Electrodinámica 2 Soluciones a Exámen 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Electrodinámica 2 Soluciones a Exámen 1"

Transcripción

1 Electrodinámica 2 Soluciones a Exámen 1 José Andrés Sepúlveda Quiroz Facultad de Ciencias Universidad de Colima. 7 de marzo de Problemas del Exámen Primera Parcial Problema 1 Ondas TM y polarización. Solución de 1: He aquí la parte a). Nuestra historia comienza con la expresión que relaciona la magnitud de la componente de la onda reflejada TM en función de los ángulos incidentes y transmitidos E r = tan θ i θ t ) tan θ i + θ t ) E i 1) donde bien sabemos, E r será cero cuando θ i = θ B -ángulo de Brewster-. Ahora bien, la condición necesaria para que lo anterior ocurra es que el denominador de 1) explote a infinito, para tener algo de la forma a/ = 0, por lo que deducimo que θ i + θ t = π 2) 2 necesariamente. Las repercusiones que esto implica son que, dada le geometría del problema, el campo eléctrico E permanece en el plano de incidencia formado por los vectores unitaros ˆk y ˆn, por lo que podemos afirmar que tanto el campo eléctrico como el vector k son coplanares. Utilizando la ley de reflexión concluimos que por lo que también decimos que θ i = θ r 3) θ r + θ t = π 4) 2 lo que significa que tales ángulos medidos desde la normal, suman un ángulo recto siempre, condicionado por el ángulo de Brewster como incidente. El siguiente paso lógico es apreciar que el ángulo entre ˆk r y ˆk t no puede ser otro mas que π/2. Por lo tanto 1

2 Figura 1: E es paralelo al plano de incidencia. kr k t = 0 θ i = θ B = ángulo Brewster 5) Describamos un poco las componentes de los campos eléctricos para una onda TM. Tomando un campo magnético H que apunte hacia adentro de la hoja, el campo eléctrico está descrito por E = µv H ˆk 6) donde claramente E ˆk. Con algo de análisis geométrico, vemos que el campo eléctrico de la onda transmitida tiene la forma E t = E t î sin θt ĵ cos θ t ) 7) Del mismo modo, analizando al vector k r, descomponiendo en componentes y vectores unitarios, tomando el eje positivo a la derecha, tenemos ) kr = k r î cos θ r + ĵ sin θ r 8) Qué pasa si hacemos E t k r? E t k r = E t k r sin θ t cos θ r sin θ r ) cos θ t 9) 2

3 Pero como habíamos definido 2) y utilizando 3) vemos que θ t = π 2 θ r 10) por lo que 9) cambia a E t k r = E t k r [ sin π π )] r) 2 θ cos θ r sin θ t cos 2 θ r 11) entonces sin π/2 a) = cos a y de igual manera cos π/2 a) = sin a E t k r = E t k r cos 2 θ r sin 2 θ t ) = Et k r 12) que en otras palabras sería, el campo eléctrico de la onda transmitida es paralelo a la dirección del rayo reflejado. Ahora veamos el inciso b). Al ángulo de Brewster se le conoce como el ángulo de polarización, ya que hace cero la componente paralela al plano de incidencia del campo electrico de una onda TM, por lo que en sí, el campo eléctrico reflejado solamente tendrá la parte perpendicular. Así que en principio, luz no polarizada incidente con el ángulo de Brewster tendrá parte reflejada polarizada. Me atrevo a decir que por el inciso anterior, ya se demostró que el campo eléctrico transmitido en una onda TM era paralelo a la dirección del campo reflejado, por lo que al menos existe un tipo de polarización lineal. Para el inciso c), vemos fácilmente que por la expresión del ángulo de Brewster tan θ B = n 2 n 1 utilizamos n 1 = 1 para el aire y n 2 = 4/3 para el agua, entonces Caso Agua-Aire Caso Aire-Agua Nótece que la suma es π/2. tan θ B = 4 3 1) θ B = 53 tan θ B = 3 4 1) θ B = 37 Problema 2 Dispersión en un dieléctrico. Solución de 2: Empezamos despejando ω con la definición de polarizibilidad del átomo dada por α = e 2 K mω ıωγ 13) 3

