA OPORTUNIDAD FISICA 2

PORTAFOLIO DE SEGUNDA OPORTUNIDAD FISICA 2 NOMBRE: GRUPO: 1. Realiza la siguiente suma de vectores: F1= 45 N a 70 F2= 21 N a 215 2. Realiza la siguiente suma de vectores: F1= 78 N a 356 F2= 69 N a 149 F3= 25 N a 248 3. Un auto de 18,000 N que parte

Más detalles

EXAMEN FINAL DE FÍSICA

EXAMEN FINAL DE FÍSICA EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar

Más detalles

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER Ejercicio 1. Septiembre 2.011 a. Exprese la aceleración de la gravedad en la superficie de un planeta en función de la masa del pianeta, de su radio

Más detalles

2. LEYES DE KEPLER. Fueron probablemente enunciadas en el año 1609, y se refieren a los movimientos que describen los planetas alrededor del Sol.

2. LEYES DE KEPLER. Fueron probablemente enunciadas en el año 1609, y se refieren a los movimientos que describen los planetas alrededor del Sol. 1. INTRODUCCIÓN HISTÓRICA. MODELO GEOCÉNTRICO Y HELIOCÉNTRICO. Desde los tiempos más remotos, el hombre conoció la existencia de cuerpos celestes que parecían moverse en el firmamento. Eran el Sol, la

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com GRAVITACIÓN 1- a) Escriba y comente la Ley de Gravitación Universal. b) El satélite Jasón-2 realiza medidas de la superficie del mar con una precisión de pocos centímetros para estudios oceanográficos.

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG-UCLM)

Ejercicios de Interacción Gravitatoria (PAEG-UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms -2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

Dinámica: las fuerzas y sus aplicaciones DINÁMICA: LAS FUERZAS Y SUS APLICACIONES

Dinámica: las fuerzas y sus aplicaciones DINÁMICA: LAS FUERZAS Y SUS APLICACIONES TEMA 10 DINÁMICA: LAS FUERZAS Y SUS APLICACIONES 1- CANTIDAD DE MOVIMIENTO O MOMENTO LINEAL 2- LEYES DE LA DINÁMICA 3- CONSERVACIÓN DEL MOMENTO LINEAL 4- IMPULSO Y CANTIDAD DE MOVIMIENTO 5- ESTUDIO DINÁMICO

Más detalles

Unidad 3: Dinámica. Programa analítico

Unidad 3: Dinámica. Programa analítico Unidad 3: Dinámica Programa analítico Principios de la dinámica: inercia, masa, acción y reacción. Unidad de masa (SIMELA). Masa y Peso de un cuerpo. Efecto de una fuerza aplicada a una masa. Relación

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO 1. Introducción. 2. La fuerza es un vector. 2.1. Fuerza resultante. 2.2. Composición de fuerzas. 2.3. Descomposición de una fuerza sobre dos ejes perpendiculares.

Más detalles

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID

Más detalles

BACHILLERATO FÍSICA B. REPASO DE MECÁNICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA B. REPASO DE MECÁNICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS. Dpto. de Física y Química. R. Artacho

4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS. Dpto. de Física y Química. R. Artacho 4º E.S.O. FÍSICA Y QUÍMICA 9. FUERZAS GRAVITATORIAS R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Revisión de conceptos 2. La fuerza gravitatoria 3. El peso y la aceleración de la gravedad

Más detalles

1 Después de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. Este es un ejemplo de:

1 Después de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. Este es un ejemplo de: Slide 1 / 43 1 espués de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. ste es un ejemplo de: Primera ley de Newton Segunda Ley de Newton Tercera Ley de Newton Ley de

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG UCLM)

Ejercicios de Interacción Gravitatoria (PAEG UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms 2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

Slide 2 / 43. Slide 1 / 43. Slide 3 / 43. Slide 4 / 43. Slide 5 / 43. Slide 6 / 43. se acelerar. Segunda Ley de Newton. Ley de Gravitación de Newton

Slide 2 / 43. Slide 1 / 43. Slide 3 / 43. Slide 4 / 43. Slide 5 / 43. Slide 6 / 43. se acelerar. Segunda Ley de Newton. Ley de Gravitación de Newton Slide 1 / 43 1 espués de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. ste es un ejemplo de: Slide 2 / 43 2 n la ausencia de una fuerza externa, un objeto en movimiento

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: CIENCIAS NATURALES Y EDUCACION AMBIENTAL

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: CIENCIAS NATURALES Y EDUCACION AMBIENTAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: INFORMATIVA - EJERCITACION

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria 1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA...

