II.- ESTRUCTURA FORMAL. Lección 3ª: Primer Principio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "II.- ESTRUCTURA FORMAL. Lección 3ª: Primer Principio"

Transcripción

1 II.- ESTRUCTURA FORMAL Lección 3ª: Primer Principio 1.- Introducción Primer Principio (Ley de Conservación de la Energía) Energía Interna Calor y Trabajo Balance de energía de un sistema termodinámico: Formulación matemática del Primer Principio Diversos enunciados del Primer Principio... 5

2 Lección 3ª.- Primer Principio Introducción Una vez introducidos los dos Postulados vamos a abordar el Primer Principio de la Termodinámica, también denominado Ley de Conservación de la Energía, que el alumno ya conoce por haberla utilizado en casos particulares de la Mecánica o del Electromagnetismo. En esta lección veremos la formulación más general de este Principio que juega un papel fundamental en cualquier parte de la Física. Para ello centraremos el estudio en un sistema físico de cualquier naturaleza, no específicamente mecánico o eléctrico, como corresponde a un estudio termodinámico y analizaremos con detalle las consecuencias de ese Principio de conservación como son la existencia de una nueva función de estado denominada Energía Interna y la introducción del concepto de Calor. Completaremos el desarrollo de este Primer Principio en las lecciones 4ª (Trabajo), 5ª (Ecuaciones de estado), 6ª (Ecuaciones de estado de gases) y 7ª (Calor). El contenido de la presente lección está claramente expuesto en el libro Calor y Termodinámica (McGraw-Hill, 6ª edición) de M.W. Zemansky y R.H. Dittman, págs Así mismo, las ideas básicas están desarrolladas en el texto Curso de Termodinámica (Alhambra, 1ª edición) de J. Aguilar, págs Primer Principio (Ley de Conservación de la Energía) Energía Interna En el curso de Física General se ha introducido el concepto de trabajo, inicialmente con referencia a sistemas mecánicos. Así el trabajo (W) representa la cantidad de energía intercambiada como consecuencia de la aplicación de una fuerza ( F ) que desplaza su punto de aplicación una distancia ( x ) que por sencillez consideraremos en una sola dimensión. Dicho trabajo mecánico viene dado entonces como el producto escalar del vector fuerza por el vector desplazamiento: W = F x, si la fuerza es constante, o bien x2 W = F dx si la fuerza varía en el transcurso del desplazamiento entre la posición x1 inicial x 1 y la final x 2. De igual manera surge el trabajo al estudiar una carga eléctrica (q) en presencia de un campo eléctrico ( E ). Dicha carga experimenta una fuerza dada por el producto ( qe ) de forma que si la carga se desplaza de nuevo una distancia ( x ) en una dimensión el trabajo eléctrico ejercido por el campo sobre la carga será: W = qe x si el campo es constante, o bien x2 W = qe dx si el campo varía en el desplazamiento entre la posición inicial x 1 y la final x 2. Un nuevo ejemplo lo encontramos cuando estudiamos el movimiento de cargas en el seno de un campo magnético. Así cuando una carga (q) se mueve con una velocidad ( v ) en presencia de un campo magnético ( B ) experimenta una fuerza dada por el siguiente producto vectorial: F = qv B. De nuevo la aplicación de dicha fuerza a la carga que se desplaza conlleva un trabajo magnético o transferencia de energía del campo a la carga. Para establecer el Primer Principio admitiremos que somos capaces de reconocer todos los diferentes trabajos que pueden emplear los sistemas físicos para intercambiar energía y consideraremos de partida que el sistema en estudio únicamente intercambia energía en forma de alguno de estos tipos de trabajo. Ello implica que dicho sistema posee paredes adiabáticas y que efectúa sólo procesos adiabáticos. Con esto la experiencia muestra que cuando conectamos dos estados cualesquiera de un x1