4 en el problema, entonces ω = Kα e2 α m + iγ) 14) y como k = ω/v llegamos a la conclusión de que k es función de la frecuencia y a su vez, es un número complejo k = k + ik Ya hemos visto que la densidad se expresa como u = ɛe 2 que para una onda electromagnética viene a ser u = ɛe 2 0e 2ikx ωt) 15) Ahora, tomando k como un número complejo en la energía se tiene u = ɛe 2 0e 2ik+ik)x ωt) = ɛe 2 0e 2kx e 2ikx ωt) 16) Si queremos que la energía u decaiga un factor 1/e, entonces hacemos que x = 1/2k ɛe 2 0e 2ikx ωt) 1 e 17) que según el desarrollo del problema, corresponde al valor buscado d, asi pues Problema 3 El arcoiris. d = 1 2k 18) Solución de 3: Basicamente, la razón de ser de un arcoiris común y corriente es que el índice de refracción es función de la longitud de onda. Esto es una consecuencia directa si se establece que las supuestas constantes ɛ y µ son funciones de una variable, para este caso, de la frecuencia, también por lo visto en el problema anterior). La luz blanca se compone de colores que poseen diferents frecuencias y longitudes de onda, característicos y definidos para cada cual. Es por ello que los colores tendrán índice de refracción diferente al pasar de un medio a otro, dando lugar al fenómeno de dispersión. En un prisma, Newton observó cómo la luz incidente se dispersaba y luego emergía en una banda de colores. En un arcoiris, la física es la misma. En ocasiones, después de una buena lluvia, podemos apreciar el fenómeno de dispersión a gran escala con la aparición de un arcoriris. Éste recibe el nombre de arcoiris primario ya que en principio, pueden ser más, sólo que el más definido es este. La óptica que gobierna su naturaleza radica en que para una gota de 4

5 Figura 2: Luz en una gota de agua. agua, un haz de luz que incide sobre la parte superior, se refleja solamente una vez y sale en una dirección definida. Tal dirección definida puede ser vista en la figura 2. Figura 3: Óptica de un rayo de incidencia primario. Notemos el haz de luz blanca. Los rayos de luz incidente superiores siguen una trayectoria similar. Raras veces y cuando se dan las condiciones climáticas adecuadas, se aprecia el arcoiris secundario. Éste es debido a que la luz, que logra incidir en la parte inferior de una gota hipotética, logra se reflejada dos veces para después salir con un ángulo mayor que el del arcoiris primario. La consecuencia es que los colores se invierten debido a tal reflexión, como se ven en la figura 4 Problema 4 Un pulso Gaussiano Solución de 4: Dada la función que incluye el pulso Gausiano Φ x, t) = e ıkx ωt) f k) dk 2π 19) 5

6 Figura 4: Esquema que compara un arcoiris primario con uno secundario. con f k) = f 0 e k ko)2 a 2. Hacemos un cambio de variable k s = k k 0 que nos lleve a Φ x, t) = 1 2π [ f 0 e sa)2 e ı k 0+s)x ω+sω ) ] t ds 20) donde hemos utilizado ds = dk como consecuencia del cambio de variable, y además la expansión en serie de Taylor para ω k). Sacando los términos que no dependen del diferencial ds Φ x, t) = f 0 2π eık0x ωt) e ı x ω ) s as) 2 ds 21) Evaluando el integrando de 21) en Mathematica se aprecia que Φ x, t) = f 0 π x ω ) 2 t 2π eık0x ωt) a 2 e 4a 2 22) Pero inmediatamente vemos que en el primer exponencial se tiene que e ık0x ωt) es una onda propagándose hacia la dirección de x, en otras palabras k 0 x = ωt = x t = v fase = ω k 0 23) que es la velocidad de fase para tal pulsasión. En el problema se da la definición de la frecuencia ω k) en serie de Taylor derivando con respecto de k se tiene ω k) = ω k 0 ) + k k 0 ) ω k 0 ) 24) d d [ ] ω k)) = ω k 0 ) + k k 0 ) ω k 0 ) dk dk 6 25)

7 ya sabemos que k 0 es un valor fijo constante, por lo tanto dω dk = ω 0 26) que es la velocidad de grupo de este pulso Gausiano definido en 19) Problema 5 Gráficos del Diamante. Solución de 5: Partimos de las ecuaciones de Fresnel para el caso de polarización en el plano de incidencia dadas por ) α β E 0R = E 0I 27) α + β ) 2 E 0T = E 0I 28) α + β donde α y β son α = 1 [ ) ] 2 n 1 n 2 sin θ I cos θ I 29) β µ 1n 2 µ 2 n 1 30) Los coeficientes de reflexión y transmisión para ondas polarizadas paralelas al plano de incidencia son R I R I I = E0R E 0I ) 2 = T I T = ɛ ) 2 2v 2 E0T cos θ T I I ɛ 1 v 1 E 0I cos θ I ) 2 α β 31) α + β ) 2 2 = αβ 32) α β Por los datos del problema, n 1 = 1 y n 2 = 2,42, por lo que graficando 7

8 1.0 T Θi R Θi Θ ángulo de Brewster 0.0 Figura 5: Relación entre el coeficiente de transmitividad y el coeficiente de reflectividad para ondas de luz con polarización TM incidentes aire a diamante. 8

Ondas Electromagnéticas planas

Ondas Electromagnéticas planas Ondas Electromagnéticas planas 1 Ondas planas en un medio no-conductor H = ( D = 0 B = 0 ) 0 + D t E + B t = 0 D = εe B = µh E = 0 B = 0 ( ) B = µε E t E + B t = 0 E (x, t) = εˆ1e 0 e i( k.x ωt ), B (x,

Más detalles

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas.