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA... TEMA 1 1.1. LEY DE GRAVITACIÓN UNIVERSAL... 1 1.2. INTENSIDAD DEL CAMPO GRAVITACIONAL.... 4 1.3. POTENCIAL... 11 1.4. ENERGÍA PONTENCIAL GRAVITATORIA... 16 1.5. LEYES DE KEPLER... 18 1.6. VELOCIDAD DE

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES

DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES Refracción Astronómica La densidad de la atmósfera aumenta al acercarse a la superficie terrestre,

Más detalles

1. DINAMICA Y ESTATICA

1. DINAMICA Y ESTATICA 1 1. DINAMICA Y ESTATICA Dinámica es la parte de la mecánica clásica que estudia el movimiento de los cuerpos teniendo en cuenta la causa que lo produce y la masa del cuerpo, que se mueve. La estática

Más detalles

Campo Gravitatorio. I.E.S. Pablo Gargallo Departamento de Física y Química Curso FÍSICA DE 2º DE BTO

Campo Gravitatorio. I.E.S. Pablo Gargallo Departamento de Física y Química Curso FÍSICA DE 2º DE BTO I.E.S. Pablo Gargallo Departamento de Física y Química Curso 2008-09 FÍSICA DE 2º DE BTO Campo Gravitatorio 1.- La Tierra tarda un año en realizar su órbita en torno al Sol. Esta órbita es aproximadamente

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

INTERACCIÓN GRAVITATORIA MODELO 2016

INTERACCIÓN GRAVITATORIA MODELO 2016 INTERACCIÓN GRAVITATORIA MODELO 2016 1- Titania, satélite del planeta Urano, describe una órbita circular en torno al planeta. Las aceleraciones de la gravedad en la superficies de Urano y de Titania son

Más detalles

Facultad de Ingeniería Civil

Facultad de Ingeniería Civil Facultad de Ingeniería Civil Curso Propedéutico de Física Diciembre de 2017 Día 10 Cinética I Leyes Newton y Fricción Cuestionario de Conocimientos Previos Cómo se llama el movimiento en donde la velocidad

Más detalles

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014 Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00

Más detalles

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección.

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección. LA MASA de un objeto es una medida de su inercia. Se le llama inercia a la tendencia de un objeto en reposo a permanecer en este estado, y de un objeto en movimiento a continuarlo sin cambiar su velocidad.

Más detalles

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (11h30-13h30)

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (11h30-13h30) EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

Leyes de Newton o Principios de la dinámica

Leyes de Newton o Principios de la dinámica Leyes de Newton o Principios de la dinámica La dinámica se rige por tres principios fundamentales; enunciados por Isaac Newton en 1687 en su obra Philosophiae naturalis principia mathematica ; conocidos

Más detalles

CAMPO GRAVITATORIO Septiembre Pregunta 1B.- a) b) Septiembre Pregunta 1A.- a) b) Junio Pregunta 1B.- a) b)

CAMPO GRAVITATORIO Septiembre Pregunta 1B.- a) b) Septiembre Pregunta 1A.- a) b) Junio Pregunta 1B.- a) b) CAMPO GRAVITATORIO Septiembre 2016. Pregunta 1B.- Una estrella gira alrededor de un objeto estelar con un periodo de 28 días terrestres siguiendo una órbita circular de radio 0,45 10 8 km. a) Determine

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 TERCERA EVALUACIÓN DE FÍSICA A Nombre: Paralelo: PRIMERA PARTE: Preguntas de opción múltiple (3 puntos c/u) 1)

Más detalles

Relación de Problemas de Selectividad: Campo Gravitatorio

Relación de Problemas de Selectividad: Campo Gravitatorio Año 2008 Relación de Problemas de Selectividad: Campo Gravitatorio -2008 1).Los satélites meteorológicos son un medio para obtener información sobre el estado del tiempo atmosférico. Uno de estos satélites,

Más detalles