Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía"

Transcripción

1 Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1

2 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento, se define como el producto escalar de la fuerza y el desplazamiento. 2

3 Ejercicio 1 Sobre un cuerpo, de 10 kg de masa, se ejerce una fuerza de 8 N, que forma un ángulo de 30º con la horizontal. El coeficiente de rozamiento vale µ=0,15. Determina el trabajo realizado por cada una de las fuerzas cuando el cuerpo se desplaza 2 metros. F 30º Ejercicio 2 Un cuerpo se desplaza horizontalmente hacia la derecha 50 metros bajo la acción de una fuerza de 100 N. Determina el trabajo realizado por dicha fuerza: a) Cuando actúa en la misma dirección y sentido del movimiento. Solución: J b) Cuando forma un ángulo de 60º con la horizontal. Solución: J c) Cuando actúa perpendicularmente hacia arriba. Solución: W=0 d) Cuando forma un ángulo de 150º con la dirección del desplazamiento. Solución: J Ejercicio 3 La posición de un cuerpo viene dada por: Calcula: 2 12 m a) El módulo del vector desplazamiento en el intervalo t=0 s y t=2 s b) El módulo del vector aceleración. c) El módulo de la fuerza que actúa si la masa del cuerpo es de 3 kg d) El trabajo realizado por la fuerza. Ejercicio 4 Un cuerpo, de 2 kg de masa, recorre 10 metros ascendiendo por un plano inclinado 30º, al tirar de él con una fuerza de 15 N, paralela al plano. Si el coeficiente de rozamiento vale 0,2 calcula el trabajo realizado por cada una de las fuerzas que intervienen y el trabajo total. Solución: W total = 18,1 J 3

4 La Potencia Se denomina potencia a la rapidez con la que se realiza un trabajo. La unidad de potencia en el Sistema Internacional de Unidades es el vatio ( W ). El vatio se define como la potencia desarrollada cuando se realiza el trabajo de 1 julio en 1 segundo. 4

5 La Energía Cinética La energía cinética de un cuerpo es la capacidad que tiene dicho cuerpo de realizar un trabajo por el hecho de encontrarse en movimiento. 5

6 6

7 EJERCICIOS PROPUESTOS 7

8 La Energía Potencial Existe una capacidad de realizar trabajo que está asociada a la posición de los cuerpos, distinta de la posición de equilibrio. Esta capacidad de realizar trabajo asociada a la posición se denomina energía potencial. La energía potencial de un cuerpo depende de la fuerza involucrada (fuerza gravitatoria, fuerza eléctrica, fuerza elástica, etc.) y, por tanto, existirá una energía potencial gravitatoria, una energía potencial eléctrica, una energía potencial elástica, La Energía Potencial Gravitatoria Es la capacidad de realizar trabajo que tiene un cuerpo por ocupar una posición distinta a la posición de equilibrio y en la que está sometido a la acción de la fuerza gravitatoria. Para nuestros propósitos consideraremos que la posición de equilibrio de los cuerpos es el suelo. Por tanto, cualquier cuerpo situado a una altura, h, sobre el suelo, tendrá una energía potencial gravitatoria que viene dada por la expresión matemática: Esta expresión de la energía potencial gravitatoria sólo es válida para alturas muy pequeñas comparadas con el radio del planeta, en nuestro caso, comparadas con el radio de la Tierra. En el próximos curso trabajaremos con una expresión más general para la energía potencial gravitatoria. La Energía Potencial Elástica Es la capacidad de realizar trabajo que tiene un cuerpo por ocupar una posición distinta a la posición de equilibrio y en la que está sometido a la acción de la fuerza elástica. Para nuestros propósitos consideraremos solamente los muelles como cuerpos elásticos. Un cuerpo enlazado a un muelle que es comprimido o estirado, es un cuerpo que posee energía potencial elásticas. La expresión matemática que permite calcular la energía potencial elástica de un cuerpo es: 8

9 EJERCICIOS PROPUESTOS 9

10 Fuerzas Conservativas y Fuerzas No Conservativas Se denomina energía mecánica de un sistema a la suma de su energía cinética y su energía potencial. Se denominan fuerzas conservativas aquellas fuerzas que al actuar sobre un sistema provocan transformaciones de energía pero cuya acción supone una conservación de la energía mecánica. La fuerza gravitatoria (el peso de los cuerpos), la fuerza electrostática y la fuerza recuperadora de un muelle son fuerzas conservativas. Se denominan fuerzas no conservativas aquellas fuerzas que al actuar sobre un sistema provocan una pérdida de energía mecánica. La fuerza de rozamiento, la fuerza de resistencia del aire, la tensión de una cuerda, la fuerza ejercida por el motor de un vehículo y la fuerza ejercida por una persona, son fuerzas no conservativas El trabajo realizado por las fuerzas conservativas que actúan sobre un sistema es igual a la variación negativa de la energía potencial del sistema. "#"$"%& '"#%& 10

11 Conservación de la Energía Mecánica Sólo intervienen fuerzas conservativas Intervienen fuerzas conservativas y no conservativas ( (,(,(,(,(,(,(,(,( "#"$"%& '"#%& '"#%& "#"$"%& '"#%& "#"$"%& La energía mecánica final es igual a la energía mecánica inicial y, por tanto, la energía mecánica se conserva. Principio de Conservación de la Energía Mecánica: Si sobre un sistema sólo actúan fuerzas conservativas, la energía mecánica se conserva. Si el trabajo realizado por las fuerzas no conservativas es positivo, la energía mecánica final es mayor que la energía mecánica inicial. Si el trabajo realizado por las fuerzas no conservativas es negativo, la energía mecánica final es menor que la energía mecánica inicial. Si el trabajo realizado por las fuerzas no conservativas es nulo, la energía mecánica final es igual a la energía mecánica inicial y, por tanto, la energía mecánica se conservaría. 11

12 Ejemplo Sistema en el que sólo intervienen fuerzas conservativas Un cuerpo se deja caer desde una altura de 40 metros. Suponiendo que no existe fuerza de fricción con el aire, determina la velocidad con la que llega al suelo. En la caída del cuerpo, la única fuerza que actúa es el peso (fuerza gravitatoria) que es una fuerza conservativa. Por tanto, debe cumplirse que: Comprueba que el resultado es idéntico al obtenido en la página 6, al resolver este problema por otros mecanismos. 12

13 Ejemplo Sistema en el que intervienen fuerzas no conservativas cuyo trabajo es negativo Un cuerpo, de 100 kg de masa, es impulsado sobre una superficie horizontal con una velocidad de 36 km/h. El coeficiente de rozamiento vale µ=0,20. Al cabo de un cierto tiempo, la velocidad es de 18 km/h. Determina el espacio recorrido por el cuerpo en ese tiempo. F r Durante el movimiento, la única fuerza que actúa, en la dirección del movimiento, es la fuerza de rozamiento, que es una fuerza no conservativa. Por tanto, debe cumplirse que: 13

14 Ejemplo Sistema en el que intervienen fuerzas conservativas y no conservativas cuyo trabajo es negativo Un cuerpo, de 10 kg de masa, se deja caer desde la parte alta de un plano inclinado 30º. Si la altura del plano es de 5 metros, determina la velocidad con la que el cuerpo llega al final del plano. El coeficiente de rozamiento vale µ=0,1 F r N 5 m P y P x En la dirección del movimiento intervienen fuerzas conservativas (P x ) y fuerzas no conservativas cuyo trabajo es negativo (F r ). Debe cumplirse que: 14

15 15

16 3.- DINÁMICA DEL M.A.S. Vamos a suponer un oscilador consistente en un cuerpo unido a un muelle horizontal. Cuando apartamos el cuerpo del equilibrio una fuerza restauradora de valor F = k x tenderá a devolverlo a su sitio. Vamos a plantear la ecuación que nos sale y que deberemos resolver 2. Sabemos, por la segunda ley de Newton que la suma de todas las fuerzas que actúan en un sistema será igual a la masa por la aceleración y que la aceleración es la segunda derivada de la posición. F =m a=m d²x (15) dt² 2 La ecuación que obtenemos es una ecuación diferencial. Este tipo de ecuaciones tiene la incógnita derivándose, por lo que su resolución no suele ser fácil. Lógicamente escapa de cualquier objetivo de un curso de Bachillerato. Sin embargo, me parece oportuno ponerla para que los alumnos vayáis comprobando que las herramientas matemáticas de las que se sirve la física van mucho más allá de las simples ecuaciones, relaciones trigonométricas, vectores... 16

17 Anexo. Movimiento Armónico Simple (M.A.S.) Física y Química 1º Bachillerato (LOMCE) Como la única fuerza que actúa sobre mi sistema es la restauradora (suponemos que no existe rozamiento), obtendremos que: m d²x dt² = k x m d²x dt² +k x=0 d²x dt² + k m x=0 (16) Hasta ahora hemos supuesto que la ecuación de la solución era del tipo x= A cos(ω t+δ). Hacemos la segunda derivada de esta expresión y obtenemos: d²x dt² = A ω ² cos(ω t+δ) (17) Por lo que la expresión (16) queda, sustituyendo el resultado obtenido en (17): A ω ² cos(ω t+δ)+ k m A cos(ω t+δ)=0 (18) Si sacamos factor común A cos(ω t+δ) en la expresión (18): A cos(ω t+δ) [ ω ²+ k m ]=0 (19) Esta ecuación se cumplirá siempre que: A = 0, lo que indica que no hay movimiento. Este resultado no nos es válido. cos(ω t+δ)=0 ω t +δ= (2n+1)π, lo que ocurre solamente para algunos valores de t. 2 Tampoco nos es válido este resultado. ω ²+ k m =0 ω ²= k m (20), condición que sí que se le puede exigir a mi sistema. Por lo tanto, mi ecuación diferencial tiene como solución x= A cos(ω t +δ) con ω ²= k m, donde k es la constante elástica del muelle y m es la masa del cuerpo unido al mismo. Dado que existe una relación entre la frecuencia y el periodo, dada por (4), podemos concluir que: ω ²= k m T =2 π m k (21) Esta expresión nos relaciona el periodo de oscilación del muelle, con su constante restauradora y la masa de la partícula asociada a él. 4.- Consideraciones energéticas del M.A.S. El trabajo para llevar un cuerpo desde el punto x hasta la posición de equilibrio, será pues: W = x 0 F dx= x 0 ( k x) dx= 1 2 k [ x² ] x 0 = 1 2 k x² (22) 17

18 Anexo. Movimiento Armónico Simple (M.A.S.) Física y Química 1º Bachillerato (LOMCE) Pero, como las fuerzas restauradoras son del tipo de la ley de Hooke, sabemos que serán conservativas. En estos casos W = - ΔE P W = Δ E P =E P ( x) E P (0) (23) En el punto de equilibrio, la energía potencial será nula. Por lo que, igualando (22) y (23) E P (x)= 1 2 k x² =1 2 k A² cos² (ω t+δ) (24) Por lo tanto, la energía potencial de un oscilador armónico varía periódicamente desde un valor mínimo en el punto de equilibrio ( E Pmin =0 ) hasta un valor máximo en los extremos ( E Pmax = 1 2 k A² ) La energía mecánica total será: E=E p +E c = 1 2 k x² m v² (25) Dado que sabemos de (13) que v=±ω A 2 x 2, si sustituimos este valor en (25) E=E p +E c = 1 2 k x² m (ω A² x² )²= 1 2 k x² m ω ² (A² x² ) (26) Además, llegamos a la conclusión de que para que la ecuación diferencial se cumpliese tenía que darse la condición (21), es decir, ω ²= k m ω ²=k, que sustituyendo en (26) m E= 1 2 k x² k ( A² x² )= 1 2 k A² (27) La energía mecánica de un oscilador que realiza un M.A.S. permanece constante, y es directamente proporcional al cuadrado de la amplitud del movimiento y a la constante recuperadora de la fuerza. En los extremos la energía potencial es máxima y la cinética nula; mientras en el punto de equilibrio es al revés; la energía potencial nula y la cinética máxima. 18

19 Anexo. Movimiento Armónico Simple (M.A.S.) Física y Química 1º Bachillerato (LOMCE) 5.- Un ejemplo de M.A.S. El péndulo simple Todo cuerpo capaz de oscilar alrededor de un eje horizontal, que no pase por su centro de gravedad, constituye un péndulo. Supongamos un cuerpo de masa m, suspendido de un punto fijo O mediante un hilo de masa despreciable. En reposo, el hilo se encontrará en posición vertical y el cuerpo ocupará la posición A de la figura, punto en el cual la fuerza peso, P = m g, se anula con la tensión del hilo, T Si desviamos el cuerpo un ángulo α respecto a su posición de equilibrio A y lo llevamos a la posición B, el peso P se descompone en una componente normal (F n ) a la trayectoria que describirá la masa en su movimiento y en una componente tangencial (F t ) a dicha trayectoria. La componente normal se anula con la tensión del hilo, mientras que la componente tangencial tiende a devolver el cuerpo a su posición de equilibrio A. Esta fuerza siempre es opuesta a la desviación respecto del equilibrio, por ello viene afectada de un signo negativo, y es la que da origen al movimiento del péndulo. De la figura anterior se deduce F t = m g senα (28) Combinando esta ecuación con la 2ª ley de Newton, se tiene F t = m g sen α=m a (29) Por trigonometría llegamos a que senα= x L (30) donde L es la longitud del péndulo y x es la desviación a la que lo hemos sometido Sustituyendo (30) en (29) obtenemos: F =m a= m g x m g = L L x= k x (25) siendo k = m g L (31) Vemos que (25) es la expresión de una fuerza restauradora que da origen a un M.A.S. Podremos aplicarle todas las fórmulas que hemos encontrado para el M.A.S. En concreto, la expresión (21) T =2π m k =2π m m g =2π L g (32) L Esta expresión nos indica que el periodo de oscilación de un péndulo depende tan sólo de la longitud del mismo y del valor de la aceleración de la gravedad. Es independiente, por ejemplo, del ángulo de desviación (α) respecto a su posición de equilibrio. Si en esta expresión despejamos el valor de la aceleración de la gravedad obtenemos que: g= 4π ² L (28) T² Concluimos que podemos calcular el valor de la aceleración de la gravedad a partir de la medición del periodo de un péndulo simple y la longitud del mismo. 19

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Módulo 1: Mecánica Energía

Módulo 1: Mecánica Energía Módulo 1: Mecánica Energía Por qué ayuda la energía? El movimiento, en general, es difícil de calcular Y si usamos fuerzas, aceleración, etc. se complica porque son todo vectores (tienen módulo y dirección)

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

E1.3: Energía mecánica

E1.3: Energía mecánica I.E.S. ARQUITECTO PEDRO GUMIEL Física y Química BA1 E1.3: Energía mecánica 1. Se deja caer verticalmente una piedra de kg desde 50 m de altura. Calcula: a) Su energía mecánica en el punto inicial. En el

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA A) Trabajo de fuerzas constantes y trayectoria rectilínea. Cuando sobre una partícula actúa una fuerza constante, y esta partícula describe una trayectoria rectilínea, definimos trabajo realizado por la

Más detalles

Física e Química 1º Bach.

Física e Química 1º Bach. Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS 1.- a.- Un hombre rema en un bote contra corriente, de manera que se encuentra en reposo respecto a la orilla. Realiza trabajo? b.- Se realiza trabajo cuando se

Más detalles

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA Fuerzas conservativas El trabajo realizado por las fuerzas conservativas solo depende de la posición inicial y final del cuerpo

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él?

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él? LA ENERGÍA E l concepto de energía es uno de los más importantes del mundo de la ciencia. En nuestra vida diaria, el termino energía tiene que ver con el costo del combustible para transporte y calefacción,

Más detalles

TEMA 2. Dinámica, Trabajo, Energía y Presión

TEMA 2. Dinámica, Trabajo, Energía y Presión TEMA 2. Dinámica, Trabajo, Energía y Presión 1. Objeto de la dinámica Dinámica es la parte de la mecánica que estudia el movimiento atendiendo a las causas que lo producen. Estas causas son las fuerzas.

Más detalles

TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS:

TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS: TRABAJO Y ENERGÍA ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS: Energía Cinética: es la energía que tienen los cuerpos en virtud de su movimiento. Energía Potencial:

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Movimiento armónico simple. Movimiento armónico simple Cuestiones

Movimiento armónico simple. Movimiento armónico simple Cuestiones Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

6 Energía, trabajo y potencia

6 Energía, trabajo y potencia 6 Energía, trabajo y potencia ACTIVIDADES Actividades DELdel INTERIOR interior DE LAde UNIDAD la unidad. Se arrastra una mesa de 0 kg por el suelo a lo largo de 5 m. Qué trabajo realiza el peso? El trabajo

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA 1.- Un hilo recto, de longitud 0,2 m y masa 8 10-3 kg, está situado a lo largo del eje OX en presencia de un campo magnético uniforme = 0,5 j a) Razone el sentido que debe tener la corriente para que la

Más detalles

SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO

SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO 1º. Un cuerpo de 3 kg se desliza por un plano inclinado 45º con respecto a la horizontal desde una altura de 5m. El coeficiente de rozamiento entre el cuerpo

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica.

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica. 1. Un objeto experimenta una aceleración de 3 m/s cuando sobre él actúa una fuerza uniforme F 0. a) Cuál es su aceleración si la fuerza se duplica? b) Un segundo objeto experimenta una aceleración de 9

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS ENERGÍA (II) UERZAS CONSERVATIVAS IES La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Trabajo y Energía 30º. Viento

Trabajo y Energía 30º. Viento Física y Química TEM 7 º de achillerato Trabajo y Energía.- Un barco y su tripulación se desplazan de una isla hasta otra que dista Km en línea recta. Sabiendo que la fuerza del viento sobre las velas

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Energía: Cuestiones Curso 2010/11

Energía: Cuestiones Curso 2010/11 Física 1º Bachillerato Energía: Cuestiones Curso 2010/11 01SA 1. a) Qué trabajo se realiza al sostener un cuerpo durante un tiempo t? b) Qué trabajo realiza la fuerza peso de un cuerpo si éste se desplaza

Más detalles

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. Trabajo mecánico. 2. Teorema de la energía cinética. 3. Fuerzas conservativas y energía potencial. 4. Conservación de la energía mecánica. 5. Consejos

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Trabajo de una Fuerza

Trabajo de una Fuerza rabajo y Energía.- Introducción.- rabajo de una uerza 3.- Energía cinética de una partícula. eorema del trabajo y la energía 4.- Potencia 5.- Energía potencial 6.- uerzas conservativas 7.- Conservación

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 2009-10-reliminares y Tema 1 Departamento de Física 1) Dado el campo escalar V ( r) = 2zx y 2, a) determine el vector

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

1. Triángulos semejantes. 2. Las razones trigonométricas. 3. Las leyes de Newton. 4. La ley de la gravitación universal Teorema de Pitágoras

1. Triángulos semejantes. 2. Las razones trigonométricas. 3. Las leyes de Newton. 4. La ley de la gravitación universal Teorema de Pitágoras 1. Triángulos semejantes 1.1. Teorema de Pitágoras 1.2. Semejanza de triángulos 2. Las razones trigonométricas 2.1. Definición 2.2. Relación fundamental de la trigonometría 2.3. Resolución de triángulos

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Ejercicios de Física 4º de ESO

Ejercicios de Física 4º de ESO Ejercicios de Física 4º de ESO 1. Sobre un cuerpo actúan dos fuerzas de la misma dirección y sentidos contrarios de 36 y 12 N Qué módulo tiene la fuerza resultante? Cuál es su dirección y su sentido? R

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g 1. res bloques A, B y C de masas 3, 2 y 1 kg se encuentran en contacto sobre una superficie lisa sin rozamiento. a) Qué fuerza constante hay que aplicar a A para que el sistema adquiera una aceleración

Más detalles

PROBLEMAS DE TRABAJO Y ENERGÍA

PROBLEMAS DE TRABAJO Y ENERGÍA 1 PROBLEMAS DE TRABAJO Y ENERGÍA 1- Una caja de 10 kg descansa sobre una superficie horizontal. El coeficiente de rozamiento entre la caja y la superficie es 0,4. Una fuerza horizontal impulsa la caja

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en el punto P (1, 3, 0) y siendo φ=. C5. 2 Dado un campo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

F= 2 N. La punta de la flecha define el sentido.

F= 2 N. La punta de la flecha define el sentido. DIÁMICA rof. Laura Tabeira La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.

Más detalles

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento DINÁMICA 1. Fuerza 2. Ley de Hooke 3. Impulso. 4. Momento lineal o cantidad de movimiento. Teorema del impulso. Principio de conservación de la cantidad de movimiento. 5. Leyes del movimiento. Definición

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

XXIII OLIMPIADA ESTATAL DE FÍSICA (2015)

XXIII OLIMPIADA ESTATAL DE FÍSICA (2015) XXIII OLIMPIADA ESTATAL DE FÍSICA (2015) 1. Qué distancia recorre en 18 segundos el objeto cuya gráfica de velocidad contra tiempo se muestra en la figura? En la gráfica de velocidad versus tiempo para

Más detalles

Estática y dinámica de un muelle vertical

Estática y dinámica de un muelle vertical Prácticas de laboratorio de Física I Estática y dinámica de un muelle vertical Curso 2010/11 1. Objetivos Determinación de la constante del muelle. Estudio de un muelle oscilante como ejemplo de movimiento

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2012. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros

Más detalles

Districte universitari de Catalunya

Districte universitari de Catalunya SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda

Más detalles

aletos TEMA 15 ENERGÍA POTENCIAL ELÁSTICA

aletos TEMA 15 ENERGÍA POTENCIAL ELÁSTICA aletos 15.1 15.1 Energía potencial elástica Hay cierto tipo de sólidos que no son rígidos, capaces, por tanto, de eperimentar deormaciones. La deormación de un sólido rígido puede ser plástica, o elástica.

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

TEMA 4. TRABAJO Y ENERGÍA. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 4. TRABAJO Y ENERGÍA. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEM 4. TRJO Y ENERGÍ. FUERZS CONSERVTIVS Y NO CONSERVTIVS 1. La energía y sus formas. 2. Energía cinética. 3. Energía potencial gravitatoria. 4. Energía mecánica. 5. Definición de trabajo. 6. Definición

Más detalles

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c Física 1 Física SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Opción A a) I 1 B B 1 F 1, F, 1 Vemos que la lente divergente desvía los rayos paralelos al eje óptico y que los rayos que

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

PRIMER EXAMEN PARCIAL FÍSICA I MODELO 1

PRIMER EXAMEN PARCIAL FÍSICA I MODELO 1 PRIMER EXAMEN PARCIAL FÍSICA I MODELO 1 1.- Las velocidades de tres partículas, 1, y 3, en función del tiempo son mostradas en la figura. La razón entre las aceleraciones mayor y menor es: a) 8 b) 1 0

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014 Universidad de Atacama Física 1 Dr. David Jones 14 Mayo 2014 Fuerzas de arrastre Cuando un objeto se mueve a través de un fluido, tal como el aire o el agua, el fluido ejerce una fuerza de resistencia

Más detalles

RIZO EN EL PLANO VERTICAL

RIZO EN EL PLANO VERTICAL IZO EN EL PLANO VETICAL Una pequeña masa está colgada de un hilo fino de longitud L. Apartamos dicha masa 90º de su posición de equilibrio de manera que el hilo queda tenso y horizontal, y la soltamos.

Más detalles

m 20 m/s s Por tanto, su energía cinética vale:

m 20 m/s s Por tanto, su energía cinética vale: Pág. 1 18 Un calefactor tiene una potencia de 1,5 kw. Calcula, en calorías y en julios, la energía que suministra en 3 horas. Teniendo en cuenta que E = P t, resulta: E 1,5 kw 3 h 4,5 kwh 4,5 kwh 3 600

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

CAMPO ELÉCTRICO FCA 04 ANDALUCÍA

CAMPO ELÉCTRICO FCA 04 ANDALUCÍA 1. Una esfera de plástico de g se encuentra suspendida de un hilo de 0 cm de longitud y al aplicar un campo eléctrico uniforme y horizontal de 10 3 N/ C, el hilo forma un ángulo de 15º con la vertical.

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Cinemática y Dinámica

Cinemática y Dinámica Cinemática y Dinámica Cinética de la partícula Objetivo: El alumno aplicará las leyes de Newton en la resolución de ejercicios de movimiento de la partícula en un plano, donde intervienen las causas que

Más detalles

ACTIVIDADES RECAPITULACIÓN 2: TRABAJO Y ENERGÍA

ACTIVIDADES RECAPITULACIÓN 2: TRABAJO Y ENERGÍA ACTIVIDADES RECAPITULACIÓN : TRABAJO Y ENERGÍA A-1. A-. A-3. a) Porque la energía transferida al cuerpo se debe invertir en aumentar la energía potencial gravitatoria y en aumentar la energía cinética,

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

Tema 4: Dinámica del punto I

Tema 4: Dinámica del punto I Tema 4: Dinámica del punto I FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Leyes de Newton Fuerzas activas y de reacción

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia

Más detalles

2.3. ASPECTOS ENERGÉTICOS

2.3. ASPECTOS ENERGÉTICOS .3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)

Más detalles

APLICACIONES DE LAS LEYES DE NEWTON

APLICACIONES DE LAS LEYES DE NEWTON APLICACIOES DE LAS LEYES DE EWTO Peso Fuerzas normales Cuerpos apoyados sobre una superficie horizontal Cuerpos apoyados sobre una superficie inclinada Fuerza de rozamiento Cuerpos en movimiento Cuerpos

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Serway, física, volumen 1, tercera edición. Un niño se desliza desdeel reposo, por una resbaladilla

Más detalles

Dinámica de la partícula: Energía y Leyes de Conservación

Dinámica de la partícula: Energía y Leyes de Conservación Dinámica de la partícula: Energía y Leyes de Conservación Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad

Más detalles

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable I.E.S BEARIZ DE SUABIA Instrucciones a) Duración: 1 hora y 30 minutos b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable d) Cada cuestión

Más detalles