3 Lección 3ª.- Primer Principio 3 sistema arbitrario mediante procesos adiabáticos el trabajo puesto en juego en cada uno de ellos es el mismo. La generalización de este resultado constituye un enunciado previo del Primer Principio de la Termodinámica que indicamos en la cabecera del siguiente organigrama: Primer Principio: Si un sistema está obligado a pasar de un estado inicial (i) a otro final (f), utilizando solamente transformaciones adiabáticas, el trabajo (W) realizado es el mismo para todos los procesos adiabáticos que unen los dos estados Existe una función de estado llamada Energía Interna, U = U(A,a), tal que: U f U i = W i f (adiabático) du = d W (adiabático) Principio de Conservación de la Energía Definición de Calor (Q) ΔU = Q + W du = d Q + d W Veamos las consecuencias que podemos extraer de este enunciado. Cuando en Física encontramos que la variación de una magnitud entre dos estados fijos es independiente del camino seguido por el sistema, concluimos que dicha variación debe venir dada por la diferencia de los valores que toma una determinada función de estado en esos dos estados. Así el trabajo necesario para desplazar un cuerpo en el campo gravitatorio sólo depende de su altura inicial y final y no del camino seguido. Se introduce entonces una función energía potencial cuya variación da cuenta de dicho trabajo. De igual forma, el trabajo que se precisa para desplazar una carga en un campo eléctrico depende de sus posiciones inicial y final y no de la trayectoria seguida. Ese trabajo se expresa entonces como la variación sufrida por la función potencial eléctrico. Por todo lo dicho, podemos concluir a partir del enunciado dado del Primer Principio que existe una función de las coordenadas de un sistema que denominaremos Energía Interna cuya variación entre dos estados del mismo da cuenta del trabajo adiabático puesto en juego al pasar el sistema de uno a otro siguiendo un proceso adiabático cualquiera. Esta nueva función la designaremos por U, tal que: o bien en forma diferencial, U f U i = W i f (adiabático) (1) du = d W (adiabático) (2) donde hemos tomado el convenio de signos de considerar positivo el trabajo recibido por el sistema (aumenta la energía interna) y negativo en caso contrario, tal como se muestra en la Figura 1.

4 Lección 3ª.- Primer Principio 4 Desde el punto de vista físico la magnitud U= Uf Ui se interpreta como la variación experimentada por la energía del sistema sin considerar la energía (externa) que posee por estar en presencia de algún posible campo externo. De ahí el nombre de energía interna. En este sentido las expresiones (1) y (2) formulan el conocido Principio de Conservación de la Energía de un sistema físico. Desde el punto de vista matemático, el que una función sólo dependa de las variables de estado (función de estado), es decir, que su variación entre dos estados no depende del camino seguido, implica además que dicha función admite una función diferencial total. Así, si tratamos con sistemas simples cuyas variables de estado las denotamos con (A,a) tendremos para el caso de la energía interna U que W<0 Q<0 Sistema Figura 1: Convenio de Signos W>0 Q>0 y que dicha función admite una función diferencial total, du, tal que U = U (A,a) (3) U U du = da + da A a a A (4) Conviene recordar a este respecto que la condición necesaria y suficiente para que una función de estado admita una función diferencial total es que cumpla la condición de Schwarz: 2 2 U U = A a a A a,a A,a (5) 3.- Calor y Trabajo Supongamos que hacemos pasar un sistema termodinámico desde un estado inicial (i) hasta otro final (f) por vía adiabática y por otra que no lo es. El trabajo desarrollado en el proceso adiabático coincidirá con la variación ΔU = U f U i, tal como hemos indicado anteriormente, sin embargo, el trabajo puesto en juego en el proceso no adiabático no coincidirá, en general, con esa variación de la energía interna. Para ser consecuentes con el Principio de Conservación de la Energía debemos admitir que se ha producido un intercambio de energía por medios diferentes al del trabajo. Esta nueva forma de intercambiar energía entre un sistema y su entorno es lo que denominamos calor (Esta forma de definir el calor fue introducida por M. Born en un artículo publicado en Physikz, 22 (1921) 218). Por tanto, cuando un sistema intercambia energía por medios distintos a los diferentes trabajos (mecánico, eléctrico, magnético, etc.) ni tampoco a causa de una interacción másica, decimos que lo hace mediante calor. De acuerdo con esta definición de calor, no tiene ningún sentido referirse al calor que posee un cuerpo, de igual forma que no tiene sentido hablar del trabajo que tiene un cuerpo. El trabajo y el calor son dos formas de intercambiar energía que tienen los sistemas. Una vez que el sistema ha recibido energía por uno u otro método no existe posibilidad de distinción, todo es energía.

