PARTE I. Modelos matemáticos y solución de problemas en ingeniería

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PARTE I. Modelos matemáticos y solución de problemas en ingeniería"

Transcripción

1 PARTE I Modelos matemáticos y solución de problemas en ingeniería

2 Introducción Conocimiento Prerrequisitos Aplicación eficaz de una herramienta Comprensión

3 Introducción Si no sabemos cómo funcionan las herramientas, tendremos serios problemas para reparar un automóvil, aunque la caja de herramientas sea de lo más completa.

4 Introducción Ésta es una realidad, cuando se utilizan computadoras para resolver problemas de ingeniería. las computadoras tienen una gran utilidad, pero son prácticamente inútiles si no se comprende el funcionamiento de los sistemas de ingeniería.

5 Introducción Muchos problemas de ingeniería se resuelven con el empleo de un doble enfoque: el empirismo y el análisis teórico

6 Modelo matemático simple Un modelo matemático se define, de manera general, como una formulación o una ecuación que expresa las características esenciales de un sistema físico o de un proceso en términos matemáticos.

7 Modelo matemático simple La variable dependiente es una característica que refleja el comportamiento o estado de un sistema. Las variables independientes son, dimensiones como tiempo y espacio, a través de las cuales se determina el comportamiento del sistema. Los parámetros son el reflejo de las propiedades o la composición del sistema. Y las funciones de fuerza son influencias externas que actúan sobre el sistema.

8 Modelo matemático simple Ejemplo: Segunda ley de Newton F = ma o a = F m a: es la variable dependiente que refleja el comportamiento del sistema, F: es la función de fuerza m : es un parámetro que representa una propiedad del sistema. Observe que en este caso específico no existe variable independiente porque aún no se predice cómo varía la aceleración con respecto al tiempo o al espacio.

9 Modelo matemático simple La ecuación posee varias de las características típicas de los modelos matemáticos del mundo físico: 1) Describe un proceso o sistema natural en términos matemáticos. 2) Representa una idealización y una simplificación de la realidad. Es decir, ignora los detalles insignificantes del proceso natural y se concentra en sus manifestaciones esenciales. Por ende, la segunda ley de Newton no incluye los efectos de la relatividad, y fuerzas que interactúan sobre o alrededor de la superficie de la Tierra, a velocidades y en escalas visibles a los seres humanos. 3) Finalmente, conduce a resultados reproducibles y, en consecuencia, llega a emplearse con la finalidad de predecir.

10 APROXIMACIONES Y ERRORES DE REDONDEO

11 CIFRAS SIGNIFICATIVAS Cuando se emplea un número para realizar un cálculo, debe haber seguridad de que pueda usarse con confianza. Con un simple vistazo al velocímetro se observa que el vehículo viaja a una velocidad comprendida entre 48 y 49 km/h. Como la aguja está más allá de la mitad entre las marcas del indicador, es posible asegurar que el automóvil viaja aproximadamente a 49 km/h

12 CIFRAS SIGNIFICATIVAS supongamos que se desea obtener una cifra decimal en la estimación de la velocidad. En tal caso, alguien podría decir 48.8, mientras que otra persona podría decir 48.9 km/h. Sería ridículo afirmar, considerando el velocímetro de la figura, que el automóvil viaja a km/h.

13 CIFRAS SIGNIFICATIVAS El odómetro muestra hasta seis dígitos confiables. De la figura se concluye que el automóvil ha recorrido un poco menos de km. Aquí el séptimo dígito (y los siguientes) resultan inciertos.

14 CIFRAS SIGNIFICATIVAS Las cifras significativas de un número son aquellas que pueden utilizarse en forma confiable. Para el velocímetro, los dos dígitos seguros son 48. la lectura del velocímetro consistirá de las tres cifras significativas: En forma similar, el odómetro dará una lectura con siete cifras significativas,

15 CIFRAS SIGNIFICATIVAS Determinar las cifras significativas de un número es un procedimiento sencillo, pero genera cierta confusión. Ejemplo, los ceros no siempre son cifras significativas, ya que se usa para ubicar el punto decimal: los números , y tienen cuatro cifras significativas. Asimismo, cuando se incluye ceros en números muy grandes, no queda claro cuántos son significativos. Por ejemplo, el número puede tener tres, cuatro o cinco dígitos significativos, dependiendo de si los ceros se conocen o no con exactitud. La incertidumbre se puede eliminar utilizando la notación científica, donde , , muestran, respectivamente, que el número tiene tres, cuatro y cinco cifras significativas.

16 CIFRAS SIGNIFICATIVAS El concepto de cifras significativas tiene dos implicaciones en el estudio de los métodos numéricos: 1) Los métodos numéricos dan resultados aproximados. Por lo tanto, se deben desarrollar criterios para especificar qué tan confiables son dichos resultados. Una manera de hacerlo es en términos de cifras significativas. 2) Aunque ciertas cantidades tales como pi, e, o 7 representan cantidades específicas, no se pueden expresar exactamente con un número finito de dígitos. Por ejemplo, p = hasta el infinito. Como las computadoras retienen sólo un número finito de cifras significativas, tales números jamás se podrán representar con exactitud. A la omisión del resto de cifras significativas se le conoce como error de redondeo.

17 EXACTITUD Y PRECISIÓN La exactitud se refiere a qué tan cercano está el valor calculado o medido del valor verdadero. La precisión se refiere a qué tan cercanos se encuentran, unos de otros, diversos valores calculados o medidos. Un ejemplo de puntería ilustra los conceptos de exactitud y precisión. a) Inexacto e impreciso; b) exacto e impreciso; c) inexacto y preciso; d) exacto y preciso.