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas. Física Teórica 1 Guia 5 - Ondas 1 cuat. 2014 Ondas electromagnéticas. 1. (Análisis de las experiencias de Wiener) En 1890, Wiener realizó tres experiencias para demostrar la existencia de ondas electromagnéticas

Más detalles

Interfase dieléctrica

Interfase dieléctrica Interfase dieléctrica manuel fernández guasti 7 de febrero de 2007 1. interfase plana Sean dos medios homogéneos 1 y 2 con permitividad y permeabilidad ε 1 y ε 2 respectivamente. Considere soluciones de

Más detalles

3. Propagación n de la luz en los medios no conductores. Leyes de la reflexión y de la refracción

3. Propagación n de la luz en los medios no conductores. Leyes de la reflexión y de la refracción 3. Propagación n de la luz en los medios no conductores. Leyes de la reflexión y de la refracción 1 3. Propagación de la luz en los medios no conductores. Leyes de la reflexión y de la refracción. 2 Índice

Más detalles

Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE.

Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE. Instituto Nacional de Astrofísica, Óptica y Electrónica. INAOE. Curso propedéutico de teoría electromagnética. Cuarto examen parcial Viernes 30 de junio de 2017 INSTRUCCIONES: 1. Lee atentamente los problemas.

Más detalles

ÓPTICA STRI 2014 TRABAJO PRÁCTICO 1 - UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA CARRERA DE GRADO

ÓPTICA STRI 2014 TRABAJO PRÁCTICO 1 - UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA CARRERA DE GRADO CARRERA DE GRADO -INGENIERÍA EN SISTEMAS DE INFORMACIÓN- ÓPTICA UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA STRI 2014 TRABAJO PRÁCTICO 1 - Página 1 de 5 1) Dado el siguiente gráfico: ÓPTICA

Más detalles

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos Práctica 5: Ondas electromagnéticas planas en medios dieléctricos OBJETIVO Esta práctica de laboratorio se divide en dos partes principales. El primer apartado corresponde a la comprobación experimental

Más detalles

Antes de empezar el tema

Antes de empezar el tema Antes de empezar el tema Movimiento ondulatorio = aquel en el que se propaga energía pero no materia, mediante la propagación de una perturbación llamada onda. Mecánicas Según medio de propagación Electromagnéticas

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

A qué se refiere la dualidad onda-partícula de la luz? Cuáles son las hipótesis de la óptica geométrica? Qué estipula la ley de reflexión?

A qué se refiere la dualidad onda-partícula de la luz? Cuáles son las hipótesis de la óptica geométrica? Qué estipula la ley de reflexión? A qué se refiere la dualidad onda-partícula de la luz? Cuáles son las hipótesis de la óptica geométrica? Qué estipula la ley de reflexión? Qué es el índice de refracción? Por qué cambia la longitud de

Más detalles

1. Fundamentos de óptica

1. Fundamentos de óptica Relación microscopio - ojo Espectro radiación electromagnética Diferencias en intensidad o brillo Propiedades de la luz Teoría corpuscular Teoría ondulatoria Dualidad onda-corpúsculo Propiedades de la

Más detalles

Grado en Ingenierías TIC Asignatura: Fundamentos Físicos II Convocatoria ordinaria 27 Mayo 2011

Grado en Ingenierías TIC Asignatura: Fundamentos Físicos II Convocatoria ordinaria 27 Mayo 2011 Asignatura: Fundamentos Físicos II Convocatoria ordinaria 7 Mayo Cuestiones: C.- En un circuito oscilante que se compone de una bobina, de resistencia despreciable y coeficiente de autoinducción L,4 H,

Más detalles

EXPERIMENTO 13 ÓPTICA I : POLARIZACIÓN

EXPERIMENTO 13 ÓPTICA I : POLARIZACIÓN Física Experimental III. Objetivos EXPERIMENTO 3 ÓPTICA I : POLARIZACIÓN Generar diferentes estados de polarización de un haz de luz, por diferentes métodos, y estudiar experimentalmente el comportamiento

Más detalles

Resumen. Óptica. Óptica ondulatoria (física) Qué es la óptica? Ondas o partículas? Óptica física vs Óptica geométrica

Resumen. Óptica. Óptica ondulatoria (física) Qué es la óptica? Ondas o partículas? Óptica física vs Óptica geométrica 2. ÓPTICA FÍSICA Resumen Óptica Qué es la óptica? Ondas o partículas? Óptica física vs Óptica geométrica Óptica ondulatoria (física) Ecuaciones de Maxwell. Soluciones en forma de ondas Índice de refracción

Más detalles

RESUMEN_POLARIZACIÓN

RESUMEN_POLARIZACIÓN RESUMEN_POLARIZACIÓN Polarización La polarización es una característica de todas las ondas transversales onda transversal linealmente polarizada en la dirección y onda transversal linealmente polarizada

Más detalles

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener Física Experimental III 1 1. Objetivos EXPERIMENTO 7 POLARIZACIÓN DE LA LUZ Generar diferentes estados de polarización de un haz de luz, por diferentes métodos, y estudiar experimentalmente el comportamiento

Más detalles

Lección 11. Ondas electromagnéticas en medios materiales.

Lección 11. Ondas electromagnéticas en medios materiales. Lección 11. Ondas electromagnéticas en medios materiales. 281. Hallar las velocidades de fase y de grupo para: (a) un buen conductor y (b) un buen dieléctrico. Comentar la frase: un dieléctrico con pérdidas

Más detalles

Soluciones a los ejercicios de vectores

Soluciones a los ejercicios de vectores Soluciones a los ejercicios de vectores Tomás Rocha Rinza 28 de agosto de 2006 1. De acuerdo con la propiedad de la norma entonces si x 0, se tiene que luego, si x 0 el vector x/ x es unitario. 2. Si x

Más detalles

Laboratorio de Física Universitaria 2.: Prismas dispersores y reflectores mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2.: Prismas dispersores y reflectores mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. PRISM DISPERSOR Y PRISM REFLETOR OJETIVO GENERL : Entender el concepto de desviación de un rayo de luz en su propagación en un prisma INTRODUIÓN : Los prismas Prismas Dispersores. Un rayo que entra a un

Más detalles

FÍSICA EXPERIMENTAL TEMA VIII ÓPTICA GEOMÉTRICA

FÍSICA EXPERIMENTAL TEMA VIII ÓPTICA GEOMÉTRICA FÍSICA EXPERIMENTAL TEMA VIII ÓPTICA GEOMÉTRICA 1. Se tiene una muestra de vidrio flint, como se indica en la figura. Un rayo de luz incide sobre la muestra y la velocidad del rayo en dicha muestra es

Más detalles

CAPÍTULO 2. INCIDENCIA NORMAL DE LAS ONDAS PLANAS UNIFORMES

CAPÍTULO 2. INCIDENCIA NORMAL DE LAS ONDAS PLANAS UNIFORMES CAPÍTULO. INCIDENCIA NORMAL DE LAS ONDAS PLANAS UNIFORMES Medio εr, µ r, Medio εr, µ r, Figura.. Representación gráfica de las ondas incidente, transmitida y reflejada. Como se muestra en la figura., la

Más detalles

RESUMEN_POLARIZACIÓN 2

RESUMEN_POLARIZACIÓN 2 RESUMEN_POLARIZACIÓN 2 Polarización por dispersión o scattering El fenómeno de absorción e irradiación subsiguiente se denomina dispersión o scattering. La luz no polarizada que se propaga en una dirección

Más detalles

Unidad 8 Fibras Ópticas

Unidad 8 Fibras Ópticas Unidad 8 Fibras Ópticas Contenidos - Introducción: transmisión en fibras ópticas. - Óptica geométrica: reflexión total interna. - Cono de admisión y apertura numérica. - Óptica ondulatoria: modos de propagación.

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com ÓPTICA 1- a) Explique la marcha de rayos utilizada para la construcción gráfica de la imagen formada por una lente convergente y utilícela para obtener la imagen de un objeto situado entre el foco y la

Más detalles

Magnetismo y Óptica Departamento de Física Universidad de Sonora

Magnetismo y Óptica Departamento de Física Universidad de Sonora Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Magnetismo y óptica 7. Polarización óptica. a. Polarización de la luz. Filtros polarizadores. b. Polarización mediante absorción

Más detalles

Magnetismo y Óptica. Leyes de la reflexión y refracción. Temas Departamento de Física Universidad de Sonora

Magnetismo y Óptica. Leyes de la reflexión y refracción. Temas Departamento de Física Universidad de Sonora Magnetismo y Óptica 006 Departamento de Física Universidad de Sonora Leyes de la reflexión y refracción Temas Naturaleza de la luz Óptica geométrica y óptica física Reflexión Refacción Reflexión Total

Más detalles

Polarización: ejercicio adicional

Polarización: ejercicio adicional Polarización: ejercicio adicional Física, 1er Cuatrimestre 013, FCEyN-UBA. Por Luciano A. Masullo Se tiene una fuente que emite un haz de luz no polarizada, con intensidad I o y longitud de onda λ = 600nm

Más detalles

RESUMEN HUYGENS FERMAT

RESUMEN HUYGENS FERMAT RESUMEN HUYGENS FERMAT Deducción de las leyes de reflexión y refracción Las leyes de reflexión y refracción pueden deducirse mediante el principio de Huygens o mediante el principio de Fermat. B Principio

Más detalles

Propagación de la luz.

Propagación de la luz. Propagación de la luz. El espectro electromagnético en la vida diaria En todas las clases de ondas la velocidad de propagación depende de alguna propiedad física del medio a través del cual la onda se

Más detalles

Interferencias y difracción. Propiedades ondulatorias de la luz

Interferencias y difracción. Propiedades ondulatorias de la luz Interferencias y difracción Propiedades ondulatorias de la luz Naturaleza ondulatoria de la luz Interferencias: al combinarse dos ondas hay máximos y mínimos Difracción: debido a la existencia de varias

Más detalles

Ecuaciones de Fresnel para la reflexión y refracción

Ecuaciones de Fresnel para la reflexión y refracción Ecuaciones de Fresnel para la reflexión y refracción Rayos incidente, transmitido, y reflejado en la interface Coeficientes de reflexión y transmisión Ecuaciones de Fresnel Angulo de Brewster Reflexión

Más detalles

1 LA LUZ. 2 La velocidad de la luz

1 LA LUZ. 2 La velocidad de la luz 1 LA LUZ -Newton: La luz está formada por corpúsculos -Hyugens: La luz es una onda -Interferencia -Las ecuaciones de Maxwell -El éter. -Einstein y la teorí a de los fotones. E=hν La luz posee una naturalez

Más detalles

FÍSICA II TEMA 4. ÓPTICA CURSO 2013/14

FÍSICA II TEMA 4. ÓPTICA CURSO 2013/14 1 FÍSICA II TEMA 4. ÓPTICA CURSO 2013/14 T4. Óptica 2» T4 Óptica» 4.1. Óptica ondulatoria y óptica geométrica» 4.2. Velocidad de la luz. Índice de refracción» 4.3. Transversalidad de las ondas luminosas.

Más detalles

Electrodinámica 2 Soluciones a Exámen 2

Electrodinámica 2 Soluciones a Exámen 2 Electrodinámica 2 Soluciones a Exámen 2 José Andrés Sepúlveda Quiroz Facultad de Ciencias Universidad de Colima. 29 de abril de 2009 1. Problemas del Exámen Segunda Parcial 1.1. Guías de ondas dieléctricas

Más detalles

Teoría Electromagnética Ayudantía 4

Teoría Electromagnética Ayudantía 4 Pontificia Universidad Católica de Chile Escuela de Ingeniería Teoría Electromagnética Ayudantía 4 0.1. Condiciones de borde en la frontera Las condiciones que deben satisfacer los campos electromagnéticos

Más detalles

TEMA 6.- Óptica CUESTIONES

TEMA 6.- Óptica CUESTIONES TEMA 6.- Óptica CUESTIONES 51.- a) Si queremos ver una imagen ampliada de un objeto, qué tipo de espejo tenemos que utilizar? Explique, con ayuda de un esquema, las características de la imagen formada.

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

Polarización de la luz

Polarización de la luz Polarización de la luz Descripción matemática y métodos experimentales Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

Polarización I: polarización lineal y ángulo de Brewster. Versión 1.0

Polarización I: polarización lineal y ángulo de Brewster. Versión 1.0 Polarización I: polarización lineal ángulo de Brewster. Versión 1.0 Héctor Cruz Ramírez 1 Instituto de Ciencias Nucleares, UNAM 1 hector.cruz@ciencias.unam.m octubre 2018 Índice 1. Objetivos 1 2. Teoría

Más detalles

Magnetismo y Óptica Departamento de Física Universidad de Sonora. Leyes de la reflexión y refracción

Magnetismo y Óptica Departamento de Física Universidad de Sonora. Leyes de la reflexión y refracción Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Leyes de la reflexión y refracción 2 1 Temas Naturaleza de la luz Óptica geométrica y óptica física Reflexión Refacción Reflexión

Más detalles

Magnetismo y Óptica Departamento de Física Universidad de Sonora

Magnetismo y Óptica Departamento de Física Universidad de Sonora Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Leyes de la reflexión y refracción 2 Temas Naturaleza de la luz Óptica geométrica y óptica física Reflexión Refacción Reflexión Total

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

Reflexión y refracción

Reflexión y refracción Reflexión y refracción Superficies reflectoras y refractoras Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Ecuaciones de Fresnel para la reflexión y refracción

Ecuaciones de Fresnel para la reflexión y refracción Ecuaciones de Fresnel para la reflexión y refracción Rayos incidente, transmitido, y reflejado en la interface Coeficientes de reflexión y transmisión Ecuaciones de Fresnel Angulo de Brewster Reflexión

Más detalles

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción?

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción? ÓPTICA 2001 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama de rayos, describa la imagen formada por un espejo convexo

Más detalles

Tipler Mosca: 31 Alonso Finn: 32

Tipler Mosca: 31 Alonso Finn: 32 Tema 5: Reflexión y refracción de ondas * Propagación de la luz * Reflexión y refracción * Polarización * Deducción de las leyes de reflexión y refracción Tipler Mosca: 31 Alonso Finn: 32 Propagación de

Más detalles

8 La interacción entre ondas sísmicas e interfases

8 La interacción entre ondas sísmicas e interfases 514340 - Sismología 75 8 La interacción entre ondas sísmicas e interfases La aproximación de rayos es una solución válida para la ecuación de ondas cuando la frecuencia es suficientemente alta para que

Más detalles

Seminario 1: Reflexión, Refracción y ángulo crítico

Seminario 1: Reflexión, Refracción y ángulo crítico Seminario 1: Reflexión, Refracción y ángulo crítico Fabián Andrés Torres Ruiz Departamento de Física,, Chile 21 de Marzo de 2007. Problemas 1. Problema 16, capitulo 33,física para la ciencia y la tecnología,

Más detalles

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA Cuestiones ÓPTICA 1. a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? 2. a) Qué es una onda electromagnética?

Más detalles

AUTOR: Juarez, Romina Verónica, Ingeniería Química,

AUTOR: Juarez, Romina Verónica, Ingeniería Química, AUTOR: Juarez, Romina Verónica, Ingeniería Química, romy03_2026@hotmail.com Proyecto: DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN Y ÁNGULO DE DESVIACIÓN MÍNIMA DE UN PRISMA TRIANGULAR. DESCRIPCIÓN DEL PROYECTO:

Más detalles

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS La espectroscopia es el estudio de las interacciones de las radiaciones electromagnéticas con la materia (átomos y moléculas). Los métodos analíticos

Más detalles

APENDICE C Ondas Planas. La propagación de una onda escalar esta descrita por la siguiente ecuación diferencial parcial: u 2 2 u

APENDICE C Ondas Planas. La propagación de una onda escalar esta descrita por la siguiente ecuación diferencial parcial: u 2 2 u APENDICE C Ondas Planas La Ecuación de Onda Una onda pude ser conceptualizada como una perturbación de un medio continuo. La onda se propaga con una forma definida y de este modo es portadora de información

Más detalles

El grosor de las flechas representa cualitativamente las intensidades de las distintas ondas

El grosor de las flechas representa cualitativamente las intensidades de las distintas ondas .7 Reflexión, Transmisión y Refracción. Onda transmitida Onda reflejada ϕ reflejado Onda ϕ refractado Onda refractada El grosor de las flechas representa cualitatiamente las intensidades de las distintas

Más detalles

4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009

4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009 4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009 Ejercicio 1 1 Tomamos como referencia para la posición x = 0 en la separación entre la zona I y II y medimos entonces

Más detalles

Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz

Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz 9. La luz (I) Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz Teoría ondulatoria: considera la luz como una onda Dualidad onda-corpúsculo: la luz tiene doble naturaleza,

Más detalles

EMR. Física 2º Bachillerato

EMR. Física 2º Bachillerato EMR Física 2º Bachillerato ONDAS ELECTROMAGNÉTICAS Definición: Las ondas electromagnéticas son ondas transversales que consisten en la propagación, sin necesidad de medio de propagación, de un campo eléctrico

Más detalles

La luz. Física 2 o Bachillerato. J.M.L.C. - Chena

La luz. Física 2 o Bachillerato. J.M.L.C. - Chena Óptica física J.M.L.C. - Chena chenalc@gmail.com www.iesaguilarycano.com Física 2 o Bachillerato Antecedentes Finales del s. XVI y principios del s. XVII generalización del uso de instrumentos ópticos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Año: 2016 Período: Segundo Término 2016-2017 Materia: Física D Profesores: Hernando Sánchez, Jesús Gonzales, Peter Iza Evaluación: Primera Fecha: 7 de diciembre de 2016 COMPROMISO DE HONOR Yo,............................................................................al

Más detalles

PROPIEDADES ONDULATORIAS: La radiación electromagnética tiene una componente eléctrica y una componente magnética. El vector eléctrico y el vector

PROPIEDADES ONDULATORIAS: La radiación electromagnética tiene una componente eléctrica y una componente magnética. El vector eléctrico y el vector Espectroscopia: Estudio de la materia en base la observación y estudio de sus propiedades espectrales. Los antecesores de la moderna espectroscopía fueron Kirckoff y Bunssen quienes a mediados del siglo

Más detalles

Mecánica cuántica avanzada - Curso 2011/2012 Problemas - Hoja 2: Teoría de colisiones

Mecánica cuántica avanzada - Curso 2011/2012 Problemas - Hoja 2: Teoría de colisiones UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FÍSICA TEÓRICA I Mecánica cuántica avanzada - Curso 11/1 Problemas - Hoja : Teoría de colisiones 1. Se considera el potencial V (r) = V e αr, donde V y

Más detalles

Continuación. Interacción Fotón-Sólido

Continuación. Interacción Fotón-Sólido Continuación Interacción Fotón-Sólido Radiación Electromagnética ESPECTRO ELECTROMAGNÉTICO RADIO- FRECUENCIA MICRO- ONDAS IR UV RAYOS X RAYOS GAMMA ENERGÍA (ev) -5-3 3 5 10 10 1 10 10 LONGITUD DE ONDA

Más detalles

Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz.

Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz. Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz. Libro de texto: Paul A. Tipler, Física, Tomo 2, 5ª edición, Reverté, Barcelona (2005), pp. 939 946 (4ª edición

Más detalles

Leyes básicas de la teoría electromagética

Leyes básicas de la teoría electromagética Divergencia = xî + y ĵ + z k Rotacional î ĵ k = x y z F x F y F z Leyes básicas de la teoría electromagética Ley de inducción de Faraday C d l =- d S Ley de Gauss d S = 1 ɛ V ρdv Ley de Gauss magnética

Más detalles

ING. LUIS MIGUEL HERNÁNDEZ HERNÁNDEZ ÓPTICA FÍSICA

ING. LUIS MIGUEL HERNÁNDEZ HERNÁNDEZ ÓPTICA FÍSICA ÓPTICA FÍSICA Si no considerásemos la luz como una onda electromagnética, nos sería imposible explicar los fenómenos de interferencia, dispersión, difracción y la polarización de la luz. La parte de la

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1. Superposición de ondas. 2. Ondas estacionarias. 3. Pulsaciones. 4. Principio de Huygens. 5. Difracción. 6. Refracción. 7. Reflexión. 8. Efecto Doppler. Física 2º Bachillerato

Más detalles

Figura 2.1. Dispersión de la luz blanca en sus colores constitutivos por la refracción.

Figura 2.1. Dispersión de la luz blanca en sus colores constitutivos por la refracción. 8 Figuras Figura 2.1. Dispersión de la luz blanca en sus colores constitutivos por la refracción. Figura 2.2. Rayo de luz incidente (I) rayo de luz reflejado (R) y transmitido o refractado (T) en la interfaz

Más detalles

Ayudantía 1 Fibras Ópticas

Ayudantía 1 Fibras Ópticas Ayudantía 1 Fibras Ópticas Ley de Snell Utilizada básicamente para calcular el ángulo de refracción de la luz cuando cambia la superficie entre dos medios de propagación (con distinto índice de refracción).

Más detalles

Refracción y Reflexión Interna Total

Refracción y Reflexión Interna Total Objetivos Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Refracción y Reflexión Interna Total 1. Calcular el índice de refracción del vidrio utilizando la Ley de Snell.

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

a) La vlocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de dicha luz en el agua.

a) La vlocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de dicha luz en el agua. Capítulo 1 SEMINARIO 1. Un teléfono móvil opera con ondas electromagnéticas cuya frecuencia es 1, 2 10 9 Hz. a) Determina la longitud de onda. b) Esas ondas entran en un medio en el que la velocidad de

Más detalles

CUESTIONES DE ÓPTICA

CUESTIONES DE ÓPTICA CUESTIONES DE ÓPTICA 2017 1) Utilizando diagramas de rayos, construya la imagen de un objeto real por una lente convergente si está situado: i) a una distancia 2f de la lente, siendo f la distancia focal;

Más detalles

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten La luz se comporta a la vez como onda y partícula. Algunos fenómenos se explican más mejor suponiendo que la luz es una onda (reflexión, refracción, interferencia, difracción) en tanto que otros fenómenos,

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

TEMA 5. Reflexión y refracción de ondas

TEMA 5. Reflexión y refracción de ondas TEMA 5. Reflexión y refracción de ondas Propagación de la luz. rincipios de Huygens y Fermat Reflexión y refracción de ondas planas Aplicaciones: reflexión total guías de luz dispersión de la luz en prisma

Más detalles

FISICA II COMPLEMENTO ONDA ELECTROMAGNETICA UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE CIENCIAS BASICAS

FISICA II COMPLEMENTO ONDA ELECTROMAGNETICA UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE CIENCIAS BASICAS FISICA II COMPLEMENTO DE ONDA ELECTROMAGNETICA APLICACIONES EN EL AMBITO PROFESIONAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE CIENCIAS BASICAS Autor: Ing. Marcelo Raúl

Más detalles

Problemario de Ondas Electromagnéticas, Luz y Óptica

Problemario de Ondas Electromagnéticas, Luz y Óptica Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Ondas Electromagnéticas, Luz y Óptica Física General III Prof. Anamaría Font Mayo 2008 Índice 1. Ondas Electromagnéticas

Más detalles

Unidad 1. Naturaleza y Propagación de la Luz

Unidad 1. Naturaleza y Propagación de la Luz Unidad 1. Naturaleza y Propagación de la Luz LA NATURALEZA DE LA LUZ Hasta la época de Isaac Newton (1642-1727), la mayoría de científicos pensaban que la luz consistía en corrientes de partículas (llamadas

Más detalles

FÍSICA GENERAL PARA ARQUITECTURA

FÍSICA GENERAL PARA ARQUITECTURA FÍSICA GENERAL PARA ARQUITECTURA 105_01_03_Iluminación UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA HEYDI MARTÍNEZ Onda La luz es un tipo de onda ILUMINACIÓN COMPORTAMIENTO

Más detalles

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4)

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) 1. OBJETIVO - Estudiar cómo varía la intensidad de la luz, al atravesar dos polarizadores, en función del ángulo existente entre sus ejes de transmisión.

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción

Más detalles

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia

Más detalles

Física II clase 18 (03/06) Energía que transporta una OEM

Física II clase 18 (03/06) Energía que transporta una OEM Física II clase 18 (03/06) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Energía que transporta

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 5 julio 2018

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 5 julio 2018 2018-Julio B. Pregunta 4.- Un material transparente de índice de refracción n = 2 se encuentra situado en el aire y limitado por dos superficies planas no paralelas que forman un ángulo α. Sabiendo que

Más detalles

G UIA DE APRENDIZ AJ E "Luz"

G UIA DE APRENDIZ AJ E Luz Saint John s School FISICA - Electivo II - Profesor: Iván Torres A. G UIA DE APRENDIZ AJ E "Luz" Ejercicios de Selección Múltiple 1. Juan consultando en un libro, leyó que el índice de refracción para

Más detalles

Clase Nº 4 PSU Ciencias: Física. Ondas III Luz. Profesor: Cristian Orcaistegui.

Clase Nº 4 PSU Ciencias: Física. Ondas III Luz. Profesor: Cristian Orcaistegui. Clase Nº 4 PSU Ciencias: Física Ondas III Luz Profesor: Cristian Orcaistegui. c.orcaisteguiv@gmail.com La óptica estudia la naturaleza de la luz, sus fuentes de producción, su propagación y los fenómenos

Más detalles

TEMA 5. Reflexión y refracción de ondas

TEMA 5. Reflexión y refracción de ondas TEMA 5. Reflexión y refracción de ondas Propagación de la luz. rincipios de Huygens y Fermat Reflexión y refracción de ondas planas Aplicaciones: reflexión total guías de luz dispersión de la luz en prisma

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

P. A. U. FÍSICA Madrid Septiembre 2005

P. A. U. FÍSICA Madrid Septiembre 2005 P. A. U. FÍSICA Madrid Septiembre 2005 CUESTIÓN 1.- Se tienen dos muelles de constantes elásticas k 1 y k 2 en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, siendo m 1 < m 2. Al oscilar,

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas Unidad 9 La luz y las ondas electromagnéticas chenalc@gmail.com Antecedentes Finales del s. XVI y principios del s. XVII generalización del uso de instrumentos ópticos (lentes y anteojos). En 1621 W. Snell

Más detalles

Auxiliar N o 3 FI33A

Auxiliar N o 3 FI33A Auxiliar N o 3 FI33A Prof. auxiliar: Luis Sánchez L Fecha: 02/04/08 Problema 1 Una varilla delgada de dielectrico de seccion trasversal A se extiende sobre el eje z desde z = 0 hasta z = L. La polarizacion

Más detalles

Lecture 31. Transmisión de energía en ondas. Interferencia, Principio de Superposición, reflexión y refracción de ondas.

Lecture 31. Transmisión de energía en ondas. Interferencia, Principio de Superposición, reflexión y refracción de ondas. Lecture 31. Transmisión de energía en ondas. Interferencia, Principio de Superposición, reflexión y refracción de ondas. Por: Profr. José A. Hernández Cuando dos o mas ondas se combinan en un punto determinado,

Más detalles