5 Lección 3ª.- Primer Principio 5 A la cantidad de energía intercambiada mediante trabajo se denomina trabajo. A la energía intercambiada mediante calor recibe el nombre de cantidad de calor. Sabemos que las magnitudes trabajo y cantidad de calor no son, en general, funciones de estado por lo que no admiten una función diferencial total. Cuando nos refiramos a procesos infinitesimales denotaremos las cantidades de energía intercambiadas mediante trabajo y calor por d W y d Q, respectivamente, denotando con ello que son diferenciales inexactas. 4.- Balance de energía de un sistema termodinámico Formulación matemática del Primer Principio Diversos enunciados del Primer Principio De acuerdo entonces con el Principio de Conservación de la Energía y la definición de calor podemos escribir para un proceso finito que: U f U i = Q + W (6) donde hemos tomado para el calor el mismo convenio de signos que para el trabajo de acuerdo con la Figura 1. La ecuación anterior constituye la formulación matemática del Primer Principio de la Termodinámica. Debe destacarse que en la formulación del Primer Principio coexisten tres ideas afines, tal como se muestra en el organigrama mostrado anteriormente: 1. El Principio de Conservación de la Energía. 2. La existencia de la función Energía Interna. 3. La definición de calor como una nueva forma de intercambio de energía, esencialmente distinta del trabajo y de la interacción másica. Para un proceso infinitesimal el Primer Principio se expresa como: du = d Q + d W (7) Si el sistema evoluciona a lo largo de un ciclo termodinámico, es decir, el estado inicial coincide con el final, entonces, teniendo en cuenta que al ser la energía interna una función de estado, se tiene que U f = U i, y por tanto, la ecuación (6) se reduce a: Q = -W (8) De esta ecuación podemos inferir que para que un sistema funcione cíclicamente proporcionando trabajo, es necesario suministrarle idéntica cantidad de energía en forma de calor. Expresado en términos más técnicos, podemos decir que el Primer Principio prohíbe la existencia de una máquina térmica que funcionando continuamente mediante ciclos proporcione más energía en forma de trabajo que calor recibe. Esta máquina recibe el nombre de Móvil Perpetuo de Primera Especie. A este respecto cabe indicar que ya en el año 1775 la Academia de Ciencias francesa declaró que ella nunca examinaría ninguna máquina que proporcionase el movimiento (trabajo) perpetuo.

II.- ESTRUCTURA FORMAL. Lección 2ª: Postulados Iniciales

II.- ESTRUCTURA FORMAL. Lección 2ª: Postulados Iniciales II.- ESTRUCTURA FORMAL Lección 2ª: Postulados Iniciales 1.- Introducción... 2 2.- Primer Postulado (Principio General de la Termodinámica)... 2 3.- Segundo Postulado (Principio Cero)... 2 4.- Temperatura

Más detalles

Conceptos Básicos Termodinámica

Conceptos Básicos Termodinámica Conceptos Básicos Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido

Más detalles

PRIMERA LEY DE LA TERMODINÁMICA PARA SISTEMAS CERRADOS. Termodinámica

PRIMERA LEY DE LA TERMODINÁMICA PARA SISTEMAS CERRADOS. Termodinámica Termodinámica Es la ciencia que trata de las transformaciones de la energía y de las relaciones entre las propiedades físicas de las sustancias afectadas por dichas transformaciones. (WARK) Es la parte

Más detalles

Tema V: Primera Ley de la Termodinamica

Tema V: Primera Ley de la Termodinamica Tema V: Primera Ley de la Termodinamica Contenido: 1.Introducción fenomenológica.. 2. Primera Ley de la Termodinámica Energía Interna 3. Primera Ley de la Termodinámica. Generalización Conservación de

Más detalles

Tema 6: Cinética de la partícula

Tema 6: Cinética de la partícula Tema 6: Cinética de la partícula FISICA I, 1º Grado en Ingeniería Civil Departamento Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Trabajo mecánico

Más detalles

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA A) Trabajo de fuerzas constantes y trayectoria rectilínea. Cuando sobre una partícula actúa una fuerza constante, y esta partícula describe una trayectoria rectilínea, definimos trabajo realizado por la

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

Primera Ley de la Termodinámica

Primera Ley de la Termodinámica Liceo de Hombres Manuel Montt Física Electivo - Cuarto Medio SEMESTRE II 2018 Termodinámica Cada vez que conducimos un automóvil, que encendemos un acondicionador de aire o cocinamos algún alimento, recibimos

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. Trabajo mecánico. 2. Teorema de la energía cinética. 3. Fuerzas conservativas y energía potencial. 4. Conservación de la energía mecánica. 5. Consejos

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 4. Primera ley de la Termodinámica. i. Concepto de Trabajo aplicado a gases. ii. Trabajo

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECÁNICA Y ELECTRICA DEPARTAMENTO DE INGENIERIA MECÁNICA

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECÁNICA Y ELECTRICA DEPARTAMENTO DE INGENIERIA MECÁNICA 1 UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECÁNICA Y ELECTRICA DEPARTAMENTO DE INGENIERIA MECÁNICA Transferencia de Calor IM-414 Deducción de la Ecuación

Más detalles

Conceptos Básicos 26 de octubre de 2010

Conceptos Básicos 26 de octubre de 2010 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIETO Conceptos Básicos 26 de octubre de 2010 Índice 5 1. Sistema, entorno, contorno 1 2. Estado y equilibrio 2 3. Procesos 3 3.1. Descripción de un proceso....................