18 DEFINICIONES DE ERROR Los errores numéricos surgen del uso de aproximaciones para representar operaciones y cantidades matemáticas exactas. 1) Éstas incluyen los errores de truncamiento que resultan del empleo de aproximaciones como un procedimiento matemático exacto, 2) y los errores de redondeo que se producen cuando se usan números que tienen un límite de cifras significativas para representar números exactos. Para ambos tipos de errores, la relación entre el resultado exacto, o verdadero, y el aproximado está dada por Valor verdadero = Valor aproximado + error (3.2) Reordenando la ecuación, se encuentra que el error numérico es igual a la diferencia entre el valor verdadero y el valor aproximado, es decir (valor exacto del error) Et = valor verdadero valor aproximado

19 DEFINICIONES DE ERROR Una desventaja en esta definición es que no toma en consideración el orden de la magnitud del valor que se estima. Por ejemplo, un error de un centímetro es mucho más significativo si se está midiendo un remache en lugar de un puente. Una manera de tomar en cuenta las magnitudes de las cantidades que se evalúan consiste en normalizar el error respecto al valor verdadero, es decir error verdadero

20 DEFINICIONES DE ERROR El error relativo también se puede multiplicar por 100% para expresar como

21 DEFINICIONES DE ERROR Ejercicio de Cálculo de errores Planteamiento del problema. Suponga que se tiene que medir la longitud de un puente y la de un remache, y se obtiene y 9 cm, respectivamente. Si los valores verdaderos son y 10 cm, calcule a) el error verdadero y b) el error relativo porcentual verdadero en cada caso.

22 DEFINICIONES DE ERROR

23 DEFINICIONES DE ERROR Observe que en las ecuaciones (3.2) y (3.3), E y e tienen un subíndice t que significa que el error ha sido normalizado al valor verdadero. En el ejemplo teníamos el valor verdadero. Sin embargo, en las situaciones reales a veces es difícil contar con tal información. En los métodos numéricos, el valor verdadero sólo se conocerá cuando se tengan funciones que se resuelvan analíticamente. Sin embargo, en muchas aplicaciones reales, no se conoce a priori la respuesta verdadera. Entonces en dichos casos, una alternativa es normalizar el error, usando la mejor estimación posible al valor verdadero; es decir: donde el subíndice a significa que el error está normalizado a un valor aproximado.

24 DEFINICIONES DE ERROR Uno de los retos que enfrentan los métodos numéricos es el de determinar estimaciones del error en ausencia del conocimiento de los valores verdaderos. Por ejemplo, ciertos métodos numéricos usan un método iterativo para calcular los resultados. En tales métodos se hace una aproximación considerando la aproximación anterior. Este proceso se efectúa de forma iterativa, esperando cada vez mejores aproximaciones. En tales casos, el error a menudo se calcula como la diferencia entre la aproximación previa y la actual. Por lo tanto, el error relativo porcentual está dado por

25 DEFINICIONES DE ERROR Los signos de las ecuaciones pueden ser positivos o negativos. Si la aproximación es mayor que el valor verdadero (o la aproximación previa es mayor que la aproximación actual), el error es negativo; Si la aproximación es menor que el valor verdadero, el error es positivo. También en las ecuaciones anteriores, el denominador puede ser menor a cero, lo cual también llevaría a un error negativo. A menudo, cuando se realizan cálculos, no importa mucho el signo del error, sino más bien que su valor absoluto porcentual sea menor que una tolerancia porcentual prefijada es. Por lo tanto, es útil emplear el valor absoluto de las ecuaciones anteriores. En tales casos, los cálculos se repiten hasta que

26 DEFINICIONES DE ERROR Si se cumple la relación anterior, entonces se considera que el resultado obtenido está dentro del nivel aceptable fijado previamente Es. Observe que en el resto del texto en general emplearemos exclusivamente valores absolutos cuando utilicemos errores relativos. Es conveniente también relacionar estos errores con el número de cifras significativas en la aproximación. Es posible demostrar que si el siguiente criterio se cumple, se tendrá la seguridad que el resultado es correcto en al menos n cifras significativas.

27 DEFINICIONES DE ERROR Ej.- Estimación del error con métodos iterativos Planteamiento del problema. En matemáticas con frecuencia las funciones se representan mediante series infinitas. Por ejemplo, la función exponencial se calcula usando Así cuanto más términos se le agreguen a la serie, la aproximación será cada vez más una mejor estimación del valor verdadero de e x. Empezando con el primer término e x = 1 y agregando término por término, estime el valor de e 0.5. Después de agregar cada término, calcule los errores: relativo porcentual verdadero y normalizado a un valor aproximado. Observe que el valor verdadero es e 0.5 = Agregue términos hasta que el valor absoluto del error aproximado ea sea menor que un criterio de error preestablecido es con tres cifras significativas.

28 DEFINICIONES DE ERROR Solución. En primer lugar la ecuación (3.7) se emplea para determinar el criterio de error que asegura que un resultado sea correcto en al menos tres cifras significativas: es = ( )% = 0.05% Por lo tanto, se agregarán términos a la serie hasta que ea sea menor que este valor. La primera estimación es igual a la ecuación (E3.2.1) con un solo término. Entonces, la primera estimación es igual a 1. La segunda estimación se obtiene agregando el segundo término, así: ex = 1 + x y para x = 0.5, e0.5 = = 1.5 Esto representa el error relativo porcentual verdadero de [ecuación (3.3)] et = 100% = 9.02% La ecuación (3.5) se utiliza para determinar una estimación aproximada del error, dada por: ea = 100% = 33.3% 1.5 Como ea no es menor que el valor requerido es, se deben continuar los cálculos agregando otro término, x2/2!, repitiendo el cálculo del error. El proceso continúa hasta que ea < es. Todos los cálculos se resumen de la siguiente manera Así, después de usar seis términos, el error aproximado es menor que es = 0.05%, y el cálculo termina. Sin embargo, observe que, el resultado es exacto con cinco cifras significativas! en vez de tres cifras significativas.

29 3.4 ERRORES DE REDONDEO Como se mencionó antes, los errores de redondeo se originan debido a que la computadora emplea un número determinado de cifras significativas durante un cálculo. Los números tales como p, e o 7 no pueden expresarse con un número fijo de cifras significativas. Por lo tanto, no pueden ser representados exactamente por la computadora. Además, debido a que las computadoras usan una representación en base 2, no pueden representar exactamente algunos números en base 10. Esta discrepancia por la omisión de cifras significativas se llama error de redondeo.

30 3.4 ERRORES DE REDONDEO Representación de números en la computadora Numéricamente los errores de redondeo se relacionan directamente con la forma en que se guardan los números en la memoria de la computadora. La unidad fundamental mediante la cual se representa la información se llama palabra. Ésta es una entidad que consiste en una cadena de dígitos binarios o bits (binary digits). Por lo común, los números son guardados en una o más palabras. Para entender cómo se realiza esto, se debe revisar primero algún material relacionado con los sistemas numéricos.

31 3.4 ERRORES DE REDONDEO Representación de números en la computadora Sistemas numéricos. Es simplemente una convención para representar cantidades. Debido a que se tienen 10 dedos en las manos y 10 dedos en los pies, el sistema de numeración familiar es el decimal o de base 10. Una base es el número que se usa como referencia para construir un sistema. El sistema de base 10 utiliza 10 dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) para representar números. Para grandes cantidades se usa la combinación de estos dígitos básicos; con la posición o valor de posición se especifica su magnitud. El dígito en el extremo derecho de un número entero representa un número del 0 al 9. El segundo dígito a partir de la derecha representa un múltiplo de 10. El tercer dígito a partir de la derecha representa un múltiplo de 100 y así sucesivamente. Por ejemplo, si se tiene el número se tienen 8 grupos de , seis grupos de 1 000, cuatro grupos de 100 y cero grupos de 10, y nueve unidades, o bien

32 3.4 ERRORES DE REDONDEO Representación de números en la computadora Sistemas numéricos. No es común darse cuenta de que existen otras alternativas. Por ejemplo, si el ser humano tuviera ocho dedos en las manos y ocho en los pies, se tendría, sin duda, una representación en un sistema octal o de base 8. En tal sentido la computadora es como un animal que tiene dos dedos, limitado a dos estados: 0 o 1. Esto se relaciona con el hecho de que las unidades lógicas fundamentales de las computadoras digitales sean componentes electrónicos de apagado/encendido. Por lo tanto, los números en la computadora se representan con un sistema binario o de base 2. Del mismo modo que con el sistema decimal, las cantidades pueden representarse usando la notación posicional. Por ejemplo, el número binario 11 es equivalente a (l 2 1 ) + (1 2 0 ) = = 3 en el sistema decimal.

33 3.4 ERRORES DE REDONDEO Representación de números en la computadora Sistemas numéricos.

34 3.4 ERRORES DE REDONDEO Representación de números en la computadora Representación entera. Ahora que se ha revisado cómo los números de base 10 se representan en forma binaria, es fácil concebir cómo los enteros se representan en la computadora. El método más sencillo se denomina método de magnitud con signo y emplea el primer bit de una palabra para indicar el signo: con un 0 para positivo y un 1 para el negativo. Los bits sobrantes se usan para guardar el número. Por ejemplo, el valor entero 173 puede guardarse en la memoria de una computadora de 16 bits como se muestra en la figura 3.4.

35 3.4 ERRORES DE REDONDEO Representación de números en la computadora Ejem.- Rango de enteros Planteamiento del problema. Determine el rango de enteros de base 10 que pueda representarse en una computadora de 16 bits. Solución. De los 16 bits, se tiene el primer bit para el signo. Los 15 bits restantes pueden contener los números binarios de 0 a El límite superior se convierte en un entero decimal, así que es igual a (observe que esta expresión puede simplemente evaluarse como ). Así, en una computadora de 16 bits una palabra puede guardar en memoria un entero decimal en el rango de a Además, debido a que el cero está ya definido como , sería redundante usar el número para definir menos cero. Por lo tanto, es usualmente empleado para representar un número negativo adicional: , y el rango va de a

36 3.4 ERRORES DE REDONDEO Representación de números en la computadora Representación del punto-flotante. Las cantidades fraccionarias generalmente se epresentan en la computadora usando la forma de punto flotante. Con este método, el número se expresa como una parte fraccionaria, llamada mantisa o significando, y una parte entera, denominada exponente o característica, esto es, m be donde m = la mantisa, b = la base del sistema numérico que se va a utilizar y e = el exponente. Por ejemplo, el número se representa como en un sistema de base 10 de punto flotante. En 1a figura 3.5 se muestra una forma en que el número de punto flotante se guarda en una palabra. El primer bit se reserva para el signo; la siguiente serie de bits, para el exponente con signo; y los últimos bits, para la mantisa. lugar decimal.

37 3.4 ERRORES DE REDONDEO Representación de números en la computadora Representación del punto-flotante. Observe que la mantisa es usualmente normalizada si tiene primero cero dígitos. Por ejemplo, suponga que la cantidad 1/34 = se guarda en un sistema de base 10 con punto flotante, que únicamente permite guardar cuatro lugares decimales. Entonces, 1/34 se guardaría como Sin embargo, al hacerlo así, la inclusión del cero inútil a la derecha del punto decimal nos obliga a eliminar el dígito 1 del quinto lugar decimal. El número puede normalizarse para eliminar el cero multiplicando la mantisa por 10 y disminuyendo el exponente en 1, para quedar

38 3.4 ERRORES DE REDONDEO Representación de números en la computadora Representación del punto-flotante. Así, se conserva una cifra significativa adicional al guardar el número. La consecuencia de la normalización es que el valor absoluto de m queda limitado. 1 Esto es, m < 1 (3.8) b donde b = la base. Por ejemplo, para un sistema de base 10, m estaría entre 0.1 y 1; y para un sistema de base 2, entre 0.5 y 1. La representación de punto flotante permite que tanto fracciones como números muy grandes se expresen en la computadora. Sin embargo, hay algunas desventajas. Por ejemplo, los números de punto flotante requieren más espacio y más tiempo de procesado que los números enteros. Más importante aun es que su uso introduce una fuente de error debido a que la mantisa conserva sólo un número finito de cifras significativas. Por lo tanto, se introduce un error de redondeo.

Métodos Numéricos. Unidad 1. Teoría de Errores

Métodos Numéricos. Unidad 1. Teoría de Errores Métodos Numéricos Unidad 1. Teoría de Errores Contenido Introducción Error Aproximado y Error Relativo Error Redondeo y de Cifras Significativas Errores de Truncamiento Errores en la Computadora Otros

Más detalles

1. INTRODUCCIÓN A LA COMPUTACIÓN NUMÉRICA: Segunda parte: Teoría de Errores

1. INTRODUCCIÓN A LA COMPUTACIÓN NUMÉRICA: Segunda parte: Teoría de Errores 1. INTRODUCCIÓN A LA COMPUTACIÓN NUMÉRICA: Segunda parte: Teoría de Errores Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http://www.docentes.unal.edu.co/jeortizt/ Objetivos de la sección Exponer los

Más detalles

Curso de Métodos Numéricos. Errores

Curso de Métodos Numéricos. Errores Curso de Métodos Numéricos. Errores Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

Curso de Métodos Numéricos. Errores

Curso de Métodos Numéricos. Errores Curso de Métodos Numéricos. Errores Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM

Más detalles

1.4.3 Errores de redondeo y la aritmética finita de las computadoras

1.4.3 Errores de redondeo y la aritmética finita de las computadoras 1.4.3 Errores de redondeo y la aritmética finita de las computadoras Como la computadora sólo puede almacenar un número fijo de cifras significativas, y cantidades como π, e, 3, 2 no pueden ser expresadas

Más detalles

Lección 6. Errores. MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY. Agosto 2014

Lección 6. Errores. MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY. Agosto 2014 Lección 6. Errores MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Agosto 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En esta lección conoceremos y analizaremos

Más detalles

Universidad de San Buenaventura - Facultad de Ingeniería

Universidad de San Buenaventura - Facultad de Ingeniería Aproximaciones Para trabajar con números decimales que tienen muchas cifras decimales, o infinitas, hacemos aproximaciones. Decimos que la aproximación de un número es por defecto cuando es menor que el

Más detalles

CAPÍTULO 3 Aproximaciones y errores de redondeo

CAPÍTULO 3 Aproximaciones y errores de redondeo CAPÍTULO 3 Aproximaciones y errores de redondeo A causa de que la mayor parte de los métodos expuestos en este libro son muy sencillos en su descripción y en sus aplicaciones, en este momento resulta tentador

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA METODOS NUMERICOS PROF.. FRANZ RAIMUNDO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA METODOS NUMERICOS PROF.. FRANZ RAIMUNDO UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA METODOS NUMERICOS PROF.. FRANZ RAIMUNDO CONTENIDO: Qué son los métodos numéricos? Métodos numéricos y computadoras Aproximaciones y errores de redondeo Cifras

Más detalles

Sistemas de Numeración

Sistemas de Numeración Sistemas de Numeración Parte 2: Representación de Reales Lic. Andrea V. Manna Sistemas posicionales: Repaso N= d k-1 d k-2 d 1 d 0,d -1 d -l = d k-1 *p k-1 + d k-2 *p k-2 +.+ d 0 *p 0,+ d -1 *p -1 +...+

Más detalles

APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER

APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO PROFESOR: ESP. PEDRO ALBERTO ARIAS QUINTERO 1. ERRORES Y ARITMETICA DE PUNTO FLOTANTE 1.1. Introducción a la Computación Numérica

Más detalles

Aritmética del Computador

Aritmética del Computador Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Introducción 2 Teoria de Errores 3 Aritmetica del computador Introducción al estudio de métodos computacionales

Más detalles

Organización de Computadoras

Organización de Computadoras Organización de Computadoras SEMANA 7 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Números con punto fijo Interpretación Representación Rango Resolución Error absoluto Error relativo Hoy! Notación científica

Más detalles

Sistemas de Numeración. I semestre 2011

Sistemas de Numeración. I semestre 2011 Sistemas de Numeración I semestre 2011 Sistema Decimal 7392 7 10 3 + 3 10 2 + 9 10 1 + 2 10 0 10 símbolos: 0 9 Un número decimal puede ser expresado por una serie de coeficientes: a 3 a 2 a 1 a 0, a 1

Más detalles

Computación I Representación Interna Curso 2017

Computación I Representación Interna Curso 2017 Computación I Representación Interna Curso 2017 Facultad de Ingeniería Universidad de la República Temario Representación de Números Enteros Representación de Punto Fijo Enteros sin signo Binarios puros

Más detalles

Tema 1: Conceptos generales del Análisis Numérico

Tema 1: Conceptos generales del Análisis Numérico Tema 1: Conceptos generales del Análisis Numérico Asignatura: Cálculo Numérico I 1er. curso Grado en Matemáticas Anna Doubova Dpto. EDAN, Universidad de Sevilla 5 de febrero de 2018 A. Doubova (Dpto. EDAN)

Más detalles

Representación de números fraccionarios: Punto Flotante

Representación de números fraccionarios: Punto Flotante Representación de números fraccionarios: Organización de computadoras Universidad Nacional de Quilmes http:// 1 Signo Magnitud (Binario con signo) Representación en Signo-Magnitud Rango 2 Bit impĺıcito

Más detalles

2. Representación de números 1

2. Representación de números 1 2. Representación de números 1 Julio C. Carrillo E. Escuela de Matemáticas, UIS 2. Representación de números 2 1. Pérdida de significancia Usualmente se presenta una pérdida de significancia cuando se

Más detalles

01. A qué se denomina conjunto de punto flotante? Conjunto de números racionales utilizado para representar a los números reales.

01. A qué se denomina conjunto de punto flotante? Conjunto de números racionales utilizado para representar a los números reales. PREGUNTAS PARA ORIENTAR EL ESTUDIO DEL CAPITULO 1. Subtemas: 1.1. Representación de un número real en punto flotante y operaciones. 1.2. Underflow y Overflow. 01. A qué se denomina conjunto de punto flotante?

Más detalles

Organización de Computadoras. Clase 3

Organización de Computadoras. Clase 3 Organización de Computadoras Clase 3 Temas de Clase Representación de números en Punto Flotante Notas de clase 3 2 Números en punto fijo Todos los números a representar tienen exactamente la misma cantidad

Más detalles

Aproximaciones y Errores de Redondeo: Cómo me puedo aproximar a entender el error

Aproximaciones y Errores de Redondeo: Cómo me puedo aproximar a entender el error Aproximaciones y Errores de Redondeo: Cómo me puedo aproximar a entender el error Oscar Javier García-Cabrejo 1 Análisis Numérico 22 de febrero de 2008 Son los Errores importantes? 1 1. Problema de motivación

Más detalles

Lección 5. Punto flotante

Lección 5. Punto flotante Lección 5. Punto flotante MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Agosto 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En esta lección aprenderemos lo

Más detalles

Representación de datos y aritmética básica en sistemas digitales

Representación de datos y aritmética básica en sistemas digitales Representación de datos y aritmética básica en sistemas digitales DIGITAL II - ECA Departamento de Sistemas e Informática Escuela de Ingeniería Electrónica Rosa Corti 1 Sistemas de Numeración: Alfabeto:

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Estándar IEEE 754 Primero se definen tres formatos s e F Total (bits) (bits) (bits) (bytes) simple precisión

Más detalles

ICI3140 Métodos Numéricos. Profesor : Dr. Héctor Allende-Cid

ICI3140 Métodos Numéricos. Profesor : Dr. Héctor Allende-Cid ICI3140 Métodos Numéricos Profesor : Dr. Héctor Allende-Cid e-mail : hector.allende@ucv.cl Aprendizaje esperado Entender las diferencias entre exactitud y precisión. Aprender a cuantificar el error. Aprender

Más detalles

Representación de Números

Representación de Números Representación de Números Maximiliano Geier 4/10/2017 Maximiliano Geier Representación de Números 4/10/2017 1 / 21 Cómo se representan los números? Cada número se puede representar de varias maneras. Por

Más detalles

Computadora MA2008. Análisis Numérico: Artimética de una. Computadora. Computación / Matemáticas. Intro. Idea. IEEE estándar. Errores.

Computadora MA2008. Análisis Numérico: Artimética de una. Computadora. Computación / Matemáticas. Intro. Idea. IEEE estándar. Errores. Análisis MA2008 ducción El objetivo de esta lectura es tener idea aproximada de cómo se realiza la aritmética de punto flotante en computadora. Esta idea deberá poner sobre aviso de las potenciales dificultades

Más detalles

Tema 1: Conceptos generales del Análisis

Tema 1: Conceptos generales del Análisis Tema 1: Conceptos generales del Análisis Numérico Cálculo Numérico I Anna Doubova y Blanca Climent Ezquerra Dpto. EDAN, Universidad de Sevilla 11 de febrero de 2018 A.Doubova y B. Climent Conceptos generales

Más detalles

ING. PEDRO ALBERTO ARIAS QUINTERO

ING. PEDRO ALBERTO ARIAS QUINTERO ING. PEDRO ALBERTO ARIAS QUINTERO La mayor parte de esos usuarios del computador no consideran de primer interés a la computación como medio de cálculo con números. En realidad lo que más se utiliza es

Más detalles

Cursada Segundo Cuatrimestre 2017 Guía de Trabajos Prácticos Nro. 2

Cursada Segundo Cuatrimestre 2017 Guía de Trabajos Prácticos Nro. 2 Temas: Programación en MATLAB: Sentencias, expresiones y variables. Estructuras de control. Operadores relacionales y lógicos. Programación de funciones. Aritmética finita: Representación de números en

Más detalles

LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO)

LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO) LOGICA DIGITAL ARITMETICA DE COMPUTADORAS ASPECTOS FUNDAMENTALES 1. FORMA DE REPRESENTAR LOS NUMEROS ( FORMATO BINARIO) 2. ALGORITMOS UTILIZADOS PARA REALIZAR LAS OPERACIONES BASICAS (SUMA, RESTA, MULTIPLICACION

Más detalles

O bien si queremos calcular el error aproximado porcentual lo hacemos:

O bien si queremos calcular el error aproximado porcentual lo hacemos: En situaciones reales es común que no se conoce el valor verdadero del resultado: las mediciones dependen del instrumento y del procedimiento de medición; los métodos numéricos se aplican, cuando no se

Más detalles

1 El Análisis Numérico.

1 El Análisis Numérico. Dr. M. Palacios Primavera 1999-2001 1.I Introducción al Cálculo Numérico. 1 El Análisis Numérico. El Análisis Numérico es la parte de las Matemáticas que se encarga de diseñar métodos para aproximar de

Más detalles

Arquitectura de Computadoras

Arquitectura de Computadoras Arquitectura de Computadoras Representación de la Información J. Irving Vásquez ivasquez@ccc.inaoep.mx Centro de Innovación y Desarrollo Tecnológico en Cómputo 17 de febrero de 2016 1 / 41 Table of contents

Más detalles

Representación de datos y aritmética básica en sistemas digitales

Representación de datos y aritmética básica en sistemas digitales Representación de datos y aritmética básica en sistemas digitales DIGITAL II - ECA Departamento de Sistemas e Informática Escuela de Ingeniería Electrónica Rosa Corti 1 Sistemas de Numeración: Alfabeto:

Más detalles

Empecemos! Los números, los carácteres y la computadora. Universidad de la Experiencia UZ 03/02/2016. Francisco José Serón Arbeloa 1

Empecemos! Los números, los carácteres y la computadora. Universidad de la Experiencia UZ 03/02/2016. Francisco José Serón Arbeloa 1 Informática Universidad de Zaragoza Los números, los carácteres y la computadora Dr. Francisco José Serón Arbeloa Empecemos! Dr. F. J. S. A. Francisco José Serón Arbeloa 1 De qué va esto? De qué va esto?

Más detalles

APROXIMACIÓN NUMÉRICA Y ERRORES

APROXIMACIÓN NUMÉRICA Y ERRORES Análisis numérico APROXIMACIÓN NUMÉRICA Y ERRORES Antecedentes En 1947 se crea en la universidad de California el INSITITUTO DE ANÁLISIS NUMÉRICO. El análisis numérico es la rama de las matemáticas, cuyos

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Temario Representación de Números Enteros Representación de Punto Fijo Enteros sin signo Binarios puros

Más detalles

Tema IV. Manejo Interno de Datos

Tema IV. Manejo Interno de Datos Tema IV. Manejo Interno de Datos Objetivo: El alumno describirá cómo se almacenan los datos en los diferentes medios de un sistema de cómputo, asimismo manipulará los datos para minimizar los diferentes

Más detalles

Representación de números en binario

Representación de números en binario Representación de números en binario Enteros con signo. Overflow con enteros. Reales con punto flotante. Overflow y underflow con reales. Universidad de Sonora 2 Enteros con signo Método del complemento

Más detalles

Aritmética finita y análisis de error

Aritmética finita y análisis de error Aritmética finita y análisis de error Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 1 / 38 Contenidos 1 Almacenamiento

Más detalles

Organización de computadoras. Clase 9. Universidad Nacional de Quilmes. Lic. Martínez Federico

Organización de computadoras. Clase 9. Universidad Nacional de Quilmes. Lic. Martínez Federico Organización de computadoras Clase 9 Universidad Nacional de Quilmes Lic. Martínez Federico Qué vimos? Números con punto fijo Qué vimos? Números con punto fijo Interpretación Qué vimos? Números con punto

Más detalles

Representación de números

Representación de números Representación de números MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello Rionda CIMAT A.C. e-mail: botello@cimat.mx Aritmética de cómputadora

Más detalles

Departamento de Sistemas e Informática. Digital II - ECA. Representación de datos y aritmética básica en sistemas digitales.

Departamento de Sistemas e Informática. Digital II - ECA. Representación de datos y aritmética básica en sistemas digitales. Departamento de Sistemas e Informática Digital II - ECA Representación de datos y aritmética básica en sistemas digitales Rosa Corti 2015 Sistemas de Numeración: Alfabeto: Símbolos utilizados Base: Cantidad

Más detalles

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm.

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm. Cifras significativas. Definición. Las cifras significativas de un número son aquellas que tienen un significado real y, por tanto, aportan alguna información. Toda medición experimental es inexacta y

Más detalles

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales Curso-0 1 Introducción a los Sistemas Digitales Conceptos básicos de matemática aplicada a los sistemas digitales 2 Contenidos Conjuntos numéricos Notación científica Redondeo Logaritmos Resumen 3 Conjuntos

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 1 Representación de la Información

Más detalles

2. Representación de números 1

2. Representación de números 1 2. Representación de números 1 Julio C. Carrillo E. Escuela de Matemáticas, UIS 2. Representación de números 2 1. Representación de punto flotante normalizada La notación científica es un tipo de representación

Más detalles

NÚMEROS DE PUNTO FLOTANTE

NÚMEROS DE PUNTO FLOTANTE B NÚMEROS DE PUNTO FLOTANTE En muchos cálculos el intervalo de números que se usan es muy grande. Por ejemplo, en un cálculo astronómico podrían intervenir la masa del electrón, 9 x 10-28 gramos, y la

Más detalles

GENERALIDADES SOBRE SISTEMAS NUMÉRICOS. Transversal Programación Básica

GENERALIDADES SOBRE SISTEMAS NUMÉRICOS. Transversal Programación Básica GENERALIDADES SOBRE SISTEMAS NUMÉRICOS Transversal Programación Básica CONTENIDO I N T R O D U C C I Ó N... 2 1. S O B R E L O S S I S T E M A S N U M É R I C O S... 2 1.1. VALORES POSICIONALES... 2 2.

Más detalles

Representación de números binarios en punto fijo y punto flotante.

Representación de números binarios en punto fijo y punto flotante. Apuntes de Clases Representación de números binarios en punto fijo y punto flotante. Realizado por Sergio Noriega Introducción a los Sistemas Lógicos y Digitales Departamento de Electrotécnia Facultad

Más detalles

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC.

Tipos de Datos y Representaciones. Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Tipos de Datos y Representaciones Circuitos Digitales, 2º de Ingeniero de Telecomunicación. EITE ULPGC. Índice 1. Sistemas numéricos posicionales 2. Números octales y hexadecimales 3. Conversiones entre

Más detalles

Tema II. 1* * *10 0 ó lo que es lo mismo:

Tema II. 1* * *10 0 ó lo que es lo mismo: Tema II 1. Manejo de números en la computadora Los modernos equipos de cómputo actuales no utilizan el sistema decimal para representar valores numéricos, en su lugar se hace uso del sistema binario, también

Más detalles

1. REPRESENTACION DE DATOS

1. REPRESENTACION DE DATOS 1. REPRESENTACION DE DATOS 1.1 INFORMACION Y DATOS. Un programa consiste, esencialmente, de dos partes: la descripción de las acciones que realizará el proceso representado y la descripción de los datos

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN

ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN ESTRUCTURA Y TECNOLOGÍA DE COMPUTADORES I CAPÍTULO III ARITMÉTICA Y CODIFICACIÓN TEMA 3. Aritmética y codificación 3.1 Aritmética binaria 3.2 Formatos de los números y su representación 3.3 Definiciones

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

Computación Científica. Ciencias Computacionales INAOE Gustavo Rodríguez Gómez

Computación Científica. Ciencias Computacionales INAOE Gustavo Rodríguez Gómez Ciencias Computacionales INAOE Gustavo Rodríguez Gómez Errores y Aritmética de Punto Flotante INAOE Ciencias Computacionales Objetivos Identificar las fuentes de error en la computación científica. Determinar

Más detalles

Aritmética de Enteros y

Aritmética de Enteros y 1 Aritmética de Enteros y Flotantes 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 1. Introduccion La aritmética de enteros es aritmética modular en complemento

Más detalles

Introducción al análisis numérico

Introducción al análisis numérico Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 25 Contenidos: 1 Sistemas

Más detalles

Punto Flotante - Estándar IEEE 754

Punto Flotante - Estándar IEEE 754 Punto Flotante - Estándar IEEE 754 Organización de computadoras 2014 Universidad Nacional de Quilmes 1. Punto Flotante Con los sistemas enteros es posible representar un rango de enteros positivos y negativos

Más detalles

Ing. Eduard del Corral Cesar Carpio

Ing. Eduard del Corral Cesar Carpio República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Universidad Nacional Experimental Romúlo Gallegos Ingeniería Informática Área de Sistemas Cátedra: Métodos Numéricos.

Más detalles

I. INTRODUCCIÓN. A cada valor de una señal digital se le llama bit y es la unidad mínima de información.

I. INTRODUCCIÓN. A cada valor de una señal digital se le llama bit y es la unidad mínima de información. I. INTRODUCCIÓN 1. SEÑALES Y TIPOS Como vimos en el tema anterior, la electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes que permiten modificar la corriente

Más detalles

Métodos Numéricos: los números reales y su representación

Métodos Numéricos: los números reales y su representación Métodos Numéricos: los números reales y su representación Eduardo P. Serrano Versión previa Feb 2012 1. Números reales Empleamos los números reales para expresar cantidades, valores, medidas o magnitudes.

Más detalles

Tema 1 Preliminares. 1. Introducción. 2. Teoremas básicos. 3. Errores. 3.1 Fuentes usuales de error 3.2 Representación de números 3.

Tema 1 Preliminares. 1. Introducción. 2. Teoremas básicos. 3. Errores. 3.1 Fuentes usuales de error 3.2 Representación de números 3. Tema 1 Preliminares Índice 1. Introducción. Teoremas básicos 3. Errores 3.1 Fuentes usuales de error 3. Representación de números 3.3 Tipos de errores 4. Propagación del error 5. Condicionamiento y Estabilidad

Más detalles

1.1 Sistemas de numeración. Ejemplos de sistemas de numeración posicionales. Base numérica. Circuitos Digitales

1.1 Sistemas de numeración. Ejemplos de sistemas de numeración posicionales. Base numérica. Circuitos Digitales Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali Circuitos Digitales Unidad I Introducción a la Lógica Digital 1.1 Sistemas de numeración Los sistemas de numeración son un conjunto

Más detalles

Introducción al análisis numérico

Introducción al análisis numérico Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 22 Contenidos: 1 Sistemas

Más detalles

OCW-V.Muto Sistemas de numeración Cap. III CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION

OCW-V.Muto Sistemas de numeración Cap. III CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION El sistema de numeración usado habitualmente es el decimal, de base 10, que no es adecuado para ser manejado por el ordenador, fundamentalmente

Más detalles

Tema 2. Sistemas de representación de la información

Tema 2. Sistemas de representación de la información Enunciados de problemas Tema 2. Sistemas de representación de la información Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 2: Hoja: 2 / 26 Tema 2: Hoja: 3 / 26

Más detalles

Los métodos numéricos es una rama de las matemáticas que mediante el uso de algoritmos iterativos, obtiene soluciones numéricas a problemas en los

Los métodos numéricos es una rama de las matemáticas que mediante el uso de algoritmos iterativos, obtiene soluciones numéricas a problemas en los Los métodos numéricos es una rama de las matemáticas que mediante el uso de algoritmos iterativos, obtiene soluciones numéricas a problemas en los cuales la matemática simbólica (o analítica) resulta poco

Más detalles

Aritmetica del Computador

Aritmetica del Computador Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Contenido Introducción 1 Introducción 2 3 Introducción al estudio de métodos computacionales Aproximación

Más detalles

Representación de la información

Representación de la información Universidad de Oviedo Departamento de Física Grado en Física Curso 2017 18 Introducción a la Física Computacional Representación de la información La representación de los números en un computador Errores

Más detalles

Representación Numérica. y Errores. Capítulo 1: Cálculo Numérico MA-33A. Gonzalo Hernández Oliva

Representación Numérica. y Errores. Capítulo 1: Cálculo Numérico MA-33A. Gonzalo Hernández Oliva Universidad de Chile Departamento de Ingeniería Matemática Capítulo : Representación Numérica y Errores Cálculo Numérico MA-33A Gonzalo Hernández Oliva GHO RN y E MA-33A Representación Numérica y Errores

Más detalles

Resolución de ecuaciones no lineales y Método de Bisección

Resolución de ecuaciones no lineales y Método de Bisección Resolución de ecuaciones no lineales y Método de Bisección Recordemos algunas ecuaciones 1) Resolver [ ] [ ] Sol: 2) Resolver la siguiente ecuación literal para la variable ; Sol: 3) Resolver Solución:

Más detalles

Práctica 2. Tratamiento de datos

Práctica 2. Tratamiento de datos Errores Todas las medidas que se realizan en el laboratorio están afectadas de errores experimentales, de manera que si se repiten dos experiencias en las mismas condiciones es probable que los resultados

Más detalles

TEMA 2. CODIFICACIÓN DE LA INFORMACIÓN

TEMA 2. CODIFICACIÓN DE LA INFORMACIÓN TEMA 2. CODIFICACIÓN DE LA INFORMACIÓN 1. INTRODUCCIÓN. SISTEMAS DE NUMERACIÓN EN. Sistema binario. Sistema octal. Sistema hexadecimal. 2. REPRESENTACIÓN DE TEXTOS.. Números naturales. Números enteros.

Más detalles

Ecuaciones Diferenciales Tema 1. Parte 2: Métodos Numéricos para Ecuaciones Diferenciales

Ecuaciones Diferenciales Tema 1. Parte 2: Métodos Numéricos para Ecuaciones Diferenciales Tema 1. Parte 2: Métodos Numéricos para Ester Simó Mezquita Matemática Aplicada IV 1 Tema 1. Parte 2: Métodos numéricos para 1. Introducción 2. El método de Euler 3. El término de error 4. Método de Euler

Más detalles

OCW-V.Muto Análisis de los errores Cap. II CAPITULO II. ANALISIS DE LOS ERRORES 1. ESQUEMA DE RESOLUCION NUMERICA DE UN PROBLEMA

OCW-V.Muto Análisis de los errores Cap. II CAPITULO II. ANALISIS DE LOS ERRORES 1. ESQUEMA DE RESOLUCION NUMERICA DE UN PROBLEMA CAPITULO II. ANALISIS DE LOS ERRORES 1. ESQUEMA DE RESOLUCION NUMERICA DE UN PROBLEMA Si se desea resolver un problema físico B, lo primero que se suele hacer es traducirlo al lenguaje matemático para

Más detalles

MÓDULO DEL CAPITULO 1.

MÓDULO DEL CAPITULO 1. MÓDULO DEL CAPITULO. Subtemas:.. Representación de un número real en punto flotante y operaciones..2. Underflow y Overflow. 0. A qué se denomina conjunto de punto flotante? Conjunto de números racionales

Más detalles

Errores en medidas experimentales

Errores en medidas experimentales Errores en medidas experimentales 1. Introducción Las magnitudes físicas son propiedades de la materia o de los procesos naturales que se pueden medir. Medir una cantidad de una magnitud es compararla

Más detalles

Tema 1: Representación de los números

Tema 1: Representación de los números 1 Tema 1: Representación de los números Representación de los números Objetivos Sistemas de numeración Decimal Binario Octal y hexadecimal Cambios de base Formas de representación de los números Operaciones

Más detalles

Sistemas Numéricos. Introducción n a los Sistemas Lógicos y Digitales 2009

Sistemas Numéricos. Introducción n a los Sistemas Lógicos y Digitales 2009 Sistemas Numéricos Introducción n a los Sistemas Lógicos y Digitales 2009 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 2009 MSB = Most Significative Bit LSB = Less Significative Bit

Más detalles

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31 Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería Métodos Numérico Hermes Pantoja Carhuavilca 1 de 31 CONTENIDO Introducción Hermes Pantoja Carhuavilca 2 de

Más detalles

σ * (.a 1 a 2... a t ) β * β e

σ * (.a 1 a 2... a t ) β * β e . ERRORES DE REDONDEO Y ESTABILIDAD Qué es un método numérico? Un método numérico es un procedimiento mediante el cual se obtiene, casi siempre de manera aproximada, la solución de ciertos problemas realizando

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS SUMA DE DOS CANTIDADES EN COMPLEMENTO A 2. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO SUMA DE DOS CANTIDADES

Más detalles

Redondeo. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias

Redondeo. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias Análisis Numérico 2018 2 Universidad Nacional Autónoma de México Facultad de Ciencias Contenido 1 Redondeo 2 3 4 5 6 Error absoluto de redondeo y ULP Error relativo, ɛ Dígitos significativos Redondeo Sea

Más detalles

Tema 2: Representación Digital de la Información

Tema 2: Representación Digital de la Información Tema 2: Representación Digital de la Información Jorge Juan Chico , Julián Viejo Cortés 2-7 Departamento de Tecnología Electrónica Universidad de Sevilla Usted es

Más detalles

El almacenaje de información numérica en una computadora digital

El almacenaje de información numérica en una computadora digital El almacenaje de información numérica en una computadora digital Divulgación José Guerrero Grajeda Facultad de Ciencias, UNAM I. Presentación Los sistemas numéricos con los que opera una computadora digital

Más detalles

Métodos Numéricos. Grado en Ingeniería en Informática Tema 1 : Aritméticas de Precisión Finita

Métodos Numéricos. Grado en Ingeniería en Informática Tema 1 : Aritméticas de Precisión Finita Métodos Numéricos. Grado en Ingeniería en Informática Tema 1 : Aritméticas de Precisión Finita Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Análisis Numérico Univ. de Las Palmas de

Más detalles

Computadores y Comunicaciones. Tema 3: Representación Digital de la Información

Computadores y Comunicaciones. Tema 3: Representación Digital de la Información Computadores y Comunicaciones Tema 3: Representación Digital de la Información Febrero, 2 Jorge Juan Chico , Julián Viejo Cortés Departamento de Tecnología Electrónica

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Módulo 02 Sistemas de Representación. Organización de Computadoras Depto. Cs. e Ing. de la Comp. Universidad Nacional del Sur

Módulo 02 Sistemas de Representación. Organización de Computadoras Depto. Cs. e Ing. de la Comp. Universidad Nacional del Sur Módulo 02 Sistemas de Representación Organización de Computadoras Depto. Cs. e Ing. de la Comp. Universidad Nacional del Sur Organización de Computadoras 2 Copyright Copyright 2011-2015 A. G. Stankevicius

Más detalles

Teoria de Errores. Mg. Hermes Pantoja Carhuavilca. Métodos Computacionales. Universidad Nacional Mayor de San Marcos Facultad de Ingenieria Industrial

Teoria de Errores. Mg. Hermes Pantoja Carhuavilca. Métodos Computacionales. Universidad Nacional Mayor de San Marcos Facultad de Ingenieria Industrial Pantoja Carhuavilca Métodos Computacionales Agenda al estudio de métodos computacionales 3 Aproximación y Errores Los cálculos númericos inevitablemente conducen a errores Estos son de dos clases principales:

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

Números. un elemento perteneciente al conjunto D b. de los dígitos del sistema. D b

Números. un elemento perteneciente al conjunto D b. de los dígitos del sistema. D b 1 Un número es un ente que permite representar simbólicamente las veces que la unidad está presente en la cantidad observada o medida. Números representados por una cantidad finita de dígitos o cifras.

Más detalles

Cifras significativas

Cifras significativas Cifras significativas No es extraño que cuando un estudiante resuelve ejercicios numéricos haga la pregunta: Y con cuántos decimales dejo el resultado? No es extraño, tampoco, que alguien, sin justificación,

Más detalles

Práctica 1 - Representación de la información

Práctica 1 - Representación de la información Práctica 1 - Representación de la información Organización del Computador 1 Primer Cuatrimestre 2014 Ejercicio 1 a) Utilizando el método del cociente, expresar en bases 2, 3 y 5 los números 33, 100 y 1023.

Más detalles