Más detalles

Principios Cero y Primero

Principios Cero y Primero Principios Cero y Primero Prof. Luis Conde Departamento de Física Aplicada Página personal: http://plasmalab.aero.upm.es/~lcl/ Procesos termodinámicos Un sistema termodinámico experimenta un cambio de

Más detalles

Electrotecnia General Tema 3 TEMA 3

Electrotecnia General Tema 3 TEMA 3 TEMA 3 POTENCIAL 3.1. ENERGÍA POTENCIAL ELECTROSTÁTICA Sea una carga q, (Fig.3.1) que se desplaza según una trayectoria a-b. Designando: : Fuerza ejercida sobre la carga por el campo. : Fuerza exterior

Más detalles

Ficha de trabajo 2 año Ciencias Físicas TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad de un sistema para realizar trabajo.

Ficha de trabajo 2 año Ciencias Físicas TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad de un sistema para realizar trabajo. Ficha de trabajo 2 año Ciencias Físicas Prof. Javier Ponce TRABAJO Y ENERGÍA ENERGÍA: es la capacidad de un sistema para realizar trabajo. Cuándo se realiza TRABAJO? Se realiza TRABAJO cuando al aplicar

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

PRIMERA LEY DE LA TERMODINÁMICA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica

PRIMERA LEY DE LA TERMODINÁMICA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica PRIMERA LEY DE LA TERMODINÁMICA Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica 1 / 35 Objetivos El estudiante debe ser capaz de: Interpretar el concepto de sistema

Más detalles

ENERGÍA MECÁNICA Y TRABAJO

ENERGÍA MECÁNICA Y TRABAJO ENERGÍA MECÁNICA Y TRABAJO Energía Qué es la energía? Se trata de una magnitud física relacionada con los cambios. Es una magnitud que permanece constante en todo proceso físico. Energía Se suele definir

Más detalles

Termodinámica. Unidad 2.

Termodinámica. Unidad 2. Termodinámica Unidad 2. Transferencia de energía El cuarto se refresca? La energía puede cruzar la frontera de un sistema cerrado endosformasdistintas: calor y trabajo. Transferencia de energía por calor

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 1

Termodinámica: Segundo principio de la termodinámica Parte 1 Termodinámica: Segundo principio de la termodinámica Parte 1 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 3 de junio

Más detalles

UNIDAD Nº 4:CINEMATICA DEL CUERPO RIGIDO.

UNIDAD Nº 4:CINEMATICA DEL CUERPO RIGIDO. UNIDAD Nº 4:CINEMATICA DEL CUERPO RIGIDO. 1 Concepto de trayectoria y corrimiento de un punto perteneciente a un cuerpo. Traslación y rotación de un cuerpo. Hipótesis de pequeñas rotaciones. Cupla de rotaciones.

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia TERMODINÁMICA TERMODINÁMICA Módulo Titulación GRADO EN FÍSICA Plan Código 469 Periodo de impartición ANUAL Tipo/Carácter OBLIGATORIA Nivel/Ciclo GRADO Curso

Más detalles

5-Deduzca la expresión del trabajo de cambio de volumen en un fluido.

5-Deduzca la expresión del trabajo de cambio de volumen en un fluido. ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 6 PRIMER PRINCIPIO DE LA TERMODINAMICA Bibliografía Obligatoria (mínima) Capítulo 20 Física de Serway Tomo I PREGUNTAS SOBRE LA TEORIA Las preguntas sobre la teoría

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 1. Conceptos básicos de la Termodinámica

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 1. Conceptos básicos de la Termodinámica María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 1 Conceptos básicos de la Termodinámica Esquema 1.1 Objetivos y alcance de la Termodinámica 1.2 Conceptos básicos:

Más detalles

La primera ley de la termodinámica identifica el calor como una forma de energía.

La primera ley de la termodinámica identifica el calor como una forma de energía. La primera ley de la termodinámica identifica el calor como una forma de energía. Esta idea, que hoy nos parece elemental, tardó mucho en abrirse camino y no fue formulada hasta la década de 1840, gracias

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

CLASIFICACION y DEDINICION DE LAS TURBOMAQUINAS. OBJETIVO Clasificar, definir y conocer los fundamentos de las Turbomáquinas.

CLASIFICACION y DEDINICION DE LAS TURBOMAQUINAS. OBJETIVO Clasificar, definir y conocer los fundamentos de las Turbomáquinas. UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO: TURBOMAQUINAS VII CICLO SEMANA 1 CLASIFICACION y DEDINICION DE LAS TURBOMAQUINAS OBJETIVO Clasificar, definir y conocer los fundamentos

Más detalles

APUNTES DE CINEMATICA

APUNTES DE CINEMATICA FACULTAD DE CIENCIAS FORESTALES U.N.S.E. APUNTES DE CINEMATICA CURSO DE INGRESO 2014-2015 Autor: Ing Angel D. Rossi CINEMATICA Es la parte de la física que estudia los movimientos de los cuerpos, sin importar

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Tema 2: Movimiento unidimensional

Tema 2: Movimiento unidimensional Tema 2: Movimiento unidimensional FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Vector de posición

Más detalles

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica. Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre

Más detalles

FENÓMENOS DE TRANSPORTE

FENÓMENOS DE TRANSPORTE FENÓMENOS DE TRANSPORTE UNIDAD I CONTENIDO LEY CERO DE LA TERMODINÁMICA LEY CERO DE LA TERMODINÁMICA Cuando tocamos un objeto, el sentido del tacto nos proporciona la sensación que calificamos como caliente

Más detalles

0.1. Magnitudes fundamentales de la Física: sistemas de unidades Sistemas de coordenadas: cartesianas, cilíndricas y esféricas

0.1. Magnitudes fundamentales de la Física: sistemas de unidades Sistemas de coordenadas: cartesianas, cilíndricas y esféricas TEMA 0. INTRODUCCIÓN 0.1. Magnitudes fundamentales de la Física: sistemas de unidades 0.2. Magnitudes escalares y vectoriales 0.3. Álgebra de vectores: producto escalar y producto vectorial 0.4. Vector

Más detalles

Tema 2 Primera ley de la termodinámica. M del Carmen Maldonado Susano

Tema 2 Primera ley de la termodinámica. M del Carmen Maldonado Susano Tema 2 Primera ley de la termodinámica M del Carmen Maldonado Susano Objetivo El alumno realizará balances de energía en sistemas termodinámicos, mediante la aplicación de la primera ley de la termodinámica.

Más detalles

2005 septiembre original 1º ejercicio Dinámica

2005 septiembre original 1º ejercicio Dinámica 2005 septiembre original 1º ejercicio Dinámica Sea un plano inclinado, de longitud L, que forma un ángulo + /2 con la horizontal. Este plano, en su cota más baja enlaza con un plano horizontal, de longitud

Más detalles

Álgebra Lineal. Tema 7. Forma normal de una transformación

Álgebra Lineal. Tema 7. Forma normal de una transformación Álgebra Lineal Tema 7. Forma normal de una transformación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V

Más detalles

LAS DIFERENTES FORMAS DE ESCRIBIR LA SEGUNDA LEY DE NEWTON EN LOS LIBROS DE TEXTO. Ponencia presentada en el Seminario LAC el día 29 de agosto de 2013

LAS DIFERENTES FORMAS DE ESCRIBIR LA SEGUNDA LEY DE NEWTON EN LOS LIBROS DE TEXTO. Ponencia presentada en el Seminario LAC el día 29 de agosto de 2013 LAS DIFERENTES FORMAS DE ESCRIBIR LA SEGUNDA LEY DE NEWTON EN LOS LIBROS DE TEXTO Ponencia presentada en el Seminario LAC el día 29 de agosto de 2013 Autor: Yuri Posadas Velázquez Introducción En esta

Más detalles

Capítulo 08. Energía Potencial y Conservación de la Energía

Capítulo 08. Energía Potencial y Conservación de la Energía Capítulo 08 Energía Potencial y Conservación de la Energía Contenido Fuerzas conservativas y no conservativas Fuerzas conservativas y energía potencial Conservación de la energía mecánica Fuerzas no conservativas

Más detalles

2.1 Descripción en espacio de estado de sistemas dinámicos

2.1 Descripción en espacio de estado de sistemas dinámicos 2 Análisis de sistemas lineales 2.1 Descripción en espacio de estado de sistemas dinámicos El objetivo de este capítulo es formular una teoría general de describir los sistemas dinámicos en funcion de

Más detalles

CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA, POTENCIAL ELÉCTRICO.

CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA, POTENCIAL ELÉCTRICO. CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA, POTENCIAL ELÉCTRICO. Cuando una partícula con carga se mueve en un campo eléctrico, el campo ejerce una fuerza que efectúa trabajo sobre la partícula. Este

Más detalles

Trabajo y calor en los procesos termodinámicos de un gas ideal. Conceptos previos.

Trabajo y calor en los procesos termodinámicos de un gas ideal. Conceptos previos. Trabajo y calor en los procesos termodinámicos de un gas ideal. Conceptos previos. Sistema termodinámico: Un conjunto bien definido de átomos, moléculas, partículas u objetos (HEWITT, 993, p.306). Un sistema

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

PLAN DE AREA ASIGNATURA: FISICA DOCENTE LILIANA SOLIS NAZARIT

PLAN DE AREA ASIGNATURA: FISICA DOCENTE LILIANA SOLIS NAZARIT PLAN DE AREA ASIGNATURA: FISICA DOCENTE LILIANA SOLIS NAZARIT INSTITUCION EDUCATIVA VALENTIN CARABALI BUENOS AIRES CAUCA 2009 INTRODUCCION La programación curricular de la asignatura de física para los

Más detalles

Introducción histórica

Introducción histórica Introducción histórica Tales de Mileto (600 a.c.) observó la propiedad del ámbar de atraer pequeños cuerpos cuando se frotaba. Ámbar en griego es electron ELECTRICIDAD. En Magnesia existía un mineral que

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

Conceptos de Electromagnetismo

Conceptos de Electromagnetismo Estructura de la Materia Conceptos de Electromagnetismo Martha M. Flores Leonar FQ UNAM 30 de enero de 2018 CONTENIDO LEY DE COULOMB LEY DE COULOMB Describe la fuerza de interacción de partículas con carga

Más detalles

( ) 1/2, podemos calcular la componente x de la fuerza como

( ) 1/2, podemos calcular la componente x de la fuerza como Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2013 Cuestiones (Un punto por cuestión). Cuestión 1 (Primer parcial): Consideremos un sistema compuesto por un núcleo de

Más detalles

Gases Ideales. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio.

Gases Ideales. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio. Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio SEMESTRE I 2018 Gas ideal En las clases anteriores, cuando estudiamos el calor y la temperatura, no se hizo ninguna mención de la influencia de

Más detalles

1. Introducción. Concepto de energía.

1. Introducción. Concepto de energía. Trabajo y Energía. Introducción. Concepto de energía.. Trabajo realizado por una fuerza. 3. Potencia mecánica. 4. Energía mecánica. a. Energía cinética. Teorema del trabajo y la energía. b. Campos conservativos.

Más detalles

Fuerzas ejercidas por campos magnéticos

Fuerzas ejercidas por campos magnéticos Fuerzas ejercidas por campos magnéticos Ejemplo resuelto nº 1 Se introduce un electrón en un campo magnético de inducción magnética 25 T a una velocidad de 5. 10 5 m. s -1 perpendicular al campo magnético.

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial

Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial Programa de la asignatura: IEM-211 Termodinámica I Total de Créditos:

Más detalles

Termoquímica. Termoquímica Es la parte de la Química que estudia el intercambio energético de un sistema químico con el exterior.

Termoquímica. Termoquímica Es la parte de la Química que estudia el intercambio energético de un sistema químico con el exterior. ermoquímica ermoquímica Es la parte de la Química que estudia el intercambio energético de un sistema químico con el exterior. Sistemas materiales Un SISEMA es la parte del universo que se aísla para su

Más detalles

Física y Química. 2º ESO. EL MOVIMIENTO El movimiento y las fuerzas

Física y Química. 2º ESO. EL MOVIMIENTO El movimiento y las fuerzas Qué es el movimiento? El movimiento es la acción y efecto de mover o moverse, pero sabemos en realidad si estamos en movimiento? pues no, ya que el movimiento es relativo, es decir, depende del sistema

Más detalles

A) NOMBRE DE CADA CURSO O ACTIVIDAD CURRICULAR B) DATOS BÁSICOS DEL CURSO C) OBJETIVOS DEL CURSO ELECTROMAGNETISMO I (OPTATIVA) Pág.

A) NOMBRE DE CADA CURSO O ACTIVIDAD CURRICULAR B) DATOS BÁSICOS DEL CURSO C) OBJETIVOS DEL CURSO ELECTROMAGNETISMO I (OPTATIVA) Pág. A) NOMBRE DE CADA CURSO O ACTIVIDAD CURRICULAR ELECTROMAGNETISMO I (OPTATIVA) B) DATOS BÁSICOS DEL CURSO Semestre Horas de teoría Horas de práctica Horas trabajo Créditos por semana por semana adicional

Más detalles

Energía y primera ley de la termodinámica

Energía y primera ley de la termodinámica Unidad II Energía y primera ley de la termodinámica - Trabajo. Calor En la unidad 1 se hizo una clasificación de los sistemas en función de que si sus paredes son atravesadas por masa o no, aquí ampliamos

Más detalles

Termodinámica I. Sistemas. Variables de estado. Energía.

Termodinámica I. Sistemas. Variables de estado. Energía. Termodinámica I. Sistemas. Variables de estado. Energía. 1. Un sistema es un conjunto de materia que experimenta una transformación, evolucionando desde un estado inicial a otro final, y que se estudia

Más detalles

El trabajo de una fuerza conservativa a lo largo de un camino cerrado es cero.

El trabajo de una fuerza conservativa a lo largo de un camino cerrado es cero. I. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1 Fuerzas conservativas: Un fuerza es conservativa cuando el trabajo de dicha fuerza es igual a la diferencia entre los valores inicial y final de una función

Más detalles

FÍSICA Versión impresa. Cinemática

FÍSICA Versión impresa. Cinemática FÍSICA Versión impresa Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Pero un movimiento (un cambio de localización) no tiene

Más detalles

Funciones de varias variables

Funciones de varias variables Tema 5 Funciones de varias variables 5.1. Introducción Supongamos que tenemos una placa rectangular R y necesitamos conocer la temperatura T en cada uno de sus puntos. T es una función que depende de las

Más detalles

F d l W = ( ) ; d l = dx,dy,dz ( ) ( ) ò F dx + ò F dy + F dz. x f. z f ò z i. y f. y i. x i

F d l W = ( ) ; d l = dx,dy,dz ( ) ( ) ò F dx + ò F dy + F dz. x f. z f ò z i. y f. y i. x i El trabajo W hecho sobre un objeto, por un agente externo ejerciendo una fuerza constante en el objeto, es el producto de la fuerza y de la magnitud del desplazamiento: W = F * l A F B F = F,F.F x y z

Más detalles

FACULTAD INGENIERÍA OPTATIVA: TERMODINÁMICA. Ingeniería. Ingeniería en Tecnología de Procesos Optativa CI660

FACULTAD INGENIERÍA OPTATIVA: TERMODINÁMICA. Ingeniería. Ingeniería en Tecnología de Procesos Optativa CI660 DES: Ingeniería UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA: TERMODINÁMICA Programa(s) Educativo(s): Tipo de materia: Clave de

Más detalles

1. Definición de trabajo

1. Definición de trabajo ermodinámica. ema rimer rincipio de la ermodinámica. Definición de trabajo Energía transmitida por medio de una conexión mecánica entre el sistema y los alrededores. El trabajo siempre se define a partir

Más detalles

TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS:

TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS: TRABAJO Y ENERGÍA ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS: Energía Cinética: es la energía que tienen los cuerpos en virtud de su movimiento. Energía Potencial:

Más detalles

Dinámica de la partícula: Energía y Leyes de Conservación

Dinámica de la partícula: Energía y Leyes de Conservación Dinámica de la partícula: Energía y Leyes de Conservación Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

Unidad 3. Primera ley de la termodinámica en sistemas cerrados. Sustancias puras

Unidad 3. Primera ley de la termodinámica en sistemas cerrados. Sustancias puras Unidad 3 Primera ley de la termodinámica en sistemas cerrados Sustancias puras Pero antes un pequeño repaso!...si es que no resolvieron estos problemas Se deja que vapor de agua sobrecalentado a 1MPa y

Más detalles

FACULTAD DE CIENCIAS SECCIÓN FÍSICAS PLAN DE ACOGIDA

FACULTAD DE CIENCIAS SECCIÓN FÍSICAS PLAN DE ACOGIDA FACULTAD DE CIENCIAS SECCIÓN FÍSICAS PLAN DE ACOGIDA TÍTULO: Trabajo y Energía. OBJETIVOS: Introducir/recordar los coeptos de trabajo y energía. Presentar los coeptos de energía cinética y energía poteial.

Más detalles

El Problema de la Termodinámica y los Postulados.

El Problema de la Termodinámica y los Postulados. El Problema de la Termodinámica y los Postulados. Escala Temporal: Un sistema macroscópico contiene 10 +23 átomos (y coordenadas). Pero de todas ellas, sólo unas pocas son relevantes. Las medidas macroscópicas

Más detalles

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada?

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada? ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 2 LEY DE GAUSS Bibliografía Obligatoria (mínima) Capítulo 24 Física de Serway Tomo II Apunte de la cátedra: Capìtulo III PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

Tema I: Introducción

Tema I: Introducción Tema I: Introducción Contenido: I.1 Ubicación y Objetivo de la Termodinámica I.2 Definiciones Generales I.3 Aspectos Formales Silabario: Termodinámica Clásica. García-Colín (GC). Capítulo 1. Generalidades,

Más detalles

Profesor: Joaquín Zueco Jordán. Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán. Área de Máquinas y Motores Térmicos Conceptos fundamentales Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Ingeniería Ingeniería Ingeniería Ingeniería Ingeniería eléctrica Conceptos térmica mecánica... Base Objetivo Termodinámica

Más detalles

Indice. Cinemática de la Partícula Introducción

Indice. Cinemática de la Partícula Introducción Indice Cinemática de la Partícula Introducción Un fenómeno que siempre está presente y que observamos a nuestro alrededor es el movimiento. La cinemática es la parte de la Física que describe los posibles

Más detalles

CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES

CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES 3.1 OBJETIVOS Representar mediante ecuaciones matemáticas y gráficas el movimiento de los fluidos. Aplicar las ecuaciones fundamentales de líneas de

Más detalles

Tema 5: Energía y Leyes de Conservación*

Tema 5: Energía y Leyes de Conservación* Tema 5: Energía y Leyes de Conservación* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez y Prof.Dra. Ana Mª Marco Ramírez 1 Índice

Más detalles

CANTIDAD DE MOVIMIENTO LINEAL O MOMENTUM

CANTIDAD DE MOVIMIENTO LINEAL O MOMENTUM CANTIDAD DE MOVIMIENTO LINEAL O MOMENTUM La cantidad de movimiento, momento lineal, ímpetu o moméntum es una magnitud vectorial, unidad SI: (kg m/s) que, en mecánica clásica, se define como el producto

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

Facultad de Ingeniería Civil. Programa de Inducción de Física Julio de 2017 Día 9 Cinemática de la Partícula

Facultad de Ingeniería Civil. Programa de Inducción de Física Julio de 2017 Día 9 Cinemática de la Partícula Facultad de Ingeniería Civil Programa de Inducción de Física Julio de 2017 Día 9 Cinemática de la Partícula Cuestionario de Conocimientos Previos 1.- El Sol se mueve? Contesta por qué sí o por qué no.

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

Termodinámica de procesos fuera del equilibrio

Termodinámica de procesos fuera del equilibrio Termodinámica de procesos fuera del equilibrio Felipe Moreno M. * Resumen Veremos algunas consideraciones sobre procesos que ocurren fuera del estado de equilibrio en un sistema termodinámico. Para que

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

Descripción General de los Sistemas Abiertos 30 de abril de 2009

Descripción General de los Sistemas Abiertos 30 de abril de 2009 CELIA GOZÁLEZ ÁGEL JIMÉEZ IGACIO LÓPEZ RAFAEL IETO Descripción General de los Sistemas Abiertos 30 de abril de 2009 Cuestiones y problemas: C5.40, C5.42, C5.44, C5.47, C5.51, C5.52, P3.14, P3.19 subrayados

Más detalles

Tema IV: Trabajo Termodinámico

Tema IV: Trabajo Termodinámico Tema IV: Trabajo Termodinámico Contenido: 1. Introducción 2. Definición general de trabajo termodinámico 3. Sistema Hidrostático Procesos típicos Gas ideal 4. Trabajo termodinámico en otros sistemas Alambre

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 6 La Diferencial de Fréchet Es bien conocido que una función de una variable f es derivable en un punto a si y sólo si su gráfica admite una recta tangente (no vertical) en el punto (a, f(a)).

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

dt Podemos verificar que la velocidad definida de esta forma no transforma como un vector bajo una T.L. En clases mostramos que el intervalo

dt Podemos verificar que la velocidad definida de esta forma no transforma como un vector bajo una T.L. En clases mostramos que el intervalo 1 Cuadrivectores Hasta ahora hemos hablado de las transformaciones de Lorentz, y cómo estas afectan tanto a las coordenadas espaciales como al tiempo. El vector que define un punto en el espacio-tiempo

Más detalles

Es la capacidad latente o aparente que poseen los cuerpos para producir cambios en ellos mismos o en el medio que los rodea.

Es la capacidad latente o aparente que poseen los cuerpos para producir cambios en ellos mismos o en el medio que los rodea. Es la capacidad latente o aparente que poseen los cuerpos para producir cambios en ellos mismos o en el medio que los rodea. En tránsito Energía Como propiedad del sistema La energía que se intercambia

Más